首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Stomata are natural openings in the plant epidermis responsible for gas exchange between plant interior and environment. They are formed by a pair of guard cells, which are able to close the stomatal pore in response to a number of external factors including light intensity, carbon dioxide concentration, and relative humidity (RH). The stomatal pore is also the main route for pathogen entry into leaves, a crucial step for disease development. Recent studies have unveiled that closure of the pore is effective in minimizing bacterial disease development in Arabidopsis plants; an integral part of plant innate immunity. Previously, we have used epidermal peels to assess stomatal response to live bacteria (Melotto et al. 2006); however maintaining favorable environmental conditions for both plant epidermal peels and bacterial cells has been challenging. Leaf epidermis can be kept alive and healthy with MES buffer (10 mM KCl, 25 mM MES-KOH, pH 6.15) for electrophysiological experiments of guard cells. However, this buffer is not appropriate for obtaining bacterial suspension. On the other hand, bacterial cells can be kept alive in water which is not proper to maintain epidermal peels for long period of times. When an epidermal peel floats on water, the cells in the peel that are exposed to air dry within 4 hours limiting the timing to conduct the experiment. An ideal method for assessing the effect of a particular stimulus on guard cells should present minimal interference to stomatal physiology and to the natural environment of the plant as much as possible. We, therefore, developed a new method to assess stomatal response to live bacteria in which leaf wounding and manipulation is greatly minimized aiming to provide an easily reproducible and reliable stomatal assay. The protocol is based on staining of intact leaf with propidium iodide (PI), incubation of staining leaf with bacterial suspension, and observation of leaves under laser scanning confocal microscope. Finally, this method allows for the observation of the same live leaf sample over extended periods of time using conditions that closely mimic the natural conditions under which plants are attacked by pathogens.  相似文献   

2.
Circadian Stomatal Rhythms in Epidermal Peels from Vicia faba   总被引:6,自引:4,他引:2       下载免费PDF全文
Circadian rhythms in stomatal aperture and in stomatal conductance have been observed previously. Here we investigate circadian rhythms in apertures that persist in functionally isolated guard cells in epidermal peels of Vicia faba, and we compare these rhythms with rhythms in stomatal conductance in attached leaves. Functionally isolated guard cells kept in constant light display a rhythmic change in aperture superimposed on a continuous opening trend. The rhythm free-runs with a period of about 22 hours and is temperature compensated between 20 and 30°C. Functionally isolated guard cell pairs are therefore capable of sustaining a true circadian rhythm without interaction with mesophyll cells. Stomatal conductance in whole leaves displays a more robust rhythm, also temperature-compensated, and with a period similar to that observed for the rhythm in stomatal aperture in epidermal peels. When analyzed individually, some stomata in epidermal peels showed a robust rhythm for several days while others showed little rhythmicity or damped out rapidly. Rhythmic periods may vary between individual stomata, and this may lead to desynchronization within the population.  相似文献   

3.
The study of the structure-activity relationship of phenoliccompounds in reversing the ABA-effect on stomata led us to investigatethe changes in K+ concentrations in guard cells and in the epidermaldiffusive resistance of leaves, after treatment with ABA andphenolics. The amount of potassium localized in guard cells usually correspondsto stomatal aperture in different treatments. Umbelliferone,however, permits stomatal opening without retention of potassiumin the guard cells, which is an exception. The effect of phenolicsin retaining K+ in epidermal peels is matched by recorded epidermaldiffusive resistance changes in the leaves.Although flavonoidsand some other phenolics behave differently showing recoveryin epidermal peels with K+ in guard cells, epidermal diffusiveresistance is not recovered. Key words: Epidermal diffusive resistance, K+, ABA, phenolics, stomata  相似文献   

4.
Studies of the water relations of potassium deficient sugarbeet plants (Beta vulgaris L.) revealed two factors for stomatal closure. One component of stomatal closure was reversible by floating leaf discs on distilled water to relieve the water deficit in the leaves; the other component was reversible in the light by floating the leaf discs on KCl solution for 1 hour or more. Potassium-activated stomatal opening in the light was observed when the guard cells were surrounded by their normal environment of epidermal and mesophyll cells, just as observed by previous workers for epidermal strips. Leaf water potentials, like stomatal apertures, appear to be strongly related to leaf potassium concentration. Potassium-deficient plants have a greatly decreased root permeability to water, and the implications of this effect on stomatal aperture and leaf water potential are discussed. In contrast, petiole permeability to water is unaffected by potassium treatment.  相似文献   

5.
Water potential, osmotic potential and turgor measurements obtained by using a cell pressure probe together with a nanoliter osmometer were compared with measurements obtained with an isopiestic psychrometer. Both types of measurements were conducted in the mature region of Tradescantia virginiana L. leaves under non-transpiring conditions in the dark, and gave similar values of all potentials. This finding indicates that the pressure probe and the osmometer provide accurate measurements of turgor, osmotic potentials and water potentials. Because the pressure probe does not require long equilibration times and can measure turgor of single cells in intact plants, the pressure probe together with the osmometer was used to determine in-situ cell water potentials, osmotic potentials and turgor of epidermal and mesophyll cells of transpiring leaves as functions of stomatal aperture and xylem water potential. When the xylem water potential was-0.1 MPa, the stomatal aperture was at its maximum, but turgor of both epidermal and mesophyll cells was relatively low. As the xylem water potential decreased, the stomatal aperture became gradually smaller, whereas turgor of both epidermal and mesophyll cells first increased and afterward decreased. Water potentials of the mesophyll cells were always lower than those of the epidermal cells. These findings indicate that evaporation of water is mainly occurring from mesophyll cells and that peristomatal transpiration could be less important than it has been proposed previously, although peristomatal transpiration may be directly related to regulation of turgor in the guard cells.  相似文献   

6.
In an attempt to determine whether low epidermal conductances to water vapor diffusion of senescing leaves were caused by internal changes in guard cells or by factors external to guard cells, stomatal behavior was examined in intact senescing and nonsenescing leaves of Nicotiana glauca (Graham), tree tobacco, grown in the field or in an environmental chamber. Conductances of senescing leaves were 5 to 10% of the maximum conductances of nonsenescing leaves of the same plant, yet guard cell duplexes isolated from epidermal peels of senescing leaves developed full turgor in the light in solutions containing KCl, and sodium cobaltinitrite staining showed that K+ accumulated as turgor developed. Ninety-five per cent of the guard cells isolated from senescing leaves concentrated neutral red and excluded trypan blue. Intercellular leaf CO2 concentrations of senescing and nonsenescing leaves of chamber-grown plants were not significantly different (about 240 microliters per liter), but the potassium contents of adaxial and abaxial epidermes of senescing leaves taken from plants grown in the field were less than half those of nonsenescing leaves. We conclude that guard cells do not undergo the orderly senescence process that characteristically takes place in mesophyll tissue during whole-leaf senescence and that the reduced conductances of senescing leaves are produced by factors external to guard cells.  相似文献   

7.
The development of stomatal guard cells is known to require cortical microtubules; however, it is not known if microtubules are also required by mature guard cells for stomatal function. To study the role of microtubules in guard cell function, epidermal peels of Vicia faba were subjected to conditions known to open or close stomata in the presence or absence of microtubule inhibitors. To verify the action of the inhibitors, microtubules in appropriately treated epidermal peels were localized by cryofixation followed by freeze substitution and embedding in butyl-methyl methacrylate. Mature guard cells had a radial array of microtubules, focused toward the thick cell wall of the pore, and the appearance of this array was the same for stomata remaining closed in darkness or induced to open by light. Treatment of epidermal peels with 1 mM colchicine for 1 h depolymerized nearly all cortical microtubules. Measurements of stomatal aperture showed that neither 1 mM colchicine nor 20 M taxol affected any of the responses tested: remaining closed in the dark, opening in response to light or fusicoccin, and closing in response to calcium and darkness. We conclude that intact microtubule arrays are not invariably required for guard cell function.  相似文献   

8.
In grapevine, the penetration and sporulation of Plasmopara viticola occur via stomata, suggesting functional relationships between guard cells and the pathogen. This assumption was supported by our first observation that grapevine (Vitis vinifera cv. Marselan) cuttings infected by P. viticola wilted more rapidly than healthy ones when submitted to water starvation. Here, complementary approaches measuring stomatal conductance and infrared thermographic and microscopic observations were used to investigate stomatal opening/closure in response to infection. In infected leaves, stomata remained open in darkness and during water stress, leading to increased transpiration. This deregulation was restricted to the colonized area, was not systemic and occurred before the appearance of symptoms. Cytological observations indicated that stomatal lock-open was not related to mechanical forces resulting from the presence of the pathogen in the substomatal cavity. In contrast to healthy leaves, stomatal closure in excised infected leaves could not be induced by a water deficit or abscisic acid (ABA) treatment. However, ABA induced stomatal closure in epidermal peels from infected leaves, indicating that guard cells remained functional. These data indicate that the oomycete deregulates guard cell functioning, causing significant water losses. This effect could be attributed to a nonsystemic compound, produced by the oomycete or by the infected plant, which inhibits stomatal closure or induces stomatal opening; or a reduction of the back-pressure exerted by surrounding epidermal cells. Both hypotheses are under investigation.  相似文献   

9.
An empirical model for stomatal conductance (g), proposed by Leuning (1995, this issue) as a modification of Ball, Woodrow & Berry's (1987) model, is interpreted in terms of a simple, steady-state model of guard cell function. In this model, stomatal aperture is a function of the relative turgor between guard cells and epidermal cells. The correlation between g and leaf surface vapour pressure deficit in Leuning's model is interpreted in terms of stomatal sensing of the transpiration rate, via changes in the gradient of total water potential between guard cells and epidermal cells. The correlation between g, CO2 assimilation rate and leaf surface CO2 concentration in Leuning's model is interpreted as a relationship between the corresponding osmotic gradient, irradiance, temperature, intercellular CO2 concentration and stomatal aperture itself. The explicit relationship between osmotic gradient and stomatal aperture (possibly describing the effect of changes in guard cell volume on the membrane permeability for ion transport) results in a decrease in the transpiration rate in sufficiently dry air. Possible extension of the guard cell model to include stomatal responses to soil water status is discussed.  相似文献   

10.
Inward-rectifying potassium (K+(in)) channels in guard cells have been suggested to provide a pathway for K+ uptake into guard cells during stomatal opening. To test the proposed role of guard cell K+(in) channels in light-induced stomatal opening, transgenic Arabidopsis plants were generated that expressed dominant negative point mutations in the K+(in) channel subunit KAT1. Patch-clamp analyses with transgenic guard cells from independent lines showed that K+(in) current magnitudes were reduced by approximately 75% compared with vector-transformed controls at -180 mV, which resulted in reduction in light-induced stomatal opening by 38% to 45% compared with vector-transformed controls. Analyses of intracellular K+ content using both sodium hexanitrocobaltate (III) and elemental x-ray microanalyses showed that light-induced K+ uptake was also significantly reduced in guard cells of K+(in) channel depressor lines. These findings support the model that K+(in) channels contribute to K+ uptake during light-induced stomatal opening. Furthermore, transpirational water loss from leaves was reduced in the K+(in) channel depressor lines. Comparisons of guard cell K+(in) current magnitudes among four different transgenic lines with different K+(in) current magnitudes show the range of activities of K+(in) channels required for guard cell K+ uptake during light-induced stomatal opening.  相似文献   

11.
Smith S  Stewart GR 《Plant physiology》1990,94(3):1472-1476
The hemi-parasite Striga hermonthica, exhibits an anomalous pattern of stomatal response, stomata remaining open in darkness and when subjected to water stress. This suggests irregularity in stomatal response due to malfunction of the stomatal mechanism. To test this suggestion guard cells were isolated from the effects of surrounding cells, by incubating epidermal strips at low pH. These stomata responded rapidly to low CO2 concentrations, darkness, and ABA. Thus, a paradox exists between stomatal behavior observed in whole leaves and that in isolated guard cells. However, when incubated in the presence of high potassium concentrations (>200 millimolar KCl) stomatal responses in epidermal strips resembled those found in whole leaves, with enhanced opening and reduced closing responses. It is suggested that the anomalous behavior of stomata in Striga and other leafy hemiparasites can be explained by the modulatory effects of high potassium concentrations which accumulate in the leaves as a consequence of high transpiration rates and the lack of a retranslocation system.  相似文献   

12.
K+ and Cl contents of guard cells and of ordinary epidermal cells were determined in epidermal samples of Allium cepa L. by electron probe microanalysis; malate contents of the same samples were determined by enzymic oxidation. KCl was, in general, the major osmoticum in guard cells, irrespective of whether stomata had opened on leaves or in epidermal strips floating on solutions. The solute requirement varied between 50 and 110 femtomoles KCl per micrometer increase in aperture per pair of guard cells. Stomata did not open on solutions of K iminodiacetate, presumably because its anion could not be taken up. Stomata opened if KCl or KBr was provided. Taken together, the results indicate that the absence of starch from guard cells deprived them of the ability to produce malate in amounts of osmotic consequence and that the presence of absorbable Cl (or Br) was necessary for stomatal opening.  相似文献   

13.
The feasibility of two hypothetical mechanisms for the stomatal response to humidity was evaluated by identifying theoretical constraints on these mechanisms and by analysing timecourses of stomatal aperture following a step change in humidity. The two hypothetical mechanisms, which allow guard cell turgor pressure to overcome the epidermal mechanical advantage, are: (1) active regulation of guard cell osmotic pressure, requiring no hydraulic disequilibrium between guard and epidermal cells, and (2) a substantial hydraulic resistance between guard and epidermal cells, resulting in hydraulic disequilibrium between them. Numerical simulations of the system are made possible by recently published empirical relationships between guard cell pressure and volume and between stomatal aperture, guard cell turgor pressure, and epidermal cell turgor pressure; these data allow the hypothetical control variables to be inferred from stomatal aperture and evaporative demand, given physical assumptions that characterize either hypothesis. We show that hypothesis (1) predicts that steady‐state πg is monotonically related to transpiration rate, whereas hypothesis (2) suggests that the relationship between transpiration rate and the steady‐state guard to epidermal cell hydraulic resistance may be either positive or negative, and that this resistance must change substantially during the transient phase of the stomatal response to humidity.  相似文献   

14.
Environmental stimuli‐triggered stomatal movement is a key physiological process that regulates CO2 uptake and water loss in plants. Stomata are defined by pairs of guard cells that perceive and transduce external signals, leading to cellular volume changes and consequent stomatal aperture change. Within the visible light spectrum, red light induces stomatal opening in intact leaves. However, there has been debate regarding the extent to which red‐light‐induced stomatal opening arises from direct guard cell sensing of red light versus indirect responses as a result of red light influences on mesophyll photosynthesis. Here we identify conditions that result in red‐light‐stimulated stomatal opening in isolated epidermal peels and enlargement of protoplasts, firmly establishing a direct guard cell response to red light. We then employ metabolomics workflows utilizing gas chromatography mass spectrometry and liquid chromatography mass spectrometry for metabolite profiling and identification of Arabidopsis guard cell metabolic signatures in response to red light in the absence of the mesophyll. We quantified 223 metabolites in Arabidopsis guard cells, with 104 found to be red light responsive. These red‐light‐modulated metabolites participate in the tricarboxylic acid cycle, carbon balance, phytohormone biosynthesis and redox homeostasis. We next analyzed selected Arabidopsis mutants, and discovered that stomatal opening response to red light is correlated with a decrease in guard cell abscisic acid content and an increase in jasmonic acid content. The red‐light‐modulated guard cell metabolome reported here provides fundamental information concerning autonomous red light signaling pathways in guard cells.  相似文献   

15.
Membrane vesicle traffic to and from the plasma membrane is essential for cellular homeostasis in all eukaryotes. In plants, constitutive traffic to and from the plasma membrane has been implicated in maintaining the population of integral plasma-membrane proteins and its adjustment to a variety of hormonal and environmental stimuli. However, direct evidence for evoked and selective traffic has been lacking. Here, we report that the hormone abscisic acid (ABA), which controls ion transport and transpiration in plants under water stress, triggers the selective endocytosis of the KAT1 K+ channel protein in epidermal and guard cells. Endocytosis of the K+ channel from the plasma membrane initiates in concert with changes in K+ channel activities evoked by ABA and leads to sequestration of the K+ channel within an endosomal membrane pool that recycles back to the plasma membrane over a period of hours. Selective K+ channel endocytosis, sequestration, and recycling demonstrates a tight and dynamic control of the population of K+ channels at the plasma membrane as part of a key plant signaling and response mechanism, and the observations point to a role for channel traffic in adaptive changes in the capacity for osmotic solute flux of stomatal guard cells.  相似文献   

16.
Evaporation of water from the guard cell wall concentrates apoplastic solutes. We hypothesize that this phenomenon provides two mechanisms for responding to high transpiration rates. First, apoplastic abscisic acid is concentrated in the guard cell wall. Second, by accumulating in the guard cell wall, apoplastic sucrose (Suc) provides a direct osmotic feedback to guard cells. As a means of testing this second hypothesized mechanism, the guard cell Suc contents at a higher transpiration rate (60% relative humidity [RH]) were compared with those at a lower transpiration rate (90% RH) in broad bean (Vicia faba), an apoplastic phloem loader. In control plants (constant 60% RH), the guard cell apoplast Suc content increased from 97 +/- 81 femtomol (fmol) guard cell pair(-1) to 701 +/- 142 fmol guard cell pair(-1) between daybreak and midday. This increase is equivalent to approximately 150 mM external, which is sufficient to decrease stomatal aperture size. In plants that were shifted to 90% RH before daybreak, the guard cell apoplast Suc content did not increase during the day. In accordance, in plants that were shifted to 90% RH at midday, the guard cell apoplast Suc content declined to the daybreak value. Under all conditions, the guard cell symplast Suc content increased during the photoperiod, but the guard cell symplast Suc content was higher (836 +/- 33 fmol guard cell pair(-1)) in plants that were shifted to 90% RH. These results indicate that a high transpiration rate may result in a high guard cell apoplast Suc concentration, which diminishes stomatal aperture size.  相似文献   

17.
The stomatal response to CO2 is linked to changes in guard cell zeaxanthin*   总被引:4,自引:2,他引:2  
The mechanisms mediating CO2 sensing and light–CO2 interactions in guard cells are unknown. In growth chamber-grown Vicia faba leaves kept under constant light (500 μ mol m–2 s–1) and temperature, guard cell zeaxanthin content tracked ambient [CO2] and stomatal apertures. Increases in [CO2] from 400 to 1200 cm3 m–3 decreased zeaxanthin content from 180 to 80 mmol mol–1 Chl and decreased stomatal apertures by 7·0 μ m. Changes in zeaxanthin and aperture were reversed when [CO2] was lowered. Guard cell zeaxanthin content was linearly correlated with stomatal apertures. In the dark, the CO2-induced changes in stomatal aperture were much smaller, and guard cell zeaxanthin content did not change with chamber [CO2]. Guard cell zeaxanthin also tracked [CO2] and stomatal aperture in illuminated stomata from epidermal peels. Dithiothreitol (DTT), an inhibitor of zeaxanthin formation, eliminated CO2-induced zeaxanthin changes in guard cells from illuminated epidermal peels and reduced the stomatal CO2 response to the level observed in the dark. These data suggest that CO2-dependent changes in the zeaxanthin content of guard cells could modulate CO2-dependent changes of stomatal apertures in the light while a zeaxanthin-independent CO2 sensing mechanism would modulate the CO2 response in the dark.  相似文献   

18.
Kim M  Hepler PK  Eun SO  Ha KS  Lee Y 《Plant physiology》1995,109(3):1077-1084
Stomatal movements, which regulate gas exchange in plants, involve pronounced changes in the shape and volume of the guard cell. To test whether the changes are regulated by actin filaments, we visualized microfilaments in mature guard cells and examined the effects of actin antagonists on stomatal movements. Immunolocalization on fixed cells and microinjection of fluorescein isothiocyanate-phalloidin into living guard cells of Commelina communis L. showed that cortical microfilaments were radially distributed, fanning out from the stomatal pore site, resembling the known pattern of microtubules. Treatment of epidermal peels with phalloidin prior to stabilizing microfilaments with m-maleimidobenzoyl N-hydroxysuccimimide caused dense packing of radial microfilaments and an accumulation of actin around many organelles. Both stomatal closing induced by abscisic acid and opening under light were inhibited. Treatment of guard cells with cytochalasin D abolished the radial pattern of microfilaments; generated sparse, poorly oriented arrays; and caused partial opening of dark-closed stomata. These results suggest that microfilaments participate in stomatal aperture regulation.  相似文献   

19.
Osmoregulation in opening stomata of epidermal peels from Vicia faba L. leaves was investigated under a variety of experimental conditions. The K+ content of stomatal guard cells and the starch content of guard cell chloroplasts were examined with cobaltinitrite and iodine-potassium iodide stains, respectively; stomatal apertures were measured microscopically. Red light (50 micromoles per square meter per second) irradiation caused a net increase of 3.1 micrometers in aperture and a decrease of −0.4 megapascals in guard cell osmotic potential over a 5 hour incubation, but histochemical observations showed no increase in guard cell K+ content or starch degradation in guard cell chloroplasts. At 10 micromoles per square meter per second, blue light caused a net 6.8 micrometer increase in aperture over 5 hours and there was a substantial decrease in starch content of chloroplasts but no increase in guard cell K+ content. At 25 micromoles per square meter per second of blue light, apertures increased faster (net gain of 5.7 micrometers after 1 hour) and starch content decreased. About 80% of guard cells had a higher K+ content after 1 hour of incubation but that fraction decreased to 10% after 5 hours. In the absence of KCl in the incubation medium, stomata opened slowly in response to 25 micomoles per square meter per second of blue light, without any K+ gain or starch loss. In dual beam experiments, stomata irradiated with 50 micomoles per square meter per second of red light for 3 hours opened without detectable starch loss or K+ gain; addition of 25 micomoles per square meter per second of blue light caused a further net gain of 4.4 micometers in aperture accompanied by substantial K+ uptake and starch loss. Comparison of K+ content in guard cells of opened stomata in epidermal peels with those induced to open in leaf discs showed a substantially higher K+ content in the intact tissue than in isolated peels. These results are not consistent with K+ (and its counterions) as the universal osmoticum in guard cells of open stomata under all conditions; rather, the data point to sugars arising from photosynthesis and from starch degradation as additional osmotica. Biochemical confirmation of these findings would indicate that osmoregulation during stomatal opening is the result of three key metabolic processes: ion transport, photosynthesis, and sugar metabolism.  相似文献   

20.
Low CO2 concentrations open CO2-sensitive stomata whereas elevated CO2 levels close them. This CO2 response is maintained in the dark. To elucidate mechanisms underlying the dark CO2 response we introduced pH- and potential-sensitive dyes into the apoplast of leaves. After mounting excised leaves in a gas-exchange chamber, changes in extracellular proton concentration and transmembrane potential differences as well as transpiration and respiration were simultaneously monitored. Upon an increase in CO2 concentration transient changes in apoplastic pH (occasionally brief acidification, but always followed by alkalinization) and in membrane potential (brief hyperpolarization followed by depolarization) accompanied stomatal closure. Alkalinization and depolarization were also observed when leaves were challenged with abscisic acid or when water flow was interrupted. During stomatal opening in response to CO2-free air the apoplastic pH increased while the membrane potential initially depolarized before it transiently hyperpolarized. To examine whether changes in apoplastic malate concentrations represent a closing signal for stomata, malate was fed into the transpiration stream. Although malate caused apoplastic alkalinization and membrane depolarization reminiscent of the effects observed with CO2 and abscisic acid, this dicarboxylate closed the stomata only partially and less effectively than CO2. Apoplastic alkalinization was also observed and stomata closed partially when KCl was fed to the leaves. Respiration increased on feeding of malate or KCl, or while abscisic acid closed the stomate. From these results we conclude that CO2 signals modulate the activity of plasma-membrane ion channels and of plasmalemma H+-ATPases during changes in stomatal aperture. Responses to potassium malate and KCl are not restricted to guard cells and neighbouring cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号