首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V'yugin  V. V.  Gelfand  M. S.  Lyubetsky  V. A. 《Molecular Biology》2002,36(5):650-658
It is well known that phylogenetic trees derived from different protein families are often incongruent. This is explained by mapping errors and by the essential processes of gene duplication, loss, and horizontal transfer. Therefore, the problem is to derive a consensus tree best fitting the given set of gene trees. This work presents a new method of deriving this tree. The method is different from the existing ones, since it considers not only the topology of the initial gene trees, but also the reliability of their branches. Thereby one can explicitly take into account the possible errors in the gene trees caused by the absence of reliable models of sequence evolution, by uneven evolution of different gene families and taxonomic groups, etc.  相似文献   

2.

Background

Several methods have been developed for the accurate reconstruction of gene trees. Some of them use reconciliation with a species tree to correct, a posteriori, errors in gene trees inferred from multiple sequence alignments. Unfortunately the best fit to sequence information can be lost during this process.

Results

We describe GATC, a new algorithm for reconstructing a binary gene tree with branch length. GATC returns optimal solutions according to a measure combining both tree likelihood (according to sequence evolution) and a reconciliation score under the Duplication-Transfer-Loss (DTL) model. It can either be used to construct a gene tree from scratch or to correct trees infered by existing reconstruction method, making it highly flexible to various input data types. The method is based on a genetic algorithm acting on a population of trees at each step. It substantially increases the efficiency of the phylogeny space exploration, reducing the risk of falling into local minima, at a reasonable computational time. We have applied GATC to a dataset of simulated cyanobacterial phylogenies, as well as to an empirical dataset of three reference gene families, and showed that it is able to improve gene tree reconstructions compared with current state-of-the-art algorithms.

Conclusion

The proposed algorithm is able to accurately reconstruct gene trees and is highly suitable for the construction of reference trees. Our results also highlight the efficiency of multi-objective optimization algorithms for the gene tree reconstruction problem. GATC is available on Github at: https://github.com/UdeM-LBIT/GATC.
  相似文献   

3.
Choosing among alternative trees of multigene families   总被引:4,自引:0,他引:4  
Estimation of gene trees is the first step in testing alternative hypotheses about the evolution of multigene families. The standard practice for inferring gene family history is to construct trees that meet some objective criteria based on the fit of the character state changes (nucleotide or amino acid changes) to the gene tree. Unfortunately, analysis of character state data can be misleading. In addition, this approach ignores information about the relationships of the species from which the genes have been sampled. In this paper I explore using statistics of fit between the character data and gene trees and the reconciliation of the gene and species trees for choosing among alternative evolutionary hypotheses of gene families. In particular, I advocate a two-pronged strategy for choosing among alternative gene trees. First, the character data are used to define a set of acceptable gene trees (i.e., trees that are not significantly different from the minimum length tree). Next, the set of acceptable gene trees is reconciled with a known species tree, and the gene tree requiring the fewest number of gene duplications and losses is adopted as the best estimate of evolutionary history. The approach is illustrated using three gene families: BMP, EGR, and LDH.  相似文献   

4.
The proliferation of gene data from multiple loci of large multigene families has been greatly facilitated by considerable recent advances in sequence generation. The evolution of such gene families, which often undergo complex histories and different rates of change, combined with increases in sequence data, pose complex problems for traditional phylogenetic analyses, and in particular, those that aim to successfully recover species relationships from gene trees. Here, we implement gene tree parsimony analyses on multicopy gene family data sets of snake venom proteins for two separate groups of taxa, incorporating Bayesian posterior distributions as a rigorous strategy to account for the uncertainty present in gene trees. Gene tree parsimony largely failed to infer species trees congruent with each other or with species phylogenies derived from mitochondrial and single-copy nuclear sequences. Analysis of four toxin gene families from a large expressed sequence tag data set from the viper genus Echis failed to produce a consistent topology, and reanalysis of a previously published gene tree parsimony data set, from the family Elapidae, suggested that species tree topologies were predominantly unsupported. We suggest that gene tree parsimony failure in the family Elapidae is likely the result of unequal and/or incomplete sampling of paralogous genes and demonstrate that multiple parallel gene losses are likely responsible for the significant species tree conflict observed in the genus Echis. These results highlight the potential for gene tree parsimony analyses to be undermined by rapidly evolving multilocus gene families under strong natural selection.  相似文献   

5.
Species tree inference from gene family trees is becoming increasingly popular because it can account for discordance between the species tree and the corresponding gene family trees. In particular, methods that can account for multiple-copy gene families exhibit potential to leverage paralogy as informative signal. At present, there does not exist any widely adopted inference method for this purpose. Here, we present SpeciesRax, the first maximum likelihood method that can infer a rooted species tree from a set of gene family trees and can account for gene duplication, loss, and transfer events. By explicitly modeling events by which gene trees can depart from the species tree, SpeciesRax leverages the phylogenetic rooting signal in gene trees. SpeciesRax infers species tree branch lengths in units of expected substitutions per site and branch support values via paralogy-aware quartets extracted from the gene family trees. Using both empirical and simulated data sets we show that SpeciesRax is at least as accurate as the best competing methods while being one order of magnitude faster on large data sets at the same time. We used SpeciesRax to infer a biologically plausible rooted phylogeny of the vertebrates comprising 188 species from 31,612 gene families in 1 h using 40 cores. SpeciesRax is available under GNU GPL at https://github.com/BenoitMorel/GeneRax and on BioConda.  相似文献   

6.
Gene duplications have been common throughout vertebrate evolution, introducing paralogy and so complicating phylogenetic inference from nuclear genes. Reconciled trees are one method capable of dealing with paralogy, using the relationship between a gene phylogeny and the phylogeny of the organisms containing those genes to identify gene duplication events. This allows us to infer phylogenies from gene families containing both orthologous and paralogous copies. Vertebrate phylogeny is well understood from morphological and palaeontological data, but studies using mitochondrial sequence data have failed to reproduce this classical view. Reconciled tree analysis of a database of 118 vertebrate gene families supports a largely classical vertebrate phylogeny.  相似文献   

7.
MOTIVATION: Comparative sequence analysis is widely used to study genome function and evolution. This approach first requires the identification of homologous genes and then the interpretation of their homology relationships (orthology or paralogy). To provide help in this complex task, we developed three databases of homologous genes containing sequences, multiple alignments and phylogenetic trees: HOBACGEN, HOVERGEN and HOGENOM. In this paper, we present two new tools for automating the search for orthologs or paralogs in these databases. RESULTS: First, we have developed and implemented an algorithm to infer speciation and duplication events by comparison of gene and species trees (tree reconciliation). Second, we have developed a general method to search in our databases the gene families for which the tree topology matches a peculiar tree pattern. This algorithm of unordered tree pattern matching has been implemented in the FamFetch graphical interface. With the help of a graphical editor, the user can specify the topology of the tree pattern, and set constraints on its nodes and leaves. Then, this pattern is compared with all the phylogenetic trees of the database, to retrieve the families in which one or several occurrences of this pattern are found. By specifying ad hoc patterns, it is therefore possible to identify orthologs in our databases.  相似文献   

8.

Background

Most studies inferring species phylogenies use sequences from single copy genes or sets of orthologs culled from gene families. For taxa such as plants, with very high levels of gene duplication in their nuclear genomes, this has limited the exploitation of nuclear sequences for phylogenetic studies, such as those available in large EST libraries. One rarely used method of inference, gene tree parsimony, can infer species trees from gene families undergoing duplication and loss, but its performance has not been evaluated at a phylogenomic scale for EST data in plants.

Results

A gene tree parsimony analysis based on EST data was undertaken for six angiosperm model species and Pinus, an outgroup. Although a large fraction of the tentative consensus sequences obtained from the TIGR database of ESTs was assembled into homologous clusters too small to be phylogenetically informative, some 557 clusters contained promising levels of information. Based on maximum likelihood estimates of the gene trees obtained from these clusters, gene tree parsimony correctly inferred the accepted species tree with strong statistical support. A slight variant of this species tree was obtained when maximum parsimony was used to infer the individual gene trees instead.

Conclusion

Despite the complexity of the EST data and the relatively small fraction eventually used in inferring a species tree, the gene tree parsimony method performed well in the face of very high apparent rates of duplication.
  相似文献   

9.
Molecular phylogenetics has entered a new era in which species trees are estimated from a collection of gene trees using methods that accommodate their heterogeneity and discordance with the species tree. Empirical evaluation of species trees is necessary to assess the performance (i.e., accuracy and precision) of these methods with real data, which consists of gene genealogies likely shaped by different historical and demographic processes. We analyzed 20 loci for 16 species of the South American lizards of the Liolaemus darwinii species group and reconstructed a species tree with *BEAST, then compared the performance of this method under different sampling strategies of loci, individuals, and sequence lengths. We found an increase in the accuracy and precision of species trees with the number of loci, but for any number of loci, accuracy substantially decreased only when using only one individual per species or 25% of the full sequence length (~ 147 bp). In addition, locus "informativeness" was an important factor in the accuracy/precision of species trees when using a few loci, but it became increasingly irrelevant with additional loci. Our empirical results combined with the previous simulation studies suggest that there is an optimal range of sampling effort of loci, individuals, and sequence lengths for a given speciation history and information content of the data. Future studies should be directed toward further assessment of other factors that can impact performance of species trees, including gene flow, locus "informativeness," tree shape, missing data, and errors in species delimitation.  相似文献   

10.
A stepwise algorithm for finding minimum evolution trees   总被引:7,自引:6,他引:1  
A stepwise algorithm for reconstructing minimum evolution (ME) trees from evolutionary distance data is proposed. In each step, a taxon that potentially has a neighbor (another taxon connected to it with a single interior node) is first chosen and then its true neighbor searched iteratively. For m taxa, at most (m-1)!/2 trees are examined and the tree with the minimum sum of branch lengths (S) is chosen as the final tree. This algorithm provides simple strategies for restricting the tree space searched and allows us to implement efficient ways of dynamically computing the ordinary least squares estimates of S for the topologies examined. Using computer simulation, we found that the efficiency of the ME method in recovering the correct tree is similar to that of the neighbor-joining method (Saitou and Nei 1987). A more exhaustive search is unlikely to improve the efficiency of the ME method in finding the correct tree because the correct tree is almost always included in the tree space searched with this stepwise algorithm. The new algorithm finds trees for which S values may not be significantly different from that of the ME tree if the correct tree contains very small interior branches or if the pairwise distance estimates have large sampling errors. These topologies form a set of plausible alternatives to the ME tree and can be compared with each other using statistical tests based on the minimum evolution principle. The new algorithm makes it possible to use the ME method for large data sets.   相似文献   

11.
Katoh K  Miyata T 《FEBS letters》1999,463(1-2):129-132
Applying the tree bisection and reconnection (TBR) algorithm, we have developed a heuristic method (maximum likelihood (ML)-TBR) for inferring the ML tree based on tree topology search. For initial trees from which iterative processes start in ML-TBR, two cases were considered: one is 100 neighbor-joining (NJ) trees based on the bootstrap resampling and the other is 100 randomly generated trees. The same ML tree was obtained in both cases. All different iterative processes started from 100 independent initial trees ultimately converged on one optimum tree with the largest log-likelihood value, suggesting that a limited number of initial trees will be quite enough in ML-TBR. This also suggests that the optimum tree corresponds to the global optimum in tree topology space and thus probably coincides with the ML tree inferred by intact ML analysis. This method has been applied to the inference of phylogenetic tree of the SOX family members. The mammalian testis-determining gene SRY is believed to have evolved from SOX-3, a member of the SOX family, based on several lines of evidence, including their sequence similarity, the location of SOX-3 on the X chromosome and some aspects of their expression. This model should be supported directly from the phylogenetic tree of the SOX family, but no evidence has been provided to date. A recently published NJ tree shows implausibly remote origin of SRY, suggesting that a more sophisticated method is required for understanding this problem. The ML tree inferred by the present method showed that the SRYs of marsupial and placental mammals form a monophyletic cluster which had diverged from the mammalian SOX-3 in the early evolution of mammals.  相似文献   

12.
GeneTRACE-reconstruction of gene content of ancestral species   总被引:4,自引:0,他引:4  
While current computational methods allow the reconstruction of individual ancestral protein sequences, reconstruction of complete gene content of ancestral species is not yet an established task. In this paper, we describe GENETRACE, an efficient linear-time algorithm that allows the reconstruction of evolutionary history of individual protein families as well as the complete gene content of ancestral species. The performance of the method was validated with a simulated evolution program called SimulEv. Our results indicate that given a set of correct phylogenetic profiles and a correct species tree, ancestral gene content can be reconstructed with sensitivity and selectivity of more than 90%. SimulEv simulations were also used to evaluate performance of the reconstruction of gene content-based phylogenetic trees, suggesting that these trees may be accurate at the terminal branches but suffer from long branch attraction near the root of the tree.  相似文献   

13.
14.
Whole-genome duplication (WGD) produces sets of gene pairs that are all of the same age. We therefore expect that phylogenetic trees that relate these pairs to their orthologs in other species should show a single consistent topology. However, a previous study of gene pairs formed by WGD in the yeast Saccharomyces cerevisiae found conflicting topologies among neighbor-joining (NJ) trees drawn from different loci and suggested that this conflict was the result of "asynchronous functional divergence" of duplicated genes (Langkjaer, R. B., P. F. Cliften, M. Johnston, and J. Piskur. 2003. Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 421:848-852). Here, we test whether the conflicting topologies might instead be due to asymmetrical rates of evolution leading to long-branch attraction (LBA) artifacts in phylogenetic trees. We constructed trees for 433 pairs of WGD paralogs in S. cerevisiae with their single orthologs in Saccharomyces kluyveri and Candida albicans. We find a strong correlation between the asymmetry of evolutionary rates of a pair of S. cerevisiae paralogs and the topology of the tree inferred for that pair. Saccharomyces cerevisiae gene pairs with approximately equal rates of evolution tend to give phylogenies in which the WGD postdates the speciation between S. cerevisiae and S. kluyveri (B-trees), whereas trees drawn from gene pairs with asymmetrical rates tend to show WGD pre-dating this speciation (A-trees). Gene order data from throughout the genome indicate that the "A-trees" are artifacts, even though more than 50% of gene pairs are inferred to have this topology when the NJ method as implemented in ClustalW (i.e., with Poisson correction of distances) is used to construct the trees. This LBA artifact can be ameliorated, but not eliminated, by using gamma-corrected distances or by using maximum likelihood trees with robustness estimated by the Shimodaira-Hasegawa test. Tests for adaptive evolution indicated that positive selection might be the cause of rate asymmetry in a substantial fraction (19%) of the paralog pairs.  相似文献   

15.
Frenkel ZM  Trifonov EN 《Proteins》2007,67(2):271-284
A new method is proposed to reveal apparent evolutionary relationships between protein fragments with similar 3D structures by finding "intermediate" sequences in the proteomic database. Instead of looking for homologies and intermediates for a whole protein domain, we build a chain of intermediate short sequences, which allows one to link similar structural modules of proteins belonging to the same or different families. Several such chains of intermediates can be combined into an evolutionary tree of structural protein modules. All calculations were made for protein fragments of 20 aa residues. Three evolutionary trees for different module structures are described. The aim of the paper is to introduce the new method and to demonstrate its potential for protein structural predictions. The approach also opens new perspectives for protein evolution studies.  相似文献   

16.
The Bowman-Birk family (BBI) of proteinase inhibitors is probably the most studied family of plant inhibitors. We describe the primary structure and the gene expression profile of 14 putative BBIs from the sugarcane expressed sequence tag database and show how we used these newly discovered sequences together with 87 previously described BBI sequences from the GenBank database to construct phylogenetic trees for the BBI family. Phylogenetic analysis revealed that BBI-type inhibitors from monocotyledonous and dicotyledonous plants could be clearly separated into different groups, while the overall topology of the BBI tree suggests a different pattern of evolution for BBI families in flowering plants. We also found that BBI proteinase inhibitors from dicotyledonous plants were well conserved, accumulating only slight differences during their evolution. In addition, we found that BBIs from monocotyledonous plants were highly variable, indicating an interesting process of evolution based on internal gene duplications and mutation events.  相似文献   

17.
Possvm (Phylogenetic Ortholog Sorting with Species oVerlap and MCL [Markov clustering algorithm]) is a tool that automates the process of identifying clusters of orthologous genes from precomputed phylogenetic trees and classifying gene families. It identifies orthology relationships between genes using the species overlap algorithm to infer taxonomic information from the gene tree topology, and then uses the MCL to identify orthology clusters and provide annotated gene families. Our benchmarking shows that this approach, when provided with accurate phylogenies, is able to identify manually curated orthogroups with very high precision and recall. Overall, Possvm automates the routine process of gene tree inspection and annotation in a highly interpretable manner, and provides reusable outputs and phylogeny-aware gene annotations that can be used to inform comparative genomics and gene family evolution analyses.  相似文献   

18.

Background

The history of gene families—which are equivalent to event-labeled gene trees—can be reconstructed from empirically estimated evolutionary event-relations containing pairs of orthologous, paralogous or xenologous genes. The question then arises as whether inferred event-labeled gene trees are biologically feasible, that is, if there is a possible true history that would explain a given gene tree. In practice, this problem is boiled down to finding a reconciliation map—also known as DTL-scenario—between the event-labeled gene trees and a (possibly unknown) species tree.

Results

In this contribution, we first characterize whether there is a valid reconciliation map for binary event-labeled gene trees T that contain speciation, duplication and horizontal gene transfer events and some unknown species tree S in terms of “informative” triples that are displayed in T and provide information of the topology of S. These informative triples are used to infer the unknown species tree S for T. We obtain a similar result for non-binary gene trees. To this end, however, the reconciliation map needs to be further restricted. We provide a polynomial-time algorithm to decide whether there is a species tree for a given event-labeled gene tree, and in the positive case, to construct the species tree and the respective (restricted) reconciliation map. However, informative triples as well as DTL-scenarios have their limitations when they are used to explain the biological feasibility of gene trees. While reconciliation maps imply biological feasibility, we show that the converse is not true in general. Moreover, we show that informative triples neither provide enough information to characterize “relaxed” DTL-scenarios nor non-restricted reconciliation maps for non-binary biologically feasible gene trees.
  相似文献   

19.
Plasmodium falciparum is the parasite responsible for the most acute form of malaria in humans. Recently, the serine repeat antigen (SERA) in P. falciparum has attracted attention as a potential vaccine and drug target, and it has been shown to be a member of a large gene family. To clarify the relationships among the numerous P. falciparum SERAs and to identify orthologs to SERA5 and SERA6 in Plasmodium species affecting rodents, gene trees were inferred from nucleotide and amino acid sequence data for 33 putative SERA homologs in seven different species. (A distance method for nucleotide sequences that is specifically designed to accommodate differing GC content yielded results that were largely compatible with the amino acid tree. Standard-distance and maximum-likelihood methods for nucleotide sequences, on the other hand, yielded gene trees that differed in important respects.) To infer the pattern of duplication, speciation, and gene loss events in the SERA gene family history, the resulting gene trees were then "reconciled" with two competing Plasmodium species tree topologies that have been identified by previous phylogenetic studies. Parsimony of reconciliation was used as a criterion for selecting a gene tree/species tree pair and provided (1) support for one of the two species trees and for the core topology of the amino acid-derived gene tree, (2) a basis for critiquing fine detail in a poorly resolved region of the gene tree, (3) a set of predicted "missing genes" in some species, (4) clarification of the relationship among the P. falciparum SERA, and (5) some information about SERA5 and SERA6 orthologs in the rodent malaria parasites. Parsimony of reconciliation and a second criterion--implied mutational pattern at two key active sites in the SERA proteins-were also seen to be useful supplements to standard "bootstrap" analysis for inferred topologies.  相似文献   

20.

Background

For a combination of reasons (including data generation protocols, approaches to taxon and gene sampling, and gene birth and loss), estimated gene trees are often incomplete, meaning that they do not contain all of the species of interest. As incomplete gene trees can impact downstream analyses, accurate completion of gene trees is desirable.

Results

We introduce the Optimal Tree Completion problem, a general optimization problem that involves completing an unrooted binary tree (i.e., adding missing leaves) so as to minimize its distance from a reference tree on a superset of the leaves. We present OCTAL, an algorithm that finds an optimal solution to this problem when the distance between trees is defined using the Robinson–Foulds (RF) distance, and we prove that OCTAL runs in \(O(n^2)\) time, where n is the total number of species. We report on a simulation study in which gene trees can differ from the species tree due to incomplete lineage sorting, and estimated gene trees are completed using OCTAL with a reference tree based on a species tree estimated from the multi-locus dataset. OCTAL produces completed gene trees that are closer to the true gene trees than an existing heuristic approach in ASTRAL-II, but the accuracy of a completed gene tree computed by OCTAL depends on how topologically similar the reference tree (typically an estimated species tree) is to the true gene tree.

Conclusions

OCTAL is a useful technique for adding missing taxa to incomplete gene trees and provides good accuracy under a wide range of model conditions. However, results show that OCTAL’s accuracy can be reduced when incomplete lineage sorting is high, as the reference tree can be far from the true gene tree. Hence, this study suggests that OCTAL would benefit from using other types of reference trees instead of species trees when there are large topological distances between true gene trees and species trees.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号