首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Based on the difference in the CD14 and CD16 expression, two subsets of monocytes were identified in human and other mammalian blood. These subsets have different patterns of adhesion molecules and chemokine receptors that suggests the different mode of their interaction with endothelium and tissue traffic. Here, we investigated the ability of CD14+CD16+ and CD14++CD16 monocytes to adhere to endothelial cell monolayer in presence or absence of pro- and anti-inflammatory cytokines. We demonstrated that CD14+CD16+ monocytes had a higher level of adhesion to intact monolayer of endothelial cells than CD14++CD16 monocytes. Adhesion of CD14++CD16 and CD14+CD16+ monocytes significantly increased in the presence of TNFα or its combination with other cytokines. IFNγ and IL-4 alone did not affect the adhesion of monocytes. These results show that CD14++CD16 and CD14+CD16+ monocytes can be recruited to the inflamed endothelium, but CD14+CD16+ monocytes adhere to endothelial cells without inflammations twice as strongly as CD14++CD16 monocytes.  相似文献   

2.
Acute coronary syndrome (ACS) is a group of clinical symptoms that results from complete or partial occlusive thrombus, which is caused by coronary an atherosclerotic plaque rupture or erosion. According to a recent study, CD4+ CD28 T cells are found in atherosclerotic plaques and the peripheral circulation blood in patients with ACS, these cells play an important role in plaque ruptures. CD4+ CD28 T cells are an unusual subset of helper cells, which expand and have harmful effects in ACS. In this review, we discuss the current issues on the generation of CD4+ CD28 T cells and focus on their phenotypic and functional characteristics relevant to the development of cardiovascular events. Targeting the CD4+ CD28 T cells subset in ACS could provide novel therapeutic means to prevent acute life-threatening coronary events.  相似文献   

3.
Maintenance of a sufficient population of naïve CD8+ T cells in the peripheral lymphoid compartment is critical for immunocompetence. Peripheral T cell number is a function of T cell generation, survival, and death. Homeostasis, a critical balance between survival and death, must exist to prevent either lymphopenia or lymphocytosis. In the current review, we discuss known requirements for the survival of naïve peripheral CD8+ T cells as well as mechanisms of death when survival signals are lost. We also discuss associations between survival and homeostasis-driven proliferation, and highlight the gaps in our knowledge of these critical processes.  相似文献   

4.
5.
Bone marrow-derived cells have been postulated as a source of multipotent mesenchymal stem cells (MSC). However, the whole fraction of MSC remains heterogeneous and the expansion of primitive subset of these cells is still not well established. Here, we optimized the protocol for propagating the low-adherent subfraction of MSC which results in long-term expansion of population characterized by CD45CD14+CD34+ phenotype along with expression of common MSC markers. We established that the expanded MSC are capable of differentiating into endothelial cells highly expressing angiogenic markers and exhibiting functional properties of endothelium. Moreover, we found these cells to be multipotent and capable of giving rise into cells from neuronal lineages. Interestingly, the expanded MSC form characteristic cellular spheres in vitro indicating primitive features of these cells. In sum, we isolated the novel multipotent subpopulation of CD45CD14+ CD34+ bone marrow-derived cells that could be maintained in long-term culture without losing this potential.  相似文献   

6.
The immune attack against malignant tumors require the concerted action of CD8+ cytotoxic T lymphocytes (CTL) as well as CD4+ T helper cells. The contribution of T cell receptor (TCR) αβ+ CD4 CD8 double-negative (DN) T cells to anti-tumor immune responses is widely unknown. In previous studies, we have demonstrated that DN T cells with a broad TCR repertoire are present in humans in the peripheral blood and the lymph nodes of healthy individuals. Here, we characterize a human DN T cell clone (T4H2) recognizing an HLA-A2-restricted melanoma-associated antigenic gp100-peptide isolated from the peripheral blood of a melanoma patient. Antigen recognition by the T4H2 DN clone resulted in specific secretion of IFN-γ and TNF. Although lacking the CD8 molecule the gp100-specifc DN T cell clone was able to confer antigen-specific cytotoxicity against gp100-loaded target cells as well as HLA-A2+ gp100 expressing melanoma cells. The cytotoxic capacity was found to be perforin/granzymeB-dependent. Together, these data indicate that functionally active antigen-specific DN T cells recognizing MHC class I-restricted tumor-associated antigen (TAA) may contribute to anti-tumor immunity in vivo. A. Mackensen and K. Fischer contributed equally to this work and should be considered joint senior authors. This work was supported by the Deutsche Forschungsgemeinschaft (MA 1351/5-1, KFO 146) and NIH grants CA90873, CA102280, 104947 (MIN). Companion paper: “Relationship between CD8-dependent antigen recognition, T cell functional avidity, and tumor cell recognition” by Tamson V. Moore et al. doi: .  相似文献   

7.
Arginine side-chains are often key for enzyme catalysis, protein–ligand and protein–protein interactions. The importance of arginine stems from the ability of the terminal guanidinium group to form many key interactions, such as hydrogen bonds and salt bridges, as well as its perpetual positive charge. We present here an arginine 13Cζ-detected NMR experiment in which a double-quantum coherence involving the two 15Nη nuclei is evolved during the indirect chemical shift evolution period. As the precession frequency of the double-quantum coherence is insensitive to exchange of the two 15Nη; this new approach is shown to eliminate the previously deleterious line broadenings of 15Nη resonances caused by the partially restricted rotation about the Cζ–Nε bond. Consequently, sharp and well-resolved 15Nη resonances can be observed. The utility of the presented method is demonstrated on the L99A mutant of the 19 kDa protein T4 lysozyme, where the measurement of small chemical shift perturbations, such as one-bond deuterium isotope shifts, of the arginine amine 15Nη nuclei becomes possible using the double-quantum experiment.  相似文献   

8.
9.
The limits of resolution that can be obtained in 1H–15N 2D NMR spectroscopy of isotopically enriched nanocrystalline proteins are explored. Combinations of frequency switched Lee–Goldburg (FSLG) decoupling, fast magic angle sample spinning (MAS), and isotopic dilution via deuteration are investigated as methods for narrowing the amide 1H resonances. Heteronuclear decoupling of 15N from the 1H resonances is also studied. Using human ubiquitin as a model system, the best resolution is most easily obtained with uniformly 2H and 15N enriched protein where the amides have been exchanged in normal water, MAS at 20 kHz, and WALTZ-16 decoupling of the 15N nuclei. The combination of these techniques results in average 1H lines of only 0.26 ppm full width at half maximum. Techniques for optimizing instrument stability and 15N decoupling are described for achieving the best possible performance in these experiments.  相似文献   

10.
In two mountain ecosystems at the Alptal research site in central Switzerland, pulses of 15NO3 and 15NH4 were separately applied to trace deposited inorganic N. One forested and one litter meadow catchment, each approximately 1600 m2, were delimited by trenches in the Gleysols. K15NO3 was applied weekly or fortnightly over one year with a backpack sprayer, thus labelling the atmospheric nitrate deposition. After the sampling and a one-year break, 15NH4Cl was applied as a second one-year pulse, followed by a second sampling campaign. Trees (needles, branches and bole wood), ground vegetation, litter layer and soil (LF, A and B horizon) were sampled at the end of each labelling period. Extractable inorganic N, microbial N, and immobilised soil N were analysed in the LF and A horizons. During the whole labelling period, the runoff water was sampled as well. Most of the added tracer remained in both ecosystems. More NO3 than NH4+ tracer was retained, especially in the forest. The highest recovery was in the soil, mainly in the organic horizon, and in the ground vegetation, especially in the mosses. Event-based runoff analyses showed an immediate response of 15NO3 in runoff, with sharp 15N peaks corresponding to discharge peaks. NO3 leaching showed a clear seasonal pattern, being highest in spring during snowmelt. The high capacity of N retention in these ecosystems leads to the assumption that deposited N accumulates in the soil organic matter, causing a progressive decline of its C:N ratio.  相似文献   

11.
Interleukin-36α (IL-36α) is a recently characterised member of the interleukin-1 superfamily. It is involved in the pathogenesis of inflammatory arthritis in one third of psoriasis patients. By binding of IL-36α to its receptor IL-36R via the NF-κB pathway other cytokines involved in inflammatory and apoptotic cascade are activated. The efficacy of complex formation is controlled by N-terminal processing. To obtain a more detailed view on the structure function relationship we performed a heteronuclear multidimensional NMR investigation and here report the 1H, 13C, and 15N resonance assignments for the backbone and side chain nuclei of the pro-inflammatory cytokine interleukin-36α.  相似文献   

12.
13.
We present two NMR experiments, (3,2)D HNHA and (3,2)D HNHB, for rapid and accurate measurement of 3J(H N-H alpha) and 3J(N-H beta) coupling constants in polypeptides based on the principle of G-matrix Fourier transform NMR spectroscopy and quantitative J-correlation. These experiments, which facilitate fast acquisition of three-dimensional data with high spectral/digital resolution and chemical shift dispersion, will provide renewed opportunities to utilize them for sequence specific resonance assignments, estimation/characterization of secondary structure with/without prior knowledge of resonance assignments, stereospecific assignment of prochiral groups and 3D structure determination, refinement and validation. Taken together, these experiments have a wide range of applications from structural genomics projects to studying structure and folding in polypeptides.  相似文献   

14.
To evaluate sequential nearest-neighbor effects on quantum-chemical calculations of 13Cα chemical shifts, we selected the structure of the nucleic acid binding (NAB) protein from the SARS coronavirus determined by NMR in solution (PDB id 2K87). NAB is a 116-residue α/β protein, which contains 9 prolines and has 50% of its residues located in loops and turns. Overall, the results presented here show that sizeable nearest-neighbor effects are seen only for residues preceding proline, where Pro introduces an overestimation, on average, of 1.73 ppm in the computed 13Cα chemical shifts. A new ensemble of 20 conformers representing the NMR structure of the NAB, which was calculated with an input containing backbone torsion angle constraints derived from the theoretical 13Cα chemical shifts as supplementary data to the NOE distance constraints, exhibits very similar topology and comparable agreement with the NOE constraints as the published NMR structure. However, the two structures differ in the patterns of differences between observed and computed 13Cα chemical shifts, Δ ca,i , for the individual residues along the sequence. This indicates that the Δ ca,i -values for the NAB protein are primarily a consequence of the limited sampling by the bundles of 20 conformers used, as in common practice, to represent the two NMR structures, rather than of local flaws in the structures.  相似文献   

15.
A confined aquifer in the Malm Karst of the Franconian Alb, South Germany was investigated in order to understand the role of the vadose zone in denitrifiaction processes. The concentrations of chemical tracers Sr2+ and Cl and concentrations of stable isotope 18O were measured in spring water and precipitation during storm events. Based on these measurements a conceptual model for runoff was constructed. The results indicate that pre-event water, already stored in the system at the beginning of the event, flows downslope on vertical and lateral preferential flow paths. Chemical tracers used in a mixing model for hydrograph separation have shown that the pre-event water contribution is up to 30%. Applying this information to a conceptual runoff generation model, the values of 15N and 18O in nitrate could be calculated. Field observations showed the occurence of significant microbial denitrification processes above the soil/bedrock interface before nitrate percolates through to the deeper horizon of the vadose zone. The source of nitrate could be determined and denitrification processes were calculated. Assuming that the nitrate reduction follows a Rayleigh process one could approximate a nitrate input concentration of about 170 mg/l and a residual nitrate concentration of only about 15%. The results of the chemical and isotopic tracers postulate fertilizers as nitrate source with some influence of atmospheric nitrate. The combined application of hydrograph separation and determination of isotope values in 15N and 18O of nitrate lead to an improved understanding of microbial processes (nitrification, denitrification) in dynamic systems.  相似文献   

16.
17.
We present a highly sensitive pulse sequence, carbonyl carbon label selective 1H–15N HSQC (CCLS-HSQC) for the detection of signals from 1H–15N units involved in 13C′–15N linkages. The CCLS-HSQC pulse sequence utilizes a modified 15N CT evolution period equal to 1/( ) (∼33 ms) to select for 13C′–15N pairs. By collecting CCLS-HSQC and HNCO data for two proteins (8 kDa ubiquitin and 20 kDa HscB) at various temperatures (5–40°C) in order to vary correlation times, we demonstrate the superiority of the CCLS-HSQC pulse sequence for proteins with long correlation times (i.e. higher molecular weight). We then show that the CCLS-HSQC experiment yields assignments in the case of a 41 kDa protein incorporating pairs of 15N- and 13C′-labeled amino acids, where a TROSY 2D-HN(CO) had failed. Although the approach requires that the 1H–15N HSQC cross peaks be observable, it does not require deuteration of the protein. The method is suitable for larger proteins and is less affected by conformational exchange than HNCO experiments, which require a longer period of transverse 15N magnetization. The method also is tolerant to the partial loss of signal from isotopic dilution (scrambling). This approach will be applicable to families of proteins that have been resistant to NMR structural and dynamic analysis, such as large enzymes, and partially folded or unfolded proteins.  相似文献   

18.
The purposes of this project are to enhance the trans-membrane penetration of Δ8-Tetrahydrocannabinol (Δ8-THC) and to study the effect of various lipid based systems in delivering the compound, non-invasively, to anterior and posterior ocular chambers. Solid lipid nanoparticles (SLNs), fast gelling films were manufactured using high pressure homogenization and melt cast techniques, respectively. The formulations were characterized for drug content, entrapment efficiency, particle size and subsequently evaluated in vitro for trans-corneal permeation. In vivo, the drug disposition was tested via topical administration in albino rabbits. The eye globes were enucleated at the end of experiment and tissues were analyzed for drug content. All formulations showed favorable physicochemical characteristics in terms of particle size, entrapment efficiency, and drug content. In vitro, the formulations exhibited a transcorneal flux that depended on the formulation’s drug load. An increase in drug load from 0.1 to 0.75% resulted in 12- to16-folds increase in permeation. In vivo, the film was able to deliver THC to all the tissues with high accumulations in cornea and sclera. The SLNs showed a greater ability in delivering THC to all the tissues, at a significantly lower drug load, due to their colloidal size range, which in turn enhanced corneal epithelial membrane penetration. The topical formulations evaluated in the present study were able to successfully deliver Δ8-THC in therapeutically meaningful concentrations (EC50 values for CB1: 6 nM and CB2: 0.4 nM) to all ocular tissues except the vitreous humor, with pronounced tissue penetration achieved using SLNs as a Δ8-THC delivery vehicle.  相似文献   

19.
We present a projected [1H,15N]-HMQC-[1H,1H]-NOESY experiment for observation of NOE interactions between amide protons with degenerate 15N chemical shifts in large molecular systems. The projection is achieved by simultaneous evolution of the multiple quantum coherence of the nitrogen spin and the attached proton spin. In this way NOE signals can be separated from direct-correlation peaks also in spectra with low resolution by fully exploiting both 1H and 15N frequency differences, such that sensitivity can be increased by using short maximum evolution times. The sensitivity of the experiment is not dependent on the projection angle for projections up to 45° and no additional pulses or delays are required as compared to the conventional 2D [1H,15N]-HMQC-NOESY. The experiment provides two distinct 2D spectra corresponding to the positive and negative angle projections, respectively. With a linear combination of 1D cross-sections from the two projections the unavoidable sensitivity loss in projection spectra can be compensated for each particular NOE interaction. We demonstrate the application of the novel projection experiment for the observation of an NOE interaction between two sequential glycines with degenerate 15N chemical shifts in a 121.3 kDa complex of the linker H1 histone protein with a 152 bp linear DNA.  相似文献   

20.
The aim of this study was to estimate the distribution and density of a representative set of activating and inhibitory receptors on gated natural killer (NK) cells, as well as on their bright and dim subsets, and to correlate the receptor expression with NK cell activity for healthy individuals on CD3CD16+ NK cells. We show that in 43 healthy controls NK cell activity against K562 target cells was 37.34% (E:T, 80:1) by standard chromium release assay. The expression of receptors on NK cells and their subsets was analyzed by flow cytometry. The cytotoxic CD3CD16bright NK subset constituted 78.97%, while the regulatory CD3CD16dim NK subset constituted 21.03% of NK cells. We show the distribution of NKG2D, CD161, CD158a, and CD158b receptors on CD3CD16+ NK cells in peripheral blood lymphocytes (PBLs), on gated NK cells, and on the CD3CD16bright and CD3CD16dim subsets. Contrary to CD158a and CD158b killer immunoglobulin-like receptors (KIRs), there is a significant positive correlation of NKG2D and CD161 expression with NK cytotoxicity. We show the kinetics of change in CD3CD16+NK/K562 conjugate composition, together with the stronger target binding capacity of CD16bright NK cells. Furthermore, we show that after coculture of PBLs with K562 the expression of CD107a, a degranulation marker, on CD3CD16+NK cells and subsets is time dependent and significantly higher on the cytotoxic CD3CD16bright NK subset. The novel data obtained regarding expression of NK cell activating and inhibitory receptors for healthy individuals may aid in detecting changes that are associated with various diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号