首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Extracellular matrix vesicles, which have been shown to be associated with initial calcification of cartilage, were isolated, characterized, and studied with 45calcium isotope to determine whether they could form mineral in vitro. It was found that the isolated matrix vesicles contain a phosphatase, active at neutral pH, which has a very wide specificity and will hydrolyze a variety of nucleotide triphosphates, diphosphates, monophosphates, and other phosphate-containing substrate and metabolites. Acid phosphatase, beta-glucuronidase, and cathepsin D were found to be in the cell fractions, in lysosomes; these enzymes are not present in matrix vesicles and this is additional evidence for the difference between matrix vesicles and lysosomes. Matrix vesicles were found to take up 45Ca even in the presence of low levels of Ca and P1 and also to facilitate precipitation of hydroxylapatite when incubated under physiological conditions in the presence of ATP and other phosphate-containing substrates. Systematic electron probe analysis of a septum of epiphyseal cartilage indicates that matrix vesicles gradually accumulate calcium and then phosphorus and thus facilitate the advance of the calcification front. Adjoinging nonvesicular matrix in the hypertrophic zone, cell cytoplasm, and cell processes had very low levels of calcium and phosphorus in a region where matrix vesicles showed high levels of these elements. New concepts are put forward that take accounts of these findings which provide a better understanding of the sequence of mineralization in growth cartilage.  相似文献   

3.
The mechanisms by which calcium (Ca2+) and inorganic phosphate (Pi) accumulate into matrix vesicles (MV) have not been elucidated. In the present study the characteristics of Pi uptake into MV isolated from mildly rachitic chicken growth plate cartilage have been investigated. The results indicate that Pi accumulates into MV mainly via a Na(+)-dependent Pi transport system. In the absence of NaCl in the extravesicular medium, Pi uptake was a nonsaturable process. In the presence of 150 mM NaCl, the initial rate of Pi uptake was 4.38 +/- 1.02-fold higher than with 150 mM choline chloride (mean +/- S.E., n = 8, p less than 0.005). Other cations showed partial activity to drive Pi into MV as compared to Na+:Li+ (64.4%) greater than K+ (39.8%) greater than choline (39.0%) greater than tetramethylammonium (30.0%) greater than N-methylglucamine (26.3%). Na(+)-dependent Pi transport activity displayed saturability towards increasing extra-vesicular concentrations of Na+ and Pi. The apparent Km for Pi was 0.68 +/- 0.16 mM. The Na+ concentration producing half-maximum Pi transport activity was 106.2 +/- 11.0 mM. Kinetic analysis suggests that Na+ interacts with the Pi carrier with a stoichiometry of more than one Na+ ion with one Pi molecule. In MV isolated from normal chicken growth plate cartilage, this Na(+)-dependent Pi transport system was barely expressed. In contrast to the effect on Pi uptake by MV, the activity of alkaline phosphatase was not changed when NaCl was substituted for choline chloride in the assay medium. In addition to this observation which suggests that this enzyme is not related to the Pi transport activity described in this study, levamisole, which inhibited alkaline phosphatase activity did not affect the Na(+)-dependent uptake of Pi. Both arsenate and phosphonoformic acid, two inhibitors of the epithelial Na(+)-dependent Pi transport systems, were active inhibitors of the Na(+)-dependent Pi uptake by MV with a higher potency for phosphonoformic acid. Associated with the expression of a facilitated Na(+)-coupled Pi transport in MV, in vitro calcification assessed by 45Ca2+ uptake also showed a marked dependence on extravesicular sodium. This relationship was markedly attenuated in MV isolated from normal chicken growth plate cartilage expressing a weak Na(+)-facilitated Pi transport activity. In conclusion, a saturable Na(+)-dependent Pi carrier has been characterized which facilitates Pi transport in MV. Its potential role for Ca-Pi accumulation into MV and subsequent development of vesicular calcification followed by mineralization of the osteogenic matrix is proposed and remains to be further investigated.  相似文献   

4.
The role of matrix vesicles in the calcification process was investigated in vitro. Isolated vesicles were unable to transport calcium actively. The ATPase activity was not stimulated by calcium in the presence of an optimal magnesium concentration. At a physiological substrate concentration of pyrophosphate, the pyrophosphatase had a pH optimum around 7.0. The vesicles nucleated calcium phosphate precipitation independently of the presence of hydrolyzable phosphate compounds. It is suggested that vesicles induce calcification by nucleating calcium phosphate precipitation and through the local destruction of pyrophosphate, a crystallization inhibitor.  相似文献   

5.
Matrix vesicles (MV) are microstructures localized to the extracellular matrix of developing hard tissues that induce mineral formation. MV proteins are not well characterized, and little is known of how they interact with the surrounding matrix. However, recent electron microscopic studies indicate that MV interact with matrix proteins in growth plate cartilage. In the studies now reported, procedures developed for dissecting various components from isolated MV led to the discovery that two major vesicle proteins (38 and 46 kDa) are readily released from MV by low ionic strength solutions. These low ionic strength-soluble proteins (LISSP) were shown to be major fragments of the link protein (LP) and hyaluronic acid-binding region (HABR) of matrix proteoglycans: they react immunologically with highly specific monoclonal antibodies to LP and HABR, and the NH2-terminal sequence of the 38-kDa LISSP is essentially identical to residues 40-78 of chicken cartilage LP and that the 46-kDa LISSP represents HABR. Release of both LISSP is enhanced by hyaluronidase treatment, indicating anchorage by a hyaluronate-mediated mechanism. Both LP and HABR are firmly attached to MV in either isotonic or hypertonic solutions. In contrast, our other studies show that dissociation of type II collagen from MV occurs only with hypertonic salts which do not release the LISSP. Thus, strong interactions occur under physiological conditions between MV and both the proteoglycans and collagens, but these take place by different mechanisms.  相似文献   

6.
Growth plate cartilage from rachitic rats was studied to assess the role of extra-cellular matrix vesicles in the reinstitution of calcification during healing. The concentration and distribution of matrix vesicles was found to be normal in rachitic growth plate, and although the rachitic cartilage matrix was largely uncalcified, an occasional vesicle did contain internal mineral. Matrix vesicles served as initial loci for mineralization when healing was brought about either by in vivo injection of phosphate or in vitro incubation of growth plates in a metastable calcifying solution. During in vitro calcification a distinct line of mineralization developed in the upper growth plate which was shown by electron microscopy to reflect mineralization by the vesicles. The appearance of this vesicle-associated calcification line was inhibited by preheating or repeated freezing and thawing, and by 30 minutes preincubation in deoxycholate, ethane-1-hydroxy-1,1-diphosphonate, or beryllium sulfate. Our results suggest that vesicle calcification is dependent on the structural and enzymatic integrity of the vesicle membrane. Enzymes that may well play a role in vesicle calcification are phosphatases (e. g., alkaline phosphatase, pyrophosphatase and ATPase), which are known to be concentrated in vesicle membranes.  相似文献   

7.
8.
9.
E H Nielsen 《Acta anatomica》1978,100(2):268-272
Matrix vesicles in the elastic cartilage of epiglottis were negative for acid phosphatase, alkaline phosphatase, and ATPase. This is in agreement with the very rare occurrence of mineralization of elastic cartilage. Only the lysosomes of the chondrocytes showed a positive reaction for acid phosphatase, and a positive reaction for alkaline phosphatase and ATPase was found in relation to the cells of the perichondrium.  相似文献   

10.
When calcifying tissues were extracted with hot pyridine or hot benzene and then decalcified and stained with Sudan black B, the areas where mineralization was being initiated stained strongly, the rest of the calcified tissues being unstained. Histochemical methods showed that lipids were responsible for the staining. They were isolated biochemically and found to be phospholipids, very resistant to extraction before decalcification of the tissues and consisting predominantly of phosphatidyl serine and phosphatidyl inositol. It was proposed that these phospholipids were active at nucleating sites in apatite crystal formation, since it is known that phosphatidyl serine binds calcium strongly. It has been shown that phosphatidyl serine is present in matrix vesicles.  相似文献   

11.
ObjectivesDiabetic wound healing remains a global challenge in the clinic and in research. However, the current medical dressings are difficult to meet the demands. The primary goal of this study was to fabricate a functional hydrogel wound dressing that can provide an appropriate microenvironment and supplementation with growth factors to promote skin regeneration and functional restoration in diabetic wounds.Materials and MethodsSmall extracellular vesicles (sEVs) were bound to the porcine small intestinal submucosa‐based hydrogel material through peptides (SC‐Ps‐sEVs) to increase the content and achieve a sustained release. NIH3T3 cell was used to evaluate the biocompatibility and the promoting proliferation, migration and adhesion abilities of the SC‐Ps‐sEVs. EA.hy926 cell was used to evaluate the stimulating angiogenesis of SC‐Ps‐sEVs. The diabetic wound model was used to investigate the function/role of SC‐Ps‐sEVs hydrogel in promoting wound healing.ResultsA functional hydrogel wound dressing with good mechanical properties, excellent biocompatibility and superior stimulating angiogenesis capacity was designed and facilely fabricated, which could effectively enable full‐thickness skin wounds healing in diabetic rat model.ConclusionsThis work led to the development of SIS, which shows an unprecedented combination of mechanical, biological and wound healing properties. This functional hydrogel wound dressing may find broad utility in the field of regenerative medicine and may be similarly useful in the treatment of wounds in epithelial tissues, such as the intestine, lung and liver.

Schematic illustration showing synthesis of the SC‐Ps scaffold dressing and nanoscale sEVs loaded SC‐Ps scaffold dressing and the potential application of the dressings in diabetic wound healing and skin reconstruction.  相似文献   

12.
13.
14.
Reactive oxygen species (ROS) are implicated in both cartilage aging and the pathogenesis of osteoarthritis. We developed an in vitro model to study the role of chondrocyte-derived ROS in cartilage matrix protein degradation. Matrix proteins in cultured primary articular chondrocytes were labeled with [(3)H]proline, and the washed cell matrix was returned to a serum-free balanced salt solution. Exposure to hydrogen peroxide resulted in oxidative damage to the cell matrix as established by monitoring the release of labeled material into the medium. Calcium ionophore treatment of chondrocytes, in a dose-dependent manner, significantly enhanced the release of labeled matrix, suggesting a chondrocyte-dependent mechanism of matrix degradation. Antioxidant enzymes such as catalase or superoxide dismutase did not influence matrix release by the calcium ionophore-activated chondrocytes. However, vitamin E, at physiological concentrations, significantly diminished the release of labeled matrix by activated chondrocytes. The fact that vitamin E is a chain-breaking antioxidant indicates that the mechanism of matrix degradation and release is mediated by the lipid peroxidation process. Lipid peroxidation was measured in chondrocytes loaded with cis-parinaric acid. Both resting and activated cells showed constitutive and enhanced levels of lipid peroxidation activity, which were significantly reduced in the presence of vitamin E. In an immunoblot analysis, malondialdehyde and hydroxynonenal adducts were observed in chondrocyte-matrix extracts, and the amount of adducts increased with calcium ionophore treatment. Furthermore, vitamin E diminished aldehyde-protein adduct formation in activated extracts, which suggests that vitamin E has an antioxidant role in preventing protein oxidation. This study provides in vitro evidence linking chondrocyte lipid peroxidation to cartilage matrix protein (collagen) oxidation and degradation and suggests that vitamin E has a preventive role. These observations indicate that chondrocyte lipid peroxidation may have a role in the pathogenesis of cartilage aging and osteoarthritis.  相似文献   

15.
The significant cytopathological changes of osteoarthritis are chondrocyte hypertrophy, proteoglycan loss, extracellular matrix (ECM) calcification, and terminally, the replacement of cartilage by bone. Meanwhile, magnesium ion (Mg2+), as the second most abundant divalent cation in the human body, has been proved to inhibit the ECM calcification of hBMSCs (human bone marrow stromal cells), hVSMCs (Human vascular smooth muscle cells), and TDSCs (tendon-derived stem cells) in vitro studies. The ATDC5 cell line, which holds chondrocyte characteristics, was used in this study as an in vitro subject. We found that Mg2+ can efficiently suppress the ECM calcification and downregulate both hypertrophy and matrix metalloproteinase-related genes. Meanwhile, Mg2+ inhibits the formation of autophagy by inhibiting Erk phosphorylation signaling and lowers the expression of LC3, and eventually effectively reduces the formation of ECM calcification in vitro. In this study, we also used destabilization of the medial meniscus (DMM)-induced osteoarthritis (OA) animal model to further confirm the protective effect of Mg2+ on articular cartilage. Compared with the control group (saline-injected), continuous intra-articular magnesium chloride (MgCl2) injection can significantly alleviate the severity of cartilage calcification in OA animal model. Immunofluorescence staining also revealed that saline-injected DMM group had a higher positive rate of LC3 expression in cartilage chondrocytes, compared with MgCl2-injected DMM group. In general, Mg2+ can significantly downregulate the hypertrophic gene Runx2, MMP13, and Col10α1, upregulate the chondrogenic genes Sox9 and Col1α1, inhibit the Erk phosphorylation signaling, reduce the expression of autophagy protein LC3, and effectively inhibit the ECM calcification of ATDC5. In vivo study also proved that intra-articular injection of Mg2+ protected knee cartilage by inhibiting the autophagy formation.  相似文献   

16.
The present study was designed to test whether ATP at serum levels can support matrix vesicle-mediated Ca deposition while the final Ca x P ion product is maintained at or below serum or cartilage fluid levels. Rachitic rat epiphyseal cartilage matrix vesicles (40 micrograms protein/ml) in a simple calcifying solution (without exogenously added Pi) containing 50 mM Tris, pH 7.6 at 37 degrees C, 0.1 M NaCl, 1.35 mM CaCl2, 1 mM ATP, deposited about 500 nmol Ca/mg protein after 5 h. The amount of Ca deposited increased with increases in incubation time, concentrations of ATP, Ca2+, hydroxide, and matrix vesicle protein. UTP, GTP, and CTP were equally effective in supporting Ca deposition by matrix vesicles. ATP-alpha,beta-methylene and ATP-beta,gamma-methylene were inhibitory for ATP-dependent Ca deposition. Experiments with limiting amounts of ATP and Ca2+ available in the calcifying solution indicated that ATP concentration at serum levels, in the presence of Ca x P ion products at serum or cartilage fluid levels, can support matrix vesicle-mediated Ca deposition.  相似文献   

17.
Extracellular membrane-bound vesicles (called matrix vesicles) which occur in abundance in atherosclerotic blood vessels are believed to be associated with lipid accumulation and calcification. A technique has been developed to isolate them from experimental aneurysms in sheep in which they are known to be plentiful. The matrix vesicles were isolated by differential centrifugation following extraction by hypotonic salt solution. Most of the vesicles were pelleted at 30,000g and fell within the size range of matrix vesicles in situ in the aneurysmal wall. Preliminary characterization of the enzymatic activities indicates that many of these vesicles are formed from cell membranes rather than being derived from lysosomes, mitochondria or endoplasmic reticulum. Morphologically they are similar to matrix vesicles of other mineralizing tissues.  相似文献   

18.
The onset of mineralization in embryonic chick femurs was studied as a model for the initiation of biological calcification. Electron microscopy confirmed the presence of calcifying matrix vesicles within newly formed bone, and showed that these vesicles were the initial site of crystal deposition. Matrix vesicles were first seen on day 6 of embryonic development, and already were present in considerable numbers on day 7, at which time mineral deposition was just beginning. As a reflection of initial mineralization the uptake of 45Ca and 40Ca into 7-day-old bones was studied during 2 days in organ culture. A control level of uptake was established using a defined culture medium, P-6. Addition of inorganic pyrophosphate (PPi) to this medium caused a marked increase in calcium uptake into areas of matrix which normally calcify in vivo. The maximal 45Ca uptake, greater than 4-fold, was achieved with 4 μg of P per milliliter of PPi and was partially heat-inhibitable. Since the matrix vesicles are known to be rich in inorganic pyrophosphatase, it is proposed that mineralization is promoted in vesicles by the enzymatic hydrolysis of pyrophosphate. The membrane-bounded matrix vesicles appear to provide the necessary enzymes and environment to concentrate calcium and phosphate for initiating crystal formation.  相似文献   

19.
MicroRNAs (miRNAs) may represent new therapeutic targets for bone and joint diseases. We hypothesized that several cartilage-specific proteins are targeted by a single miRNA and used bioinformatics to identify a miRNA that can modulate extracellular matrix (ECM) homeostasis in cartilage.Bioinformatic analysis of miRNA binding sequences in the 3′-untranslated region (3′-UTR) of target genes was performed to identify a miRNA that could bind to the 3′-UTR of cartilage matrix-related genes. MiRNA expression was studied by quantitative PCR of microdissected growth plate cartilage and binding to the 3′-UTR sequences was analyzed by luciferase interaction studies. Levels of proteins encoded by target genes in cultures of miR-26a mimic- or inhibitor-transfected chondrocytes were determined by FACS or immunoblot analysis.The complementary binding sequence of miR-26a and miR-26b was found in the 3′-UTR of the prehypertrophic/hypertrophic-specific genes Cd200, Col10a1 as well as Col9a1 and Ctgf. Both miRNAs were expressed in cartilage and only miR-26a was downregulated in hypertrophic growth plate cartilage. MiR-26a could interact with the 3′-UTR of Cd200 and Col10a1 in luciferase binding studies, but not with Col9a1 and Ctgf. However, protein expression of target genes and the ECM adaptor genes matrilin-3 and COMP was significantly altered in miR-26a mimic- or inhibitor-transfected chondrocytes, whereas the abundance of the cell surface receptor for insulin was not changed. In conclusion, miR-26a suppresses hypertrophic and ECM adaptor protein production. Dysregulation of miR-26a expression could contribute to ECM changes in cartilage diseases and this miRNA may therefore act as a therapeutic target.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号