首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A single skull from a 6-year-old child was sent to the Anthropological Institute of the University of Zürich. It bore a considerable bone lesion in the frontal area. Closer inspection revealed that it was a postmortal lesion, resulting from the skull chafing on the river bottom whilst drifting in running water. The postmortal change, the so-called "Treibverletzung" (drift injury), is characteristic for bodies that are recovered from rivers or stillwater. A recent case from the Medical Examiners' Office from the same geographic area as the child, showed the same features of the "Treibverletzung". Since it is known from the recent case where it was found, it becomes clear that even small rivers can cause characteristic postmortal injuries.  相似文献   

3.
Much of the phylogenetic diversity in microbial systems arises from rare taxa that comprise the long tail of taxon rank distribution curves. This vast diversity presents a challenge to testing hypotheses about the effects of perturbations on microbial community composition because variability of rare taxa among environmental replicates may be sufficiently large that it would require a prohibitive degree of sequencing to discern differences between samples. In this study we used pyrosequencing of 16S rRNA tags to examine the diversity and within-site variability of salt marsh sediment bacteria. Our goal was to determine whether pyrosequencing could produce similar patterns in community composition among replicate environmental samples from the same location. We hypothesized that repeated sampling from the same location would produce different snapshots of the rare community due to incomplete sequencing of the taxonomically rich rare biosphere. We demonstrate that the salt marsh sediments we sampled contain a remarkably diverse array of bacterial taxa and, in contrast to our hypothesis, repeated sampling from within the same site produces reliably similar patterns in bacterial community composition, even among rare organisms. These results demonstrate that deep sequencing of 16s tags is well suited to distinguish site-specific similarities and differences among rare taxa and is a valuable tool for hypothesis testing in microbial ecology.  相似文献   

4.
Analysis of microbial communities by high-throughput pyrosequencing of SSU rRNA gene PCR amplicons has transformed microbial ecology research and led to the observation that many communities contain a diverse assortment of rare taxa-a phenomenon termed the Rare Biosphere. Multiple studies have investigated the effect of pyrosequencing read quality on operational taxonomic unit (OTU) richness for contrived communities, yet there is limited information on the fidelity of community structure estimates obtained through this approach. Given that PCR biases are widely recognized, and further unknown biases may arise from the sequencing process itself, a priori assumptions about the neutrality of the data generation process are at best unvalidated. Furthermore, post-sequencing quality control algorithms have not been explicitly evaluated for the accuracy of recovered representative sequences and its impact on downstream analyses, reducing useful discussion on pyrosequencing reads to their diversity and abundances. Here we report on community structures and sequences recovered for in vitro-simulated communities consisting of twenty 16S rRNA gene clones tiered at known proportions. PCR amplicon libraries of the V3-V4 and V6 hypervariable regions from the in vitro-simulated communities were sequenced using the Roche 454 GS FLX Titanium platform. Commonly used quality control protocols resulted in the formation of OTUs with >1% abundance composed entirely of erroneous sequences, while over-aggressive clustering approaches obfuscated real, expected OTUs. The pyrosequencing process itself did not appear to impose significant biases on overall community structure estimates, although the detection limit for rare taxa may be affected by PCR amplicon size and quality control approach employed. Meanwhile, PCR biases associated with the initial amplicon generation may impose greater distortions in the observed community structure.  相似文献   

5.
Rao’s quadratic entropy (QE) is a diversity index that includes the abundances of categories (e.g. alleles, species) and distances between them. Here we show that, once the distances between categories are fixed, QE can be maximized with a reduced number of categories and by several different distributions of relative abundances of the categories. It is shown that Rao’s coefficient of distance (DISC), based on QE, can equal zero between two maximizing distributions, even if they have no categories in common. The consequences of these findings on the relevance of QE for understanding biological diversity are evaluated in three case studies. The behaviour of QE at its maximum is shown to be strongly dependent on the distance metric. We emphasize that the study of the maximization of a diversity index can bring clarity to what exactly is measured and enhance our understanding of biological diversity.  相似文献   

6.
7.
The ecological significance of rare microorganisms within microbial communities remains an important, unanswered question. Microorganisms of extremely low abundance (the 'rare biosphere') are believed to be largely inaccessible and unknown. To understand the structure of complex environmental microbial communities, including the representation of rare and prevalent community members, we coupled traditional cultivation with pyrosequencing. We compared cultured and uncultured bacterial members of the same agricultural soil, including eight locations within one apple orchard and four time points. Our analysis revealed that soil bacteria captured by culturing were in very low abundance or absent in the culture-independent community, demonstrating unexpected accessibility of the rare biosphere by culturing.  相似文献   

8.
  1. Download : Download high-res image (226KB)
  2. Download : Download full-size image
  相似文献   

9.
Rare bacterial biosphere (RBB) is a large and probably predominant sector of bacterial diversity, which is specifically represented by small populations. Although some RBB components have been characterized phenotypically (actualistic objects), it has been mainly described as a set of virtual objects, i.e., of the 16S rRNA gene sequences from environmental DNA samples, which are grouped into phylotypes (operational taxonomic units, OTUs). The upper OTU threshold for RBB is presently not standardized. It is usually ~1% of the sum of OTU sequences in the metagenome library, or five sequences per OTU in absolute values. The analyzed RBB objects include (1) virtual and actualistic objects; (2) autochthonous and allochthonous forms; (3) vegetative and differentiated cells; (4) dead bacteria and free DNA; and (5) artifacts and informational gaps. The RBB phenomenon has not been sufficiently explained. According to some concepts, the RBB objects are rare due to restrictive action of unfavorable environmental factors. According to others, they utilize a successful adaptive strategy of low abundance, which facilitates higher genetic diversity, dispersal and colonization of new niches, and microbial conversion of specific substrates. Since RBB was revealed only in the early 2000s and is still poorly studied, its role in organic evolution and its place in the ecosystems should be determined by future research. The information on the RBB composition, distribution, and functions will be important for bacteriology, while some cultured species may be of basic or applied importance.  相似文献   

10.
Protist diversity: estimates of the near-imponderable   总被引:6,自引:0,他引:6  
Foissner W 《Protist》1999,150(4):363-368
  相似文献   

11.
ABSTRACT. Environmental clone libraries constructed using small subunit ribosomal RNA (rRNA) or other gene-specific primers have become the standard molecular approach for identifying microorganisms directly from their environment. This technique includes an initial polymerase chain reaction (PCR) amplification step of a phylogenetically useful marker gene using universal primers. Although it is acknowledged that such primers introduce biases, there have been few studies if any to date systematically examining such bias in eukaryotic microbes. We investigated some implications of such bias by constructing clone libraries using several universal primer pairs targeting rRNA genes. Firstly, we constructed artificial libraries using a known mix of small cultured pelagic arctic algae with representatives from five major lineages and secondly we investigated environmental samples using several primer pairs. No primer pair retrieved all of the original algae in the artificial clone libraries and all showed a favorable bias toward the dinoflagellate Polarella glacialis and a bias against the prasinophyte Micromonas and a pennate diatom. Several other species were retrieved by only one primer pair tested. Despite this, sequences from nine environmental libraries were diverse and contained representatives from all major eukaryotic clades expected in marine samples. Further, libraries from the same sample grouped together using Bray–Curtis clustering, irrespective of primer pairs. We conclude that environmental PCR-based techniques are sufficient to compare samples, but the total diversity will probably always be underestimated and relative abundance estimates should be treated with caution.  相似文献   

12.
Species diversity on the earth has increased through time. The fossil record suggests that the increase may have occurred in several stages, with perturbations caused by mass extinctions and widespread radiations. Various models for global taxonomic diversification have been proposed: equilibrium models where there is a fixed number of species that the earth can support at any time; and non-equilibrium models of two hinds, in which either an equilibrium level exists, but is never reached, or in which there is no equilibrium number at all. At present, all three models can explain the data, although the equilibrium models have been heavily criticized. Detailed reassessments of the fossil record may indicate which models are more probably correct.  相似文献   

13.
Deep sequencing of PCR amplicon libraries facilitates the detection of low‐abundance populations in environmental DNA surveys of complex microbial communities. At the same time, deep sequencing can lead to overestimates of microbial diversity through the generation of low‐frequency, error‐prone reads. Even with sequencing error rates below 0.005 per nucleotide position, the common method of generating operational taxonomic units (OTUs) by multiple sequence alignment and complete‐linkage clustering significantly increases the number of predicted OTUs and inflates richness estimates. We show that a 2% single‐linkage preclustering methodology followed by an average‐linkage clustering based on pairwise alignments more accurately predicts expected OTUs in both single and pooled template preparations of known taxonomic composition. This new clustering method can reduce the OTU richness in environmental samples by as much as 30–60% but does not reduce the fraction of OTUs in long‐tailed rank abundance curves that defines the rare biosphere.  相似文献   

14.
15.
Phenotypic diversity in poultry has been mainly driven by artificial selection and genetic drift. These led to the adaptation to the environment and the development of specific phenotypic traits of chickens in response to their economic use. This study evaluated genetic diversity within and between Russian breeds and populations using Illumina Chicken 60 K SNP iSelect BeadChip by analysing genetic differences between populations with Hudson's fixation index (FST statistic) and heterozygosity. We estimated the effect of rare alleles and linkage disequilibrium (LD) on these measurements. To assess the effect of LD on the genetic diversity population, we carried out the LD-based pruning (LD < 0.5 and LD < 0.1) for seven chicken populations combined (I) or separately (II). LD pruning was specific for different dataset groups. Because of the noticeably large sample size in the Russian White RG population, pruning was substantial for Dataset I, and FST values were only positive when LD < 0.1 pruning was applied. For Dataset II, the LD pruning results were confirmed by examining heterozygosity and alleles' frequency distribution. LD between single nucleotide polymorphisms was consistent across the seven chicken populations, except the Russian White RG population with the smallest r2 values and the largest effective population size. Our findings suggest to study variability in each population LD pruning has to be carried separately not after merging to avoid bias in estimates.  相似文献   

16.
One still cannot predict the 3D fold of a protein from its amino acid sequence, mainly because of errors in the energy estimates underlying the prediction. However, a recently developed theory [1] shows that having a set of homologs (i.e., the chains with equal, in despite of numerous mutations, 3D folds) one can average the potential of each interaction over the homologs and thus predict the common 3D fold of protein family even when a correct fold prediction for an individual sequence is impossible because the energies are known only approximately. This theoretical conclusion has been verified by simulation of the energy spectra of simplified models of protein chains [2], and the further investigation of these simplified models shows that their true "native" fold can be found by folding of the chain where each interaction potential is averaged over the homologs. In conclusion, the applicability of the "homolog-averaging" approach is tested by recognition of real protein 3D structures. Both the gapless threading of sequences onto the known protein folds [3] and the more practically important gapped threading (which allows to consider not only the known 3D structures, but the more or less similar to them folds as well) shows a significant increase in selectivity of the native chain fold recognition.  相似文献   

17.
Increasingly large datasets of 16S rRNA gene sequences reveal new information about the extent of microbial diversity and the surprising extent of the rare biosphere. Currently, many of the largest datasets are represented by short and variable ribosomal sequence tags (RSTs) that are limited in their ability to accurately assign sequences to broad-scale phylogenetic trees. In this study, we selected 30 rare RSTs from existing sequence datasets and designed primers to amplify c. 1400 bases of the 16S rRNA gene to determine whether these sequences were represented by existing databases or if they might reveal new lineages within the Bacteria. Approximately one-third of the RST primers successfully amplified longer portions of these low-abundance 16S rRNA genes in a specific manner. Subsequent phylogenetic analysis demonstrated that most of these sequences were (1) distantly related to existing cultivated microorganisms and (2) closely related to uncultivated clone sequences that were recently deposited in GenBank. The presence of so many recently collected 16S rRNA gene reference sequences in existing databases suggests that progress is being made quickly towards a microbial census, one which has begun scratching the surface of the 'rare biosphere'.  相似文献   

18.
The microbial world has been shown to hold an unimaginable diversity. The use of rRNA genes and PCR amplification to assess microbial community structure and diversity present biases that need to be analyzed in order to understand the risks involved in those estimates. Herein, we show that PCR amplification of specific sequence targets within a community depends on the fractions that those sequences represent to the total DNA template. Using quantitative, real-time, multiplex PCR and specific Taqman probes, the amplification of 16S rRNA genes from four bacterial species within a laboratory community were monitored. Results indicate that the relative amplification efficiency for each bacterial species is a nonlinear function of the fraction that each of those taxa represent within a community or multispecies DNA template. Consequently, the low-proportion taxa in a community are under-represented during PCR-based surveys and a large number of sequences might need to be processed to detect some of the bacterial taxa within the 'rare biosphere'. The structure of microbial communities from PCR-based surveys is clearly biased against low abundant taxa which are required to decipher the complete extent of microbial diversity in nature.  相似文献   

19.
The flora of the White Carpathians, a mountain range in the south-east of the Czech Republic, is documented by about 485,000 records of vascular plant occurrences collected since the mid-19th century. A total of 1299 species recorded in 93 grid cells of 2.8 × 3.1 km were used for an analysis of spatial patterns of floristic diversity in the White Carpathians. Multivariate statistical techniques such as ordination and classification were used to reveal the main gradients in floristic composition and species richness, and measured environmental data and Ellenberg indicator values were used to assess underlying environmental factors. There is a striking floristic contrast between the western and eastern part of the study area, which is associated with differences in climate, mean altitude, topographic heterogeneity measured as altitudinal range, and land use. The western part is characterised by thermophilous, continental and calcicolous species of open habitats. In contrast, the more forested eastern part along the state border with Slovakia and the north-eastern part of the area are characterised by acidophilous species with higher moisture requirements. This pattern is consistent with the established phytogeographical division of the Czech Republic into the phytogeographical regions of Thermophyticum and Mesophyticum. The further division of the area into four regions, based on classified grid data, is also similar to the current division into phytogeographical districts, except for the Javorníky district. There are two distinct hot spots of species richness, in the western and the extreme north-eastern part. A poorer flora was found in landscapes with intensive agriculture. Species richness is associated with different environmental factors than species composition, namely with soil types and land-use categories. Alien species are more common in areas with a higher incidence of arable land and built-up areas, and less common in areas dominated by grasslands and forests.  相似文献   

20.
Bark represents a unique microbial habitat. Revealing the interactions among bark-associated microbes is important for understanding their diversity, stability, and function, and how core microbiome influences the health and production of the host plant. We used amplicon sequencing of bark from the medicinal plant Eucommia ulmoides collected across nine distinct biogeographical regions in China, and comprehensively analyzed the diversity, rare biosphere and core taxa of bark fungi. The co-occurrence network results showed significant differences in the compositions of core mycobiota in E. ulmoides bark between the nine regions. Ecological factors (e.g., temperature and rainfall) were crucial determinants of differences in the unique core mycobiota of E. ulmoides from different regions. The metacommunity-scale network indicated that Cladosporium, Alternaria, and Teratosphaeria were core fungal taxa of E. ulmoides bark. Moreover, some core fungal taxa included rare taxa in particular local communities which, despite their relatively low abundance, may play a significant role in the community structure of E. ulmoides bark.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号