首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Insect Biochemistry》1985,15(5):601-609
The protein composition of six of the coxal depressor muscles of the leg of the cockroach, Periplaneta americana, was analyzed by one and two dimensional SDS—polyacrylamide gel electrophoresis in conjunction with a sensitive silver stain. The proteins in each muscle were fractionated according to their solubilities in either low salt buffer, 1%NP-40, or 2%SDS. The gel patterns resulting from the electrophoresis of each of the fractions from “fast”, “slow”, and “mixed” type muscle were compared with reference to the innervation of the muscle by a particular motor neuron. More than 50 proteins were detected which were not common to all three types of muscle. These proteins were found to be distributed fairly equally amongst each of the three fractions. The large number of differentially expressed proteins observed, are not likely to be involved in specific neuromuscular recognition, but instead are probably correlated with the physiological state of the muscle.  相似文献   

2.
SYNOPSIS. The neuromuscular system of the cockroach containsmotor neurons and muscles that can be identified in all individualinsects When the axons of these motor neurons are damaged theyregenerate and eventually reform synapses only with the originaltarget muscles However at early times after axotomy transientinappropriate functional connections are made between regeneratingneurons and muscles that theynever normally innervate Laterthe inappropriate synapses are inactivated, the inappropriateaxon branches eliminated and the original innervation patternreformed A cellcell recognition between identified motor neuronsand muscles is required to explain these observations, particularlyin light of experiments demonstrating the absence of competitionbetween appropriate and inappropriate axon terminals withinthe muscle. A minimum biochemical requirement of such a cell-cell recognitionis the existence of molecules whose presence in muscles correlateswith the innervation by identified motor neurons Using fluoresceinlabelled plant lectins to detect muscle surface glycoproteinssuch molecules have been identified In addition, there shouldbe molecular differences among the surfaces of the axon terminalsof the various identified motor neurons Hybrid oma techniqueshave enabled us to obtain monoclonal antibodies that bind tosurfaces of axon terminals of some motor neurons and not othersThese lectin receptors and antigens are good candidate recognitionmacromolecules Other molecules essential for axonal regenerationhave been identified by their presence in embryonic and adultregenerating neurons and their absence from intact adult neurons.  相似文献   

3.
The cell-cell interactions leading to the formation of synaptic connections among cells in the nervous system may be mediated by cell surface macromolecules. In the cockroach the specific reformation of the original innervation pattern of a set of leg muscles during axonal regeneration indicates a significant contribution from cell-cell recognition. Macromolecules mediating such a process would be expected to be distributed differentially among the axon terminals of the various motor neurons. Monoclonal antibodies have been isolated that selectively bind to the surfaces of axon terminals of some motor neurons and not others. Preliminary biochemical characterization indicates that these antigens are glycoproteins and are good candidates for consideration as recognition macromolecules.  相似文献   

4.
The cell–cell interactions leading to the formation of synaptic connections among cells in the nervous system may be mediated by cell surface macromolecules. In the cockroach the specific reformation of the original innervation pattern of a set of leg muscles during axonal regeneration indicates a significant contribution from cell–cell recognition. Macromolecules mediating such a process would be expected to be distributed differentially among the axon terminals of the various motor neurons. Monoclonal antibodies have been isolated that selectively bind to the surfaces of axon terminals of some motor neurons and not others. Preliminary biochemical characterization indicates that these antigens are glycoproteins and are good candidates for consideration as recognition macromolecules.  相似文献   

5.
The retrograde transport of wheat germ agglutinin-conjugated horseradish peroxidase extracellularly injected into a leg muscle was used to identify the regenerating cockroach motor neurons that have grown an axonal branch into that muscle. At least 66% of the animals with crushed nerve roots eventually reform the original innervation pattern of this muscle with no mistakes. In spite of this apparent specificity the cockroach neuromuscular system can express plasticity as evidenced by the correction of mistakes made at early stages of regeneration. These mistakes are corrected through elimination during the time interval between 40 and 60 days after nerve crush. In addition, when the distal segments of the leg are removed, thus depriving some motor neurons of their normal target muscles, many of them form stable inappropriate axonal branches in denervated as well as fully innervated muscles. These observations are discussed in terms of possible mechanisms responsible for the specificity of the cellular interactions and in terms of their relevance to understanding the development of vertebrate neuromuscular systems.  相似文献   

6.
Molecular forms and histochemical localization of acetylcholinesterase and nonspecific cholinesterase were analysed in muscle regenerates obtained from rat EDL and soleus muscles after ischaemic-toxic degeneration and irreversible inhibition of preexistent enzymes. Regenerating myotubes and myofibres produce the 16S AChE form in the absence of innervation. The 10S AChE form prevails over 4S form with maturation into striated fibres. Although the patterns of AChE molecular forms in normal EDL and soleus muscles differ significantly no such differences were observed in noninnervated regenerates from both muscles. Two types of focal accumulation of AChE appear on the sarcolemma of regenerating muscles: first, in places of former motor endplates and, second, in extrajunctional regions. The 4S form of nonspecific cholinesterase is prevailing in regenerating myotubes whereas its asymmetric forms or focal accumulations could not be identified reliably. The satellite cells which survive after muscle degeneration probably originate from some type of late myoblasts and transmit the information concerning the ability to synthesize the asymmetric AChE forms and to focally accumulate AChE to regenerating muscle cells. Synaptic basal lamina from former motor endplates may locally induce AChE accumulations in regenerating muscles.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

7.
The properties of mammalian skeletal muscle demonstrate a high degree of structural and functional plasticity as evidenced by their adaptability to an atypical site after cross-transplantation and to atypical innervation after cross-innervation. We tested the hypothesis that, regardless of fiber type, skeletal muscles composed of regenerating fibers adapt more readily than muscles composed of surviving fibers when placed in an atypical site with atypical innervation. Fast muscles of rats were autografted into the site of slow muscles or vice versa with the donor muscle innervated by the motor nerve to the recipient site. Surviving fibers in donor muscles were obtained by grafting with vasculature intact (vascularized muscle graft), and regenerating fibers were obtained by grafting with vasculature severed (free muscle graft). Our hypothesis was supported because 60 days after grafting, transposed muscles with surviving fibers demonstrated only a slight change from the contractile properties and fiber typing of donor muscles, whereas transplanted muscles with regenerating fibers demonstrated almost complete change to those of the muscle formerly in the atypical site.  相似文献   

8.
9.
Competition among axon terminals is usually considered to contribute to the formation of patterned synaptic connections. During axonal regeneration of motor neurons in the cockroach, leg muscles initially become innervated by appropriate and inappropriate motor neurons. All axon terminals from inappropriate neurons eventually are eliminated, resulting in the reformation of the original innervation pattern. Destruction of an identified motor neuron by the intracellular injection of pronase did not prevent the elimination of inappropriate axon terminals in the muscle normally innervated by that motor neuron. Therefore, competition does not play a role in the reinnervation of the leg muscles. This indicates a major role for specific cell-cell recognition.  相似文献   

10.
Normal aging and neurodegenerative diseases both lead to structural and functional alterations in synapses. Comparison of synapses that are generally similar but respond differently to insults could provide the basis for discovering mechanisms that underlie susceptibility or resistance to damage. Here, we analyzed skeletal neuromuscular junctions (NMJs) in 16 mouse muscles to seek such differences. We find that muscles respond in one of three ways to aging. In some, including most limb and trunk muscles, age-related alterations to NMJs are progressive and extensive during the second postnatal year. NMJs in other muscles, such as extraocular muscles, are strikingly resistant to change. A third set of muscles, including several muscles of facial expression and the external anal sphinter, succumb to aging but not until the third postnatal year. We asked whether susceptible and resistant muscles differed in rostrocaudal or proximodistal position, source of innervation, motor unit size, or fiber type composition. Of these factors, muscle innervation by brainstem motor neurons correlated best with resistance to age-related decline. Finally, we compared synaptic alterations in normally aging muscles to those in a mouse model of amyotrophic lateral sclerosis (ALS). Patterns of resistance and susceptibility were strikingly correlated in the two conditions. Moreover, damage to NMJs in aged muscles correlated with altered expression and distribution of CRMP4a and TDP-43, which are both altered in motor neurons affected by ALS. Together, these results reveal novel structural, regional and molecular parallels between aging and ALS.  相似文献   

11.
β-Catenin, a key component of the Wnt signaling pathway, has been implicated in the development of the neuromuscular junction (NMJ) in mice, but its precise role in this process remains unclear. Here we use a β-catenin gain-of-function mouse model to stabilize β-catenin selectively in either skeletal muscles or motor neurons. We found that β-catenin stabilization in skeletal muscles resulted in increased motor axon number and excessive intramuscular nerve defasciculation and branching. In contrast, β-catenin stabilization in motor neurons had no adverse effect on motor innervation pattern. Furthermore, stabilization of β-catenin, either in skeletal muscles or in motor neurons, had no adverse effect on the formation and function of the NMJ. Our findings demonstrate that β-catenin levels in developing muscles in mice are crucial for proper muscle innervation, rather than specifically affecting synapse formation at the NMJ, and that the regulation of muscle innervation by β-catenin is mediated by a non-cell autonomous mechanism.  相似文献   

12.
Glial cell-line derived neurotrophic factor (GDNF) is a potent survival factor for motor neurons. Previous studies have shown that some motor neurons depend upon GDNF during development but this GDNF-dependent motor neuron subpopulation has not been characterized. We examined GDNF expression patterns in muscle and the impact of altered GDNF expression on the development of subtypes of motor neurons. In GDNF hemizygous mice, motor neuron innervation to muscle spindle stretch receptors (fusimotor neuron innervation) was decreased, whereas in transgenic mice that overexpress GDNF in muscle, fusimotor innervation to muscle spindles was increased. Facial motor neurons, which do not contain fusimotor neurons, were not changed in number when GDNF was over expressed by facial muscles during their development. Taken together, these data indicate that fusimotor neurons depend upon GDNF for survival during development. Since the fraction of cervical and lumbar motor neurons lost in GDNF-deficient mice at birth closely approximates the size of the fusimotor neuron pool, these data suggest that motor neuron loss in GDNF-deficient mice may be primarily of fusimotor neuron origin.  相似文献   

13.
While it has been recognized for many years that different limb muscles belonging to the same mammal may have markedly differing contractile characteristics, it is only comparatively recently that it has been demonstrated that these differences depend upon the motor innervation. By appropriately changing the peripheral nerve innervating a mammalian skeletal muscle, it is possible to change dramatically the contractile behaviour of the reinnervated muscle. The manner by which the motor innervation determines the nature of a muscle fibre's contractile machinery is not completely understood, but it appears that the number and pattern of motor nerve impulses reaching the muscle play an important role. The biochemical changes occurring within muscle fibres whose contractile properties have been modified by altered motor innervation include the synthesis of different contractile proteins.  相似文献   

14.
To elucidate neural mechanisms underlying walking and jumping in insects, motor neurons supplying femoral muscles have been identified mainly in locusts and katydids, but not in crickets. In this study, the motor innervation patterns of the metathoracic flexor and extensor tibiae muscles in the cricket, Gryllus bimaculatus were investigated by differential back-fills and nerve recordings. Whereas the extensor tibiae muscle has an innervation pattern similar to that of other orthopterans, the flexor has an innervation unique to this species. The main body of the flexor muscle is divided into the proximal, middle and distal regions, which receive morphologically unique terminations from almost non-overlapping sets of motor neurons. The proximal region is innervated by about 12 moderate-sized excitatory motor neurons and two inhibitory neurons while the middle and distal regions are innervated by three and four large excitatory motor neurons, respectively. The most-distally located accessory flexor muscle, inserting on a common flexor apodeme with the main muscle, is innervated by at least four small excitatory (slow-type) and two common inhibitory motor neurons. The two excitatory and two inhibitory motor neurons that innervate the accessory flexor muscle also innervate the proximal bundles of the main flexor muscle. This suggests that the most proximal and distal parts of the flexor muscle participate synergistically in fine motor control while the rest participates in powerful drive of tibial flexion movement.  相似文献   

15.
Knowledge of the neuroanatomy of the sucking pump of Manduca sexta (Sphingidae) is valuable for studies of olfactory learning, pattern generators, and postembryonic modification of motor circuitry. The pump comprises a cibarial valve, a buccal pump, and an esophageal sphincter valve. Cibarial opener and closer muscles control the cibarial valve. Six pairs of dilator muscles and a compressor muscle operate the buccal pump. The cibarial opener and one pair of buccal dilator muscles are innervated by paired neurons in the tritocerebrum, and the cibarial opener has double, bilateral innervation. Their tritocerebral innervation indicates that these muscles evolved from labro-clypeal muscles. The remaining paired buccal dilator muscles each are innervated by an unpaired motor neuron in the frontal ganglion. These motor neurons project bilaterally through the frontal connectives to dendritic arborizations in the tritocerebrum. These projections also have a series of dendritic-like arborizations in the connectives. The cibarial closer and buccal compressor muscles are also innervated by motor neurons in the frontal ganglion, but only the closer muscle neuron projects bilaterally to the tritocerebrum. The innervation of the pump muscles indicates that they are associated with the stomodaeum, and, therefore, the buccal pump evolved from the anterior stomodaeum rather than from the cibarium.  相似文献   

16.
17.
Neural control of embryonic acetylcholine receptor and skeletal muscle   总被引:1,自引:0,他引:1  
The manner by which motor neurons exert control over the distribution and number of acetylcholine receptors, and muscle development was investigated in the superior oblique muscle of white Peking duck embryos. Clusters of receptors in the normally developing muscle first appeared on day 10 of incubation as determined with I125 alpha-bungarotoxin autoradiography. The initial appearance of receptor clusters coincided with the arrival of motor nerve fibers in the muscle. Clusters of receptors also appeared in normal fashion in muscles made aneural by destruction of motor neurons on day 7. But after day 14 these clusters had disappeared and no new clusters were seen thereafter in the aneural muscle. Receptor clusters persisted throughout development in muscle in which neuromuscular transmission was blocked with either curare or botulinum toxin and in muscles denervated on day 10.5, i.e., shortly after the initial nerve-muscle contact but prior to the onset of muscle activity. A progressive increase in the total number of receptors and in the total amount of protein occurred during the course of normal development. However, the specific activity of the receptor protein declined sharply following innervation on day 10. The total number of receptors and the specific activity of the receptor was affected depending on whether the motor neurons were destroyed before or after innervation and following chronic blockade of neuromuscular transmission. The half-life of the receptor protein was similar in normal, aneural, and paralyzed muscles (26, 25, 26 h, respectively). Measurements of total protein indicated that essentially no muscle growth occurred in the complete absence of innervation. Paralyzed muscles continued to develop but at a slower pace.  相似文献   

18.
We are studying the functional roles of neuronal gap junctional coupling during development, using motor neurons and their synapses with muscle fibers as a model system. At neuromuscular synapses, several studies have shown that the relative pattern of activity among motor inputs competing for innervation of the same target muscle fiber determines how patterns of innervation are sculpted during the first weeks after birth. We asked whether gap junctional coupling among motor neurons modulates the relative timing of motor neuron activity in awake, behaving neonatal mice. We found that the activity of motor neurons innervating the same muscle is temporally correlated perinatally, during the same period that gap junction-mediated electrical and dye coupling are present. In vivo blockade of gap junctions abolished temporal correlations in motor neuron activity, without changing overall motor behavior, motor neuron activity patterns or firing frequency. Together with preliminary studies in mice lacking gap junction protein Cx40, our data suggest that developmentally regulated gap junctional coupling among motor and other neurons affects the activity in nascent neural circuits and thus in turn affects synaptic connectivity. Dynamic monitoring of dye coupling can be used to explore this possibility in normal mice and in mice lacking gap junction proteins during embryonic and neonatal development.  相似文献   

19.
20.
《The Journal of cell biology》1987,105(6):2479-2488
To localize factors that guide axons reinnervating skeletal muscle, we cultured ciliary ganglion neurons on cryostat sections of innervated and denervated adult muscle. Neurons extended neurites on sections of muscle (and several other tissues), generally in close apposition to sectioned cell surfaces. Average neurite length was greater on sections of denervated than on sections of innervated muscle, supporting the existence of functionally important differences between innervated and denervated muscle fiber surfaces. Furthermore, outgrowth was greater on sections of denervated muscle cut from endplate-rich regions than on sections from endplate-free regions, suggesting that a neurite outgrowth-promoting factor is concentrated near synapses. Finally, 80% of the neurites that contacted original synaptic sites (which are known to be preferentially reinnervated by regenerating axons in vivo) terminated precisely at those contacts, thereby demonstrating a specific response to components concentrated at endplates. Together, these results support the hypothesis that denervated muscles use cell surface (membrane and matrix) molecules to inform regenerating axons of their state of innervation and proximity to synaptic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号