首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We determined the cDNA sequence of the mRNA for antithrombin III (AT III) from sheep liver. It encodes a protein of 465 amino acids, including a signal peptide of 32 amino acids. The amino acid sequence of the mature protein shows a sequence identity of 89.1%, 95.6% and 85.0% to the human, bovine and rabbit equivalents, respectively. Cysteine residues involved in disulfide bonds as well as potential glycosylation sites are conserved between the four species. In contrast, the amino acid sequence of the signal peptide shows a smaller identity, i.e., 68.7% and 56.3% compared to the human and rabbit preprotein, respectively.  相似文献   

3.
4.
The branched-chain amino acids (BCAA) are committed to catabolism by the activity of the branched-chain alpha-ketoacid dehydrogenase (BCKD) complex. BCKD activity is regulated through the action of the complex-specific BCKD kinase that phosphorylates two serine residues in the E1alpha subunit. Greater BCKD kinase expression levels result in a lower activity state of BCKD and thus a decreased rate of BCAA catabolism. Activity state varies among tissues and can be altered by diet, exercise, hormones, and disease state. Within individual tissues, the concentration of BCKD kinase reflects the activity state of the BCKD complex. Here we investigated the effects of insulin, an important regulator of hepatic metabolic enzymes, on BCKD kinase expression in Clone 9 rat cells. Insulin effected a twofold increase in message levels and a twofold increase in BCKD kinase protein levels. The response was completely blocked by treatment with LY-294002 and partially blocked by rapamycin, thus demonstrating a dependence on phosphatidylinositol 3-kinase and mTOR function, respectively. These studies suggest that insulin acts to regulate BCAA catabolism through stimulation of BCKD kinase expression.  相似文献   

5.
Protein sequence data derived from the N-terminal region of a 17 kDa polypeptide associated with the microsomal membrane fraction from Pisum sativum was used to design degenerate oligonucleotides which were used to amplify P. sativum cDNA via the polymerase chain reaction (PCR). Amplified cDNA was used as a probe to screen a P. sativum cDNA library and a cDNA clone, NDK-P1 was isolated and sequenced. The protein encoded by NDK-P1 had a calculated molecular mass of 16485 Da and possessed substantial homology with nucleoside diphosphate kinases (NDKs) isolated and cloned from other sources. High levels of expression of NDK-P1 protein were achieved in Escherichia coli using a T7-driven expression system. Recombinant NDK-P1 protein was shown to possess NDK activity and had similar biochemical characteristics to NDKs isolated from other sources. The Michaelis constants for a variety of nucleoside diphosphate (NDP) substrates were found to be broadly similar to those reported for other NDKs, with thymidine nucleotides being the sustrates of greatest affinity.  相似文献   

6.
7.
Rat heart branched chain alpha-ketoacid dehydrogenase kinase (BCKDH kinase) and pyruvate dehydrogenase kinase (PDH kinase) were purified from their respective complexes to apparent homogeneity. BCKDH kinase consisted of one subunit with molecular weight 44,000-45,000 Da, whereas PDH kinase consisted of two subunits with molecular weight 48,000 Da (alpha) and 45,000 Da (beta) as previously shown for the bovine kidney enzyme (Stepp et al., 1983, J. Biol. Chem. 258, 9454-9458). Proteolysis maps of BCKDH kinase and the two subunits of PDH kinase were different, suggesting that all subunits are different entities. The alpha subunit of the rat heart PDH kinase could be cleaved selectively by chymotrypsin with concomitant loss of kinase activity, as previously shown for the bovine kidney enzyme, suggesting that the catalytic activity of PDH kinase resides in the alpha subunit. The beta subunit appeared to be a different entity unique to the PDH kinase. Both kinases exhibited marked substrate specificity toward their respective complexes and would not inactivate heterologous complexes. The kinases possessed slightly different substrate specificity toward histones. BCKDH kinase preferentially phosphorylated histones in the order f1 greater than f2B much greater than f2A much greater than f3. The relative order for PDH kinase was the same, but f2A and f3 were considerably better substrates than they were for BCKDH kinase. These observations suggest that the kinases have different requirements for the structure of the protein at their phosphorylation sites.  相似文献   

8.
p44erk1 is a member of a family of tyrosyl-phosphorylated and mitogen-activated protein (MAP) kinases that participate in cell cycle control. A full-length erk1 cDNA was isolated from a human hepatoma cell line (Hep G2) library. The erk1 cDNA clone shared approximately 96% predicted amino acid identity with partial sequences of rodent erk1 cognates, and the erk1 gene was assigned to human chromosome 16 by hybrid panel analysis. Human erk1 expressed in Escherichia coli as a glutathione S-transferase fusion (GST-Erk1) protein was substantially phosphorylated on tyrosine in vivo. It underwent further autophosphorylation in vitro (up to 0.01 mol of P per mol) at the regulatory Tyr-204 site and at additional tyrosine and serine residues. Threonine autophosphorylation, presumably at the regulatory Thr-202 site, was also detected weakly when the recombinant kinase was incubated in the presence of manganese, but not in the presence of magnesium. Before and after cleavage of the GST-Erk1 protein with thrombin, it exhibited a relatively high level of myelin basic protein phosphotransferase activity, which could be reduced eightfold by treatment of the kinase with the protein-tyrosine phosphatase CD45, but not by treatment with the protein-serine/threonine phosphatase 2A. The protein-tyrosine kinase p56lck catalyzed phosphorylation of GST-Erk1 at two autophosphorylations sites, including Tyr-204, and at a novel site. A further fivefold stimulation of the myelin basic protein phosphotransferase activity of the GST-Erk1 was achieved in the presence of a partially purified MAP kinase kinase from sheep platelets. Under these circumstances, there was primarily an enhancement of the tyrosine phosphorylation of GST-Erk1. This MAP kinase kinase also similarly phosphorylated a catalytically compromised version of GST-Erk1 in which Lys-71 was converted to Ala by site-directed mutagenesis.  相似文献   

9.
10.
Effects of sulfhydryl reagents (5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide) and potassium ferricyanide on the activities of branched-chain 2-oxoacid dehydrogenase complex and its kinase were studied. The dehydrogenase activity was inhibited by the sulfhydryl reagents, but not by potassium ferricyanide. The kinase activity of branched-chain 2-oxoacid dehydrogenase-kinase complex was inhibited with an increase in concentration of all three compounds. However, direct treatment of the purified kinase with N-ethylmaleimide prior to reconstitution with kinase-depleted branched-chain 2-oxoacid dehydrogenase resulted in no loss of kinase activity. These results suggest that protein thiol groups of the E2 component of the dehydrogenase complex are involved in the interaction between the dehydrogenase and its kinase.  相似文献   

11.
Complementary DNA clones for the regulatory subunit RI beta of cAMP-dependent protein kinases were isolated from a human testis cDNA library using a mouse RI beta cDNA probe. One clone 2.4 kilobases (kb) in length contained an open reading frame of 1137 bases, and encoded a protein of 379 amino acids (excluding the initiator methionine). The human RI beta protein was one amino acid shorter than the corresponding protein in mouse and rat. The nucleotide similarity to mouse and rat sequences was 85.6% and 84.8%, respectively, while the amino acid similarity was 97.6% and 97.3%, respectively. Northern blot analyses revealed a 2.7 kb mRNA in human tissues and a 2.8 kb mRNA in mouse tissues. Both mouse and human RI beta mRNA were found to be expressed in most tissues, and not restricted to brain and testis as reported by others.  相似文献   

12.
13.
We have isolated the full-length cDNA of a novel human serine threonine protein kinase gene. The deduced protein sequence contains two cysteine-rich motifs at the N terminus, a pleckstrin homology domain, and a catalytic domain containing all the characteristic sequence motifs of serine protein kinases. It exhibits the strongest homology to the serine threonine protein kinases PKD/PKCmicro and PKCnu, particularly in the duplex zinc finger-like cysteine-rich motif, in the pleckstrin homology domain and in the protein kinase domain. In contrast, it shows only a low degree of sequence similarity to other members of the PKC family. Therefore, the new protein has been termed protein kinase D2 (PKD2). The mRNA of PKD2 is widely expressed in human and murine tissues. It encodes a protein with a molecular mass of 105 kDa in SDS-polyacrylamide gel electrophoresis, which is expressed in various human cell lines, including HL60 cells, which do not express PKCmicro. In vivo phorbol ester binding studies demonstrated a concentration-dependent binding of [(3)H]phorbol 12,13-dibutyrate to PKD2. The addition of phorbol 12,13-dibutyrate in the presence of dioleoylphosphatidylserine stimulated the autophosphorylation of PKD2 in a synergistic fashion. Phorbol esters also stimulated autophosphorylation of PKD2 in intact cells. PKD2 activated by phorbol esters efficiently phosphorylated the exogenous substrate histone H1. In addition, we could identify the C-terminal Ser(876) residue as an in vivo phosphorylation site within PKD2. Phosphorylation of Ser(876) of PKD2 correlated with the activation status of the kinase. Finally, gastrin was found to be a physiological activator of PKD2 in human AGS-B cells stably transfected with the CCK(B)/gastrin receptor. Thus, PKD2 is a novel phorbol ester- and growth factor-stimulated protein kinase.  相似文献   

14.
The gene encoding lipoamide dehydrogenase from Azotobacter vinelandii has been cloned in Escherichia coli. Fragments of 9-23 kb from Azotobacter vinelandii chromosomal DNA obtained by partial digestion with Sau3A were ligated into the BamHI site of plasmid pUC9. E. coli TG2 cells were transformed with the resulting recombinant plasmids. Screening for clones which produced A. vinelandii lipoamide dehydrogenase was performed with antibodies raised against the purified enzyme. A positive colony was found which produced complete chains of lipoamide dehydrogenase as concluded form SDS gel electrophoresis of the cell-free extract, stained for protein or used for Western blotting. After subcloning of the 14.7-kb insert of this plasmid the structural gene could be located on a 3.2-kb DNA fragment. The nucleotide sequence of this subcloned fragment (3134 bp) has been determined. The protein-coding sequence of the gene consists of 1434 bp (478 codons, including the AUG start codon and the UAA stop codon). It is preceded by an intracistronic region of 85 bp and the structural gene for succinyltransferase. A putative ribosome-binding site and promoter sequence are given. The derived amino acid composition is in excellent agreement with that previously published for the isolated enzyme. The predicted relative molecular mass is 50223, including the FAD. The overall homology with the E. coli enzyme is high with 40% conserved amino acid residues. From a comparison with the three-dimensional structure of the related enzyme glutathione reductase [Rice, D. W., Schultz, G. E. & Guest, J. R. (1984) J. Mol. Biol. 174, 483-496], it appears that essential residues in all four domains have been conserved. The enzyme is strongly expressed, although expression does not depend on the vector-encoded lacZ promoter. The cloned enzyme is, in all the respects tested, identical with the native enzyme.  相似文献   

15.
The ATF1 gene, which encodes alcohol acetyltransferase (AATase), was cloned from Saccharomyces cerevisiae and brewery lager yeast (Saccharomyces uvarum). The nucleotide sequence of the ATF1 gene isolated from S. cerevisiae was determined. The structural gene consists of a 1,575-bp open reading frame that encodes 525 amino acids with a calculated molecular weight of 61,059. Although the yeast AATase is considered a membrane-bound enzyme, the results of a hydrophobicity analysis suggested that this gene product does not have a membrane-spanning region that is significantly hydrophobic. A Southern analysis of the yeast genomes in which the ATF1 gene was used as a probe revealed that S. cerevisiae has one ATF1 gene, while brewery lager yeast has one ATF1 gene and another, homologous gene (Lg-ATF1). Transformants carrying multiple copies of the ATF1 gene or the Lg-ATF1 gene exhibited high AATase activity in static cultures and produced greater concentrations of acetate esters than the control.  相似文献   

16.
Signalling pathways involving histidine kinase receptors (HKRs) are widely used by prokaryotes and fungi to regulate a large palette of biological processes. In plants, HKRs are known to be implicated in cytokinin, ethylene, and osmosensing transduction pathways. In this work, a full length cDNA named CRCIK was isolated from the tropical species CATHARANTHUS ROSEUS (L.) G. Don. It encodes a 1205 amino acid protein that belongs to the hybrid HKR family. The deduced amino acid sequence shows the highest homology with AtHK1, an osmosensing HKR in ARABIDOPSIS THALIANA. In return, CrCIK protein shares very low identity with the other 10 ARABIDOPSIS HKRs. Southern blot analysis indicates that the CRCIK corresponding gene is either present in multiple copies or has very close homologues in the genome of the tropical periwinkle. The gene is widely expressed in the plant. In C. ROSEUS C20D cell suspension, it is slightly induced after exposure to low temperature, pointing to a putative role in cold-shock signal transduction.  相似文献   

17.
A cDNA of bovine brain glutamate dehydrogenase (GDH) was isolated from a cDNA library by recombinant PCR. The isolated cDNA has an open-reading frame of 1677 nucleotides, which codes for 559 amino acids. The expression of the recombinant bovine brain GDH enzyme was achieved in E. coli. BL21 (DE3) by using the pET-15b expression vector containing a T7 promoter. The recombinant GDH protein was also purified and characterized. The amino acid sequence was found 90% homologous to the human GDH. The molecular mass of the expressed GDH enzyme was estimated as 50 kDa by SDS-PAGE and Western blot using monoclonal antibodies against bovine brain GDH. The kinetic parameters of the expressed recombinant GDH enzymes were quite similar to those of the purified bovine brain GDH. The Km and Vmax values for NAD+ were 0.1 mM and 1.08 micromol/min/mg, respectively. The catalytic activities of the recombinant GDH enzymes were inhibited by ATP in a concentration-dependent manner over the range of 10 - 100 microM, whereas, ADP increased the enzyme activity up to 2.3-fold. These results indicate that the recombinant-expressed bovine brain GDH that is produced has biochemical properties that are very similar to those of the purified GDH enzyme.  相似文献   

18.
The cDNA clone for rat liver microsomal aldehyde dehydrogenase (msALDH) was isolated and sequenced. The deduced amino acid sequence consisting of 484 amino acid residues revealed that the carboxyl-terminal region of msALDH has a hydrophobic segment, which is probably important for the insertion of this enzyme into the endoplasmic reticulum membrane. COS-1 cells transfected with the expression vector pcD containing the full-length cDNA showed that the active enzyme was expressed and localized mainly on the cytoplasmic surface of the endoplasmic reticulum membranes. It has been proposed that ALDH isozymes form a superfamily consisting of class 1, 2, and 3 ALDHs (Hempel, J., Harper, K., and Lindahl, R., (1989) Biochemistry 28, 1160-1167). Comparison of the amino acid sequence of rat liver msALDH with those of rat other class ALDHs showed that msALDH was 24.2, 24.0, and 65.5% identical to phenobarbital-inducible ALDH (variant class 1), mitochondrial ALDH (class 2), and tumor-associated ALDH (class 3), respectively. Several amino acid residues common to the other known ALDHs, however, were found to be conserved in msALDH. Based on these results, we proposed to classify msALDH as a new type, class 4 ALDH.  相似文献   

19.
We isolated three Arabidopsis thaliana cDNA clones (ATMKK3, ATMKK4 and ATMKK5) encoding protein kinases with extensive homology to the mitogen-activated protein kinase kinases (MAPKKs) of various organisms in the catalytic domain. ATMKK3 shows high homology (85% identity) to NPK2, a tobacco MAPKK homologue. ATMKK4 and 5 are closely related to each other (84% identity). Phylogenetic analysis showed that the plant MAPKKs constitute at least three subgroups. The recombinant ATMKK3 and ATMKK4 were expressed as a fusion protein with glutathione S-transferase (GST) in Escherichia coli. Affinity purified GST-ATMKK3 and GST-ATMKK4 proteins contained phosphorylation activity, which shows that both the ATMKK3 and ATMKK4 genes encode functional protein kinases. Northern blot analysis revealed that the ATMKK3 gene expressed in all the organs. The levels of ATMKK4 and 5 mRNAs were relatively higher in steins and leaves than in flowers and roots. We determined the map positions of the ATMKK3, 4 and 5 genes on Arabidopsis chromosomes by RFLP mapping using P1 genomic clones.  相似文献   

20.
Eight recombinant plasmids harboring chromosomal fragments of Lactococcus lactis MG1363 were shown to phenotypically suppress a histidine protein kinase (HPK) deficiency in either of two different E. coli strains. Sequence analysis of the plasmid inserts revealed five different complete or partial open reading frames (ORFs) specifying proteins with high similarity to HPKs. One of the plasmids also harbored an additional ORF, unrelated to HPKs, with suppressing activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号