首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In plant cells, certain membrane proteins move by unknown mechanisms directly from the endoplasmic reticulum (ER) to prevacuolar or vacuole-like organelles where membrane is internalized to form a dense, lattice-like structure. Here, we identify a sequence motif, PIEPPPHH, in the cytoplasmic tail of a membrane protein that directs the protein from the ER to vacuoles where it is internalized. A type II membrane protein in Arabidopsis thaliana, (At)SRC2 (for Soybean Gene Regulated by Cold-2), binds specifically to PIEPPPHH and moves from the ER to the same vacuoles where it is internalized. Not all proteins that move in this pathway are internalized because another Arabidopsis type II membrane protein, (At)VAP (for Vesicle-Associated Protein), localizes to the same organelles but remains exposed on the limiting membrane. The identification of (At)SRC2 and its preference for interaction with a targeting motif specific for the ER-to-vacuole pathway may provide tools for future dissection of mechanisms involved in this unique trafficking system.  相似文献   

2.
dAKAP1 (AKAP121, S-AKAP84), a dual specificity PKA scaffold protein, exists in several forms designated as a, b, c, and d. Whether dAKAP1 targets to endoplasmic reticulum (ER) or mitochondria depends on the presence of the N-terminal 33 amino acids (N1), and these N-terminal variants are generated by either alternative splicing and/or differential initiation of translation. The mitochondrial targeting motif, which is localized between residues 49 and 63, is comprised of a hydrophobic helix followed by positive charges ( Ma, Y., and Taylor, S. (2002) J. Biol. Chem. 277, 27328-27336 ). dAKAP1 is located on the cytosolic surface of mitochondria outer membrane and both smooth and rough ER membrane. A single residue, Asp(31), within the first 33 residues of dAKAP1b is required for ER targeting. Asp(31), which functions as a separate motif from the mitochondrial targeting signal, converts the mitochondrial-targeting signal into a bipartite ER-targeting signal, without destroying the mitochondria-targeting signal. Therefore dAKAP1 possesses a single targeting element capable of targeting to both mitochondria and ER, with the ER signal overlapping the mitochondria signal. The specificity of ER or mitochondria targeting is determined and switched by the availability of the negatively charged residue, Asp(31).  相似文献   

3.
The OST48 subunit of the oligosaccharyltransferase complex is a type I membrane protein containing three lysines in its cytosolic domain. The two lysines in positions 3 and 5 from the C-terminus are able to direct protein localisation within the endoplasmic reticulum (ER) by COPI-mediated retrieval. Substitution of these lysines by arginine resulted in cell-surface expression of OST48, whereas ER residency was maintained when either Lys-5 or Lys-3 but not both was replaced with arginine. Localisation of OST48 was not affected by substitution of the two lysines by histidine, indicating that a His-Xaa-His sequence, in contrast to Arg-Xaa-Arg, contains ER-specific targeting information. These differences show that simple charge interactions are not sufficient for ER retention and that other structural factors also play a role. The His-Xaa-His sequence could represent a new and independent signal for directing ER localisation differing from both the arginine motif in type II proteins and the lysine motif in type I proteins. Our data do not exclude, however, that the histidine sequence simply mimics the lysine motif as a sorting signal, being recognised by and interacting with the same receptor subunit(s) in COP-I-coated vesicles. Conclusions arising from this assumption involving the conformation of lysine at the putative COP-I binding site and the failure of Arg-Xaa-Arg to mediate ER localisation for type I proteins are discussed.  相似文献   

4.
Intracellular transport of newly synthesized and mature proteins via vesicles is controlled by a large group of proteins. Here we describe a ubiquitous rat protein-endoplasmic reticulum (ER) and Golgi 30-kD protein (ERG30)-which shares structural characteristics with VAP-33, a 33-kD protein from Aplysia californica which was shown to interact with the synaptic protein VAMP. The transmembrane topology of the 30-kD ERG30 corresponds to a type II integral membrane protein, whose cytoplasmic NH(2) terminus contains a predicted coiled-coil motif. We localized ERG30 to the ER and to pre-Golgi intermediates by biochemical and immunocytochemical methods. Consistent with a role in vesicular transport, anti-ERG30 antibodies specifically inhibit intra-Golgi transport in vitro, leading to significant accumulation of COPI-coated vesicles. It appears that ERG30 functions early in the secretory pathway, probably within the Golgi and between the Golgi and the ER.  相似文献   

5.
We have cloned PEX15 which is required for peroxisome biogenesis in Saccharomyces cerevisiae. pex15Delta cells are characterized by the cytosolic accumulation of peroxisomal matrix proteins containing a PTS1 or PTS2 import signal, whereas peroxisomal membrane proteins are present in peroxisomal remnants. PEX15 encodes a phosphorylated, integral peroxisomal membrane protein (Pex15p). Using multiple in vivo methods to determine the topology, Pex15p was found to be a tail-anchored type II (Ncyt-Clumen) peroxisomal membrane protein with a single transmembrane domain near its carboxy-terminus. Overexpression of Pex15p resulted in impaired peroxisome assembly, and caused profound proliferation of the endoplasmic reticulum (ER) membrane. The lumenal carboxy-terminal tail of Pex15p protrudes into the lumen of these ER membranes, as demonstrated by its O-glycosylation. Accumulation in the ER was also observed at an endogenous expression level when Pex15p was fused to the N-terminus of mature invertase. This resulted in core N-glycosylation of the hybrid protein. The lumenal C-terminal tail of Pex15p is essential for targeting to the peroxisomal membrane. Furthermore, the peroxisomal membrane targeting signal of Pex15p overlaps with an ER targeting signal on this protein. These results indicate that Pex15p may be targeted to peroxisomes via the ER, or to both organelles.  相似文献   

6.
The two splice variants of human glucose transporter 9 (hGLUT9) are targeted to different polarized membranes. hGLUT9a traffics to the basolateral membrane, whereas hGLUT9b traffics to the apical region. This study examines the sorting mechanism of these variants, which differ only in their N-terminal domain. Mutating a di-leucine motif unique to GLUT9a did not affect targeting. Chimeric proteins were made using GLUT1, a basolaterally targeted transporter, and GLUT3, an apically targeted protein whose signal lies in the C-terminus. Overexpression of the chimeric proteins in polarized cells demonstrates that the N-terminus of hGLUT9b contains a signal capable of redirecting GLUT1 to the apical membrane. The N-terminus of hGLUT9a, however, does not contain a basolateral signal sufficient enough to redirect GLUT3. Portions of the GLUT9a N-terminus were substituted with corresponding portions of the GLUT9b N-terminus to determine the motif responsible for apical targeting. The first 16 amino acids were not found to be a sufficient apical signal. The last ten amino acids of the N-termini differ only in amino-acid class at one location. In the B-form, leucine, a hydrophobic residue, is substituted for lysine, a basic residue, found in the A-form. However, mutation of the leucine in hGLUT9b to a lysine resulted in retention of the apical signal. We therefore believe the apical signal exists as an interplay between the final ten amino acids of the N-terminus and another motif within the protein such as the intracellular loop or other motifs within the N-terminus.  相似文献   

7.
The vesicular stomatitis virus (VSV) G protein is a model transmembrane glycoprotein that has been extensively used to study the exocytotic pathway. A signal in the cytoplasmic tail of VSV G (DxE or Asp-x-Glu, where x is any amino acid) was recently proposed to mediate efficient export of the protein from the endoplasmic reticulum (ER). In this study, we show that the DxE motif only partially accounts for efficient ER exit of VSV G. We have identified a six-amino-acid signal, which includes the previously identified Asp and Glu residues, that is required for efficient exit of VSV G from the ER. This six-residue signal also includes the targeting sequence YxxO (where x is any amino acid and O is a bulky, hydrophobic residue) implicated in several different sorting pathways. The only defect in VSV G proteins with mutations in the six-residue signal is slow exit from the ER; folding and oligomerization in the ER are normal, and the mutants eventually reach the plasma membrane. Addition of this six-residue motif to an inefficiently transported reporter protein is sufficient to confer an enhanced ER export rate. The signal we have identified is highly conserved among divergent VSV G proteins, and we suggest this reflects the importance of this motif in the evolution of VSV G as a proficient exocytic protein.  相似文献   

8.
Retrieval of transmembrane proteins to the endoplasmic reticulum   总被引:52,自引:24,他引:28       下载免费PDF全文
A COOH-terminal double lysine motif maintains type I transmembrane proteins in the ER. Proteins tagged with this motif, eg., CD8/E19 and CD4/E19, rapidly receive post-translational modifications characteristic of the intermediate compartment and partially colocalized to this organelle. These proteins also received modifications characteristic of the Golgi but much more slowly. Lectin staining localized these Golgi modified proteins to ER indicating that this motif is a retrieval signal. Differences in the subcellular distribution and rate of post-translational modification of CD8 maintained in the ER by sequences derived from a variety of ER resident proteins suggested that the efficiency of retrieval was dependent on the sequence context of the double lysine motif and that retrieval may be initiated from multiple positions along the exocytotic pathway.  相似文献   

9.
SNA (Sensitive to Na+) proteins form a membrane protein family, which, in the yeast Saccharomyces cerevisiae, is composed of four members: Sna1p/Pmp3p, Sna2p, Sna3p and Sna4p. In this study, we focused on the 79 residue Sna2p protein. We found that Sna2p is localized in the vacuolar membrane. Directed mutagenesis showed that two functional tyrosine motifs YXXØ are present in the C‐terminal region. Each of these is involved in a different Golgi‐to‐vacuole targeting pathway: the tyrosine 65 motif is involved in adaptor protein (AP‐1)‐dependent targeting, whereas the tyrosine 75 motif is involved in AP‐3‐dependent targeting. Moreover, our data suggest that these motifs also play a crucial role in the exit of Sna2p from the endoplasmic reticulum (ER). Directed mutagenesis of these tyrosines led to a partial redirection of Sna2p to lipid bodies, probably because of a decrease in ER exit efficiency. Sna2p is the first yeast protein in which two YXXØ motifs have been identified and both were shown to be functional at two different steps of the secretory pathway, ER exit and Golgi‐to‐vacuole transport.  相似文献   

10.
In mammals and yeast, a cytosolic dilysine motif is critical for endoplasmic reticulum (ER) localization of type I membrane proteins. Retrograde transport of type I membrane proteins containing dilysine motifs at their cytoplasmic carboxy (C)-terminal tail involves the interaction of these motifs with the COPI coat. The C-terminal dilysine motif has also been shown to confer ER localization to type I membrane proteins in plant cells. Using in vitro binding assays, we have analyzed sorting motifs in the cytosolic tail of membrane proteins, which may be involved in the interaction with components of the COPI coat in plant cells. We show that a dilysine motif in the -3,-4 position (relative to the cytosolic C-terminus) recruits in a very specific manner all the subunits of the plant coatomer complex. Lysines cannot be replaced by arginines or histidines to bind plant coatomer. A diphenylalanine motif in the -7,-8 position, which by itself has a low ability to bind plant coatomer, shows a clear cooperativity with the dilysine motif. Both dilysine and diphenylalanine motifs are present in the cytosolic tail of several proteins of the p24 family of putative cargo receptors, which has several members in plant cells. The cytosolic tail of a plant p24 protein is shown to recruit not only coatomer but also ADP ribosylation factor 1 (ARF1), a process which depends on both dilysine and diphenylalanine motifs. ARF1 binding increases twofold upon treatment with brefeldin A (BFA) and is completely abolished upon treatment with GTPgammaS, suggesting that ARF1 can only interact with the cytosolic tail of p24 proteins in its GDP-bound form.  相似文献   

11.
Ras proteins must be localized to the inner surface of the plasma membrane to be biologically active. The motifs that effect Ras plasma membrane targeting consist of a C-terminal CAAX motif plus a second signal comprising palmitoylation of adjacent cysteine residues or the presence of a polybasic domain. In this study, we examined how Ras proteins access the cell surface after processing of the CAAX motif is completed in the endoplasmic reticulum (ER). We show that palmitoylated CAAX proteins, in addition to being localized at the plasma membrane, are found throughout the exocytic pathway and accumulate in the Golgi region when cells are incubated at 15 degrees C. In contrast, polybasic CAAX proteins are found only at the cell surface and not in the exocytic pathway. CAAX proteins which lack a second signal for plasma membrane targeting accumulate in the ER and Golgi. Brefeldin A (BFA) significantly inhibits the plasma membrane accumulation of newly synthesized, palmitoylated CAAX proteins without inhibiting their palmitoylation. BFA has no effect on the trafficking of polybasic CAAX proteins. We conclude that H-ras and K-ras traffic to the cell surface through different routes and that the polybasic domain is a sorting signal diverting K-Ras out of the classical exocytic pathway proximal to the Golgi. Farnesylated Ras proteins that lack a polybasic domain reach the Golgi but require palmitoylation in order to traffic further to the cell surface. These data also indicate that a Ras palmitoyltransferase is present in an early compartment of the exocytic pathway.  相似文献   

12.
The molecular basis for retention of integral membrane proteins in the endoplasmic reticulum (ER) is not well understood. We recently discovered a novel ER molecular chaperone termed Cosmc, which is essential for folding and normal activity of the Golgi enzyme T-synthase. Cosmc, a type II single-pass transmembrane protein, lacks any known ER retrieval/retention motifs. To explore specific ER localization determinants in Cosmc we generated a series of Cosmc mutants along with chimeras of Cosmc with a non-ER resident type II protein, the human transferrin receptor. Here we show that the 18 amino acid transmembrane domain (TMD) of Cosmc is essential for ER localization and confers ER retention to select chimeras. Moreover, mutations of a single Cys residue within the TMD of Cosmc prevent formation of disulfide-bonded dimers of Cosmc and eliminate ER retention. These studies reveal that Cosmc has a unique ER-retention motif within its TMD and provide new insights into the molecular mechanisms by which TMDs of resident ER proteins contribute to ER localization.  相似文献   

13.
Subcellular localization directed by specific targeting motifs is an emerging theme for regulating signal transduction pathways. For cAMP-dependent protein kinase (PKA), this is achieved primarily by its association with A-kinase-anchoring proteins (AKAPs). Dual specificity AKAP1, (D-AKAP1) binds to both type I and type II regulatory subunits and has two NH2-terminal (N0 and N1) and two COOH-terminal (C1 and C2) splice variants (. J. Biol. Chem. 272:8057). Here we report that the splice variants of D-AKAP1 are expressed in a tissue-specific manner with the NH2-terminal motifs serving as switches to localize D-AKAP1 at different sites. Northern blots showed that the N1 splice is expressed primarily in liver, while the C1 splice is predominant in testis. The C2 splice shows a general expression pattern. Microinjecting expression constructs of D-AKAP1(N0) epitope-tagged at either the NH2 or the COOH terminus showed their localization to the mitochondria based on immunocytochemistry. Deletion of N0(1-30) abolished mitochondrial targeting while N0(1-30)-GFP localized to mitochondria. Residues 1-30 of N0 are therefore necessary and sufficient for mitochondria targeting. Addition of the 33 residues of N1 targets D-AKAP1 to the ER and residues 1-63 fused to GFP are necessary and sufficient for ER targeting. Residues 14-33 of N1 are especially important for targeting to ER; however, residues 1-33 alone fused to GFP gave a diffuse distribution. N1(14-33) thus serves two functions: (a) it suppresses the mitochondrial-targeting motif located within residues 1-30 of N0 and (b) it exposes an ER-targeting motif that is at least partially contained within the N0(1-30) motif. This represents the first example of a differentially targeted AKAP and adds an additional level of complexity to the PKA signaling network.  相似文献   

14.
Tomato bushy stunt virus (TBSV), a positive-strand RNA virus, causes extensive inward vesiculations of the peroxisomal boundary membrane and formation of peroxisomal multivesicular bodies (pMVBs). Although pMVBs are known to contain protein components of the viral membrane-bound RNA replication complex, the mechanisms of protein targeting to peroxisomal membranes and participation in pMVB biogenesis are not well understood. We show that the TBSV 33-kD replication protein (p33), expressed on its own, targets initially from the cytosol to peroxisomes, causing their progressive aggregation and eventually the formation of peroxisomal ghosts. These altered peroxisomes are distinct from pMVBs; they lack internal vesicles and are surrounded by novel cytosolic vesicles that contain p33 and appear to be derived from evaginations of the peroxisomal boundary membrane. Concomitant with these changes in peroxisomes, p33 and resident peroxisomal membrane proteins are relocalized to the peroxisomal endoplasmic reticulum (pER) subdomain. This sorting of p33 is disrupted by the coexpression of a dominant-negative mutant of ADP-ribosylation factor1, implicating coatomer in vesicle formation at peroxisomes. Mutational analysis of p33 revealed that its intracellular sorting is also mediated by several targeting signals, including three peroxisomal targeting elements that function cooperatively, plus a pER targeting signal resembling an Arg-based motif responsible for vesicle-mediated retrieval of escaped ER membrane proteins from the Golgi. These results provide insight into virus-induced intracellular rearrangements and reveal a peroxisome-to-pER sorting pathway, raising new mechanistic questions regarding the biogenesis of peroxisomes in plants.  相似文献   

15.
In vivo dissection of the Tat translocation pathway in Escherichia coli   总被引:4,自引:0,他引:4  
The bacterial Tat pathway is capable of exporting folded proteins carrying a special twin arginine (RR) signal peptide. By using two in vivo reporter proteins, we assessed factors that affect Tat pathway transport. We observed that, like the intact RR signal peptide, those with a KR or RK substitution were still capable of mediating the translocation of the folded green fluorescent protein (GFP). However, the translocation efficiency decreased in the order of RR>KR>RK. The KK motif was unable to mediate GFP translocation. The translocation of the RR-GFP fusion required TatA, TatB and TatC proteins. By exploiting the periplasmic bactericidal property of colicin V (ColV), we constructed a translocation-suicide probe, RR-ColV. The translocation of RR-ColV fully inhibited the growth of wild-type Escherichia coli and those of the DeltatatD and DeltatatE mutants. In contrast, the deletion of the tatC gene blocked RR-ColV in the cytoplasm and this strain exhibited a normal growth phenotype. Interestingly, the growth of DeltatatA and tatB mutants was inhibited partially by RR-ColV. Moreover, KR, RK and KK motifs were capable of mediating the ColV translocation with a decreasing RR=KR>RK>KK efficiency. In addition to TatE and TatC proteins, either TatA or TatB was sufficient for the translocation of RR-ColV or KR-ColV. In contrast, TatA plus the conserved N-terminal domain of TatB were required to mediate the killing effect of ColV fused to the less-efficient RK signal peptide. Taken together, these results suggest that a fully efficient Tat pathway transport is determined by the sequence of the signal peptide, the composition of the Tat apparatus, and the intrinsic characteristics of exported proteins.  相似文献   

16.

Background  

In eukaryotic cells, the membrane compartments that constitute the exocytic pathway are traversed by a constant flow of lipids and proteins. This is particularly true for the endoplasmic reticulum (ER), the main "gateway of the secretory pathway", where biosynthesis of sterols, lipids, membrane-bound and soluble proteins, and glycoproteins occurs. Maintenance of the resident proteins in this compartment implies they have to be distinguished from the secretory cargo. To this end, they must possess specific ER localization determinants to prevent their exit from the ER, and/or to interact with receptors responsible for their retrieval from the Golgi apparatus. Very few information is available about the signal(s) involved in the retention of membrane type II protein in the ER but it is generally accepted that sorting of ER type II cargo membrane proteins depends on motifs mainly located in their cytosolic tails.  相似文献   

17.
The signal recognition particle (SRP) and SRP receptor act sequentially to target nascent secretory proteins to the membrane of the ER. The SRP receptor consists of two subunits, SR alpha and SR beta, both tightly associated with the ER membrane. To examine the biogenesis of the SRP receptor we have developed a cell-free assay system that reconstitutes SR alpha membrane assembly and permits both anchoring and functional properties to be assayed independently. Our experiments reveal a mechanism involving at least two distinct steps, targeting to the ER and anchoring of the targeted molecule on the cytoplasmic face of the membrane. Both steps can be reconstituted in vitro to restore translocation activity to ER microsomes inactivated by alkylation with N-ethyl-maleimide. The characteristics elucidated for this pathway distinguish it from SRP-dependent targeting of secretory proteins, SRP-independent ER translocation of proteins such as prepromellitin, and direct insertion mechanisms of the type exemplified by cytochrome b5.  相似文献   

18.
S-palmitoylation occurs on intracellular membranes and, therefore, membrane anchoring of proteins must precede palmitate transfer. However, a number of palmitoylated proteins lack any obvious membrane targeting motifs and it is unclear how this class of proteins become membrane associated before palmitoylation. Cysteine-string protein (CSP), which is extensively palmitoylated on a "string" of 14 cysteine residues, is an example of such a protein. In this study, we have investigated the mechanisms that govern initial membrane targeting, palmitoylation, and membrane trafficking of CSP. We identified a hydrophobic 31 amino acid domain, which includes the cysteine-string, as a membrane-targeting motif that associates predominantly with endoplasmic reticulum (ER) membranes. Cysteine residues in this domain are not merely sites for the addition of palmitate groups, but play an essential role in membrane recognition before palmitoylation. Membrane association of the cysteine-string domain is not sufficient to trigger palmitoylation, which requires additional downstream residues that may regulate the membrane orientation of the cysteine-string domain. CSP palmitoylation-deficient mutants remain "trapped" in the ER, suggesting that palmitoylation may regulate ER exit and correct intracellular sorting of CSP. These results reveal a dual function of the cysteine-string domain: initial membrane binding and palmitoylation-dependent sorting.  相似文献   

19.
Post-translational modification by protein prenylation is required for membrane targeting and biological function of monomeric GTPases. Ras and Rho proteins possess a C-terminal CAAX motif (C is cysteine, A is usually an aliphatic residue, and X is any amino acid), in which the cysteine is prenylated, followed by proteolytic cleavage of the AAX peptide and carboxyl methylation by the Rce1 CAAX protease and Icmt methyltransferase, respectively. Rab GTPases usually undergo double geranylgeranylation within CC or CXC motifs. However, very little is known about processing and membrane targeting of Rabs that naturally contain a CAAX motif. We show here that a variety of Rab-CAAX proteins undergo carboxyl methylation, both in vitro and in vivo, with one exception. Rab38(CAKS) is not methylated in vivo, presumably because of the inhibitory action of the lysine residue within the AAX motif for cleavage by Rce1. Unlike farnesylated Ras proteins, we observed no targeting defects of overexpressed Rab-CAAX proteins in cells deficient in Rce1 or Icmt, as reported for geranylgeranylated Rho proteins. However, endogenous geranylgeranylated non-methylated Rab-CAAX and Rab-CXC proteins were significantly redistributed to the cytosol at steady-state levels and redistribution correlates with higher affinity of RabGDI for non-methylated Rabs in Icmt-deficient cells. Our data suggest a role for methylation in Rab function by regulating the cycle of Rab membrane recruitment and retrieval. Our findings also imply that those Rabs that undergo post-prenylation processing follow an indirect targeting pathway requiring initial endoplasmic reticulum membrane association prior to specific organelle targeting.  相似文献   

20.
New COP1-binding motifs involved in ER retrieval.   总被引:5,自引:0,他引:5  
Coatomer-mediated sorting of proteins is based on the physical interaction between coatomer (COP1) and targeting motifs found in the cytoplasmic domains of membrane proteins. For example, binding of COP1 to dilysine (KKXX) motifs induces specific retrieval of tagged proteins from the Golgi back to the endoplasmic reticulum (ER). Making use of the two-hybrid system, we characterized a new sequence (deltaL) which interacts specifically with the delta-COP subunit of the COP1 complex. Transfer of deltaL to the cytoplasmic domain of a reporter membrane protein resulted in its localization in the ER, in yeast and mammalian cells. This was due to continuous retrieval of tagged proteins from the Golgi back to the ER, in a manner similar to the ER retrieval of KKXX-tagged proteins. Extensive mutagenesis of deltaL identified an aromatic residue as a critical determinant of the interaction with COP1. Similar COP1-binding motifs containing an essential aromatic residue were identified in the cytoplasmic domain of an ER-resident protein, Sec71p, and in an ER retention motif previously characterized in the CD3epsilon chain of the T-cell receptor. These results emphasize the role of the COP1 complex in retrograde Golgi-to-ER transport and highlight its functional similarity with clathrin-adaptor complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号