首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary After substitution with 5-bromodeoxyuridine (BrdUrd) for two rounds of replication, chromosomes in cytological preparations stained with 33258 Hoechst show upon epiluminescence an immediate differential sister chromatid fluorescence. When stained with DAPI, however, which has a structural resemblance to part of the 33258 Hoechst molecule, such a differential pattern of fluorescence was only induced after some delay. Upon restaining with the same dye the differential fluorescence appeared instantly. In preparations double stained with ethidium bromide and 33258 Hoechst the induction of a differential staining of sister chromatids with 33258 Hoechst was not accompanied by a differential staining with ethidium bromide. Once a differential staining was obtained with DAPI in preparations double stained with ethidium bromide and DAPI, the ethidium bromide pattern also appeared to be differential upon subsequent observation. No differentiation could be obtained with ethidium bromide alone. The observations described in the case of 33258 Hoechst staining are in agreement with a molecular quenching by BrdUrd without gross structural consequences for the DNA. In the case of DAPI staining, however, there occurs a differential photolysis of BrdUrd-substituted DNA. Besides the nature, most likely the size, of the fluorochrome molecules themselves, the state of the fixed chromatin appeared also to play a role in determining the mechanism of the sister chromatid differentiation: after prolonged incubation in buffer, BrdUrd-containing chromosomes stained with 33258 Hoechst showed a differential staining evidently caused by photolysis, indicating that they had become more susceptible to light.  相似文献   

2.
The fluorescent compounds ethidium monoazide and ethidium bromide were found to react intensely with nucleic acids of fixed, paraffin embedded tissues of rat and mouse. For routine staining, 10(-5) M solutions of ethidium bromide and its monoazide analogue were virtually identical in their reactions. Fresh frozen sections of the tissues reacted in the same manner as fixed, paraffin embedded samples. Fluorescence of DNA and RNA in rat pancreas could be selectively abolished by taking advantage of the greater sensitivity of RNA to acid hydrolysis. Hydrolysis in aqueous solutions (1 N HCl at 55-60 C) abolished RNA fluorescence in 5 min, whereas 20 min or longer were required to destroy DNA fluorescence. DNA fluorescence was selectively abolished by 3 hr in 0.1 N HCl in anhydrous methanol while the RNA remained unaffected. Rat pancreas stained with the 10(-5) M ethidium compounds below pH 5.0 showed reduced RNA fluorescence, but the DNA continued to fluoresce brightly at pH 0.6. Reducing the pH of the staining solution to pH 1.0, therefore, was an additional method of selectively abolishing RNA fluorescence. Ethidium solutions in 5.0 M NaCl at pH 5.0 had little effect on DNA or RNA fluorescence. This new method of examining nucleic acids in fixed tissue samples opens new approaches to the histochemistry of these substances. The method also offers new possibilities for the study of mutagenic drug-DNA interactions.  相似文献   

3.
The fluorescent compounds ethidium monoazide and ethidium bromide were found to react intensely with nucleic acids of fixed, paraffin embedded tissues of rat and mouse. For routine staining, 10-5 M solutions of ethidium bromide and its monoazide analogue were virtually identical in their reactions. Fresh frozen sections of the tissues reacted in the same manner as fixed, paraffin embedded samples. Fluorescence of DNA and RNA in rat pancreas could be selectively abolished by taking advantage of the greater sensitivity of RNA to acid hydrolysis. Hydrolysis in aqueous solutions (1 N HCl at 55-60 C) abolished RNA fluorescence in 5 min, whereas 20 min or longer were required to destroy DNA fluorescence. DNA fluorescence was selectively abolished by 3 hr in 0.1 N HCl in anhydrous methanol while the RNA remained unaffected. Rat pancreas stained with the 10-5 M ethidium compounds below pH 5.0 showed reduced RNA fluorescence, but the DNA continued to fluoresce brightly at pH 0.6. Reducing the pH of the staining solution to pH 1.0, therefore, was an additional method of selectively abolishing RNA fluorescence. Ethidium solutions in 5.0 M NaCl at pH 5.0 had little effect on DNA or RNA fluorescence. This new method of examining nucleic acids in fixed tissue samples opens new approaches to the histochemistry of these substances. The method also offers new possibilities for the study of mutagenic drug-DNA interactions.  相似文献   

4.
A method is described for producing banding patterns with methyl green-pyronin (MGP) stain in chromosomes of fibrosarcoma cells. 1) The stain was made by mixing equal volumes of 2% aqueous pyronin G, 2% aqueous methyl green, distilled water, and 0.1 M acetate buffer (pH 5.7). 2) Treatment with colcemide and hypotonic KCl (0.075 M) was performed as usual. 3) Metaphase chromosomes were prepared using the flame-drying technique and treated with 0.25% trypsin at 37 C for 45 to 90 seconds. Before staining, the slides were rinsed in PBS, in distilled water, and then were dipped in 0.05 M acetate buffer. 4) Chromosomes were stained for more than 20 minutes, rinsed in distilled water, and hot-air dried. Satisfactory results were obtained in uncontracted metaphase chromosomes. MGP stain has the advantage of permitting much longer trypsin treatment and staining time than the trypsin-Giemsa method while providing satisfactory banding patterns.  相似文献   

5.
Nucleoli isolated from Novikoff hepatoma cells were stained with AgNO3 to demonstrate the typical staining of active ribosomal cistrons. Pre-treatment of the nucleoli with 80 mM Tris-HCl (pH 7.5) -- 2.0 M NaCl did not interfere with silver staining. Treatment of the nucleoli with 80 mM Tris-HCl (pH 7.5) -- 0.15 M NaCl did, however, eliminate silver binding. Serial extraction of nucleoli with 2.0 M NaCl buffer followed by 0.15 M NaCl buffer also abolished silver staining. Analysis of the supernatant fraction of these extracts by polyacrylamide gel electrophoresis indicates that, although more than one nucleolar protein can bind silver, only one protein is associated with the staining of active ribosomal cistrons.  相似文献   

6.
Normal blood smears were stained by the standardised azure B-eosin Y Romanowsky procedure recently introduced by the ICSH, and the classical picture resulted. The effects of varying the times and temperature of staining, the composition of the solvent (buffer concentration, methanol content, & pH), the concentration of the dyes, and the mode of fixation were studied. The results are best understood in terms of the following staining mechanism. Initial colouration involves simple acid and basic dyeing. Eosin yields red erythrocytes and eosinophil granules. Azure B very rapidly gives rise to blue stained chromatin, neutrophil specific granules, platelets and ribosome-rich cytoplasms; also to violet basophil granules. Subsequently the azure B in certain structures combines with eosin to give purple azure B-eosin complexes, leaving other structures with their initial colours. The selectivity of complex formation is controlled by rate of entry of eosin into azure B stained structures. Only faster staining structures (i.e. chromatin, neutrophil specific granules, and platelets) permit formation of the purple complex in the standard method. This staining mechanism illuminates scientific problems (e.g. the nature of 'toxic' granules) and assists technical trouble-shooting (e.g. why nuclei sometimes stain blue, not purple).  相似文献   

7.
Cells in mitosis may be distinguished from interphase cells based on difference in chromatin structure as revealed by two different methods of staining with acridine orange. In the first method, cells are heated and then stained at neutral pH; the difference in stainability between mitotic and interphase cells reflects the difference in the extent of deoxyribonucleic acid denatured by heat in these cells. At a given temperature the deoxyribonucleic acid of the mitotic cell appears to be more extensively denatured than that of the interphase cell. In the second method, cells are treated with buffer at pH 1.5 (1.3 to 1.9) and then stained at pH 2.6 (2.3 to 2.9). The mechanisms involved in the differential stainability of interphase versus mitotic cells at that low pH are currently under investigation. In both methods, in addition to enumerating cells in mitosis, it is possible to quantitate cells in G1, S and G2 phases of the cell cycle.  相似文献   

8.
A method is described for producing banding pattern with methyl green-pyronin (MGP) stain in chromosomes of fibrosarcoma cells. 1) The stain was made by mixing equal volumes of 2% aqueous pyronin G, 2% aqueous methyl green, distilled water, and 0.1 M acetate Mer (pH 5.7). 2) Treatment with colcemide and hypotonic KCI (0.075 M) was performed u usual. 3) Metaphase chromosomes were prepared using the flame-drying technique and treated with 0.25% trypsin at 37 C for 45 to 90 seconda. Before staining, the slides were rid in PBS, in distilled water, and then were dipped in 0.05 M acetate buffer. 4) Chromosomes were stained for more than 20 minuta, rinsed in distilled water, and hot-air dried. satisfactory results were obtained in uncontracted metaphase chromosomes. MCP stain hm the advantage of permitting much longer trypsin treatment and staining time than the trypsin-Giemsa method while providing satisfactory banding pattern.  相似文献   

9.
Romanowsky-Giemsa (RG) stains were devised during the 19th century for identifying plasmodia parasites in blood smears. Later, RG stains became standard procedures for hematology and cytology. Numerous attempts have been made to apply RG staining to formalin-fixed paraffin-embedded tissue sections, with varied success. Most published work on this topic described RG staining methods in which sections were overstained, then subjected to acid differentiation; unfortunately, the differentiation step often caused inconsistent staining outcomes. If staining is performed under optimal conditions with control of dye concentration, pH, solution temperature and staining time, no differentiation is required. We used RG and 0.002 M buffer, pH 42, for staining and washing sections. All steps were performed at room temperature. After staining and air drying, sections were washed in 96?100% ethanol to remove extraneous stain. Finally, sections were washed in xylene and mounted using DPX. Staining results were similar to routine hemalum and eosin (H &; E) staining. Nuclei were blue; intensity depended largely on chromatin density. RNA-rich sites were purple. Collagen fibers, keratin, muscle cells, erythrocytes and white matter of the central nervous system were stained pinkish and reddish hues. Cartilage matrix, mast cell granules and areas of myxomatous degeneration were purple. Sulfate-rich mucins were stained pale blue, while those lacking sulfate groups were unstained. Deposits of hemosiderin, lipofuscin and melanin were greenish, and calcium deposits were blue. Helicobacter pylori bacteria were violet to purple. The advantages of the method are its close similarity to H &; E staining and technical simplicity. Hemosiderin, H. pylori, mast cell granules, melanin and specific granules of different hematopoietic cells, which are invisible or barely distinguishable by H &; E staining, are visualized. Other advantages over previous RG stains include shorter staining time and avoidance of acetone.  相似文献   

10.
Our examination of the cytological characteristics of the vegetative incompatibility reaction in a filamentous basidiomycete, Helicobasidium monpa, by analyzing the fluorescence emitted by ethidium bromide and acridine orange stained nuclei is described. Hyphal anastomoses between strains belonging to different mycelium compatibility groups (MCG) were observed with cell death in fused hyphae, whose nuclei were intensified by ethidium bromide. In contrast, the nuclei in a living cell were not intensified by staining with ethidium bromide, but were intensified by staining with acridine orange. These results indicate that in H. monpa, ethidium bromide staining is a useful method for detecting dead cells. We also examined the relationships between the alternation of ploidy and hyphal anastomosis formation using the newly developed method on filamentous fungi. The tetraploid monokaryon strain derived from the original dikaryon strain by continuous subculture could not be fused to any wild type strains, but the original dikaryon strain could be fused without cell death to only the same MCG strain. In contrast, the haploid dikaryon strain derived from the original monokaryon strain fuses to several strains belonging to different MCGs without cell death. These results suggested that the cellular ploidy of this fungus is closely related to its mating system and, H. monpa may be a self-fertilizing fungus. Received: 13 June 2001 / Accepted: 8 August 2001  相似文献   

11.
Summary Normal blood smears were stained by the standardised azure B-eosin Y Romanowsky procedure recently introduced by the ICSH, and the classical picture resulted. The effects of varying the times and temperature of staining, the composition of the solvent (buffer concentration, methanol content, & pH), the concentration of the dyes, and the mode of fixation were studied. The results are best understood in terms of the following staining mechanism. Initial colouration involves simple acid and basic dyeing. Eosin yields red erythrocytes and eosinophil granules. Azure B very rapidly gives rise to blue stained chromatin, neutrophil specific granules, platelets and ribosome-rich cytoplasms; also to violet basophil granules. Subsequently the azure B in certain structures combines with eosin to give purple azure B-eosin complexes, leaving other structures with their initial colours. The selectivity of complex formation is controlled by rate of entry of eosin into azure B stained structures. Only faster staining structures (i.e. chromatin, neutrophil specific granules, and platelets) permit formation of the purple complex in the standard method. This staining mechanism illuminates scientific problems (e.g. the nature of toxic granules) and assists technical trouble-shooting (e.g. why nuclei sometimes stain blue, not purple).To whom offprint should be sent  相似文献   

12.
The acridine dyes acridine orange (AO) and coriphosphine O (CPO) and ethidium bromide (EtBr) were used to stain bacterial digests after electrophoresis in native and denaturing (SDS) polyacrylamide gels and were shown to stain DNA and RNA preferentially over other subcellular components in the gels. Vegetative cell digests of Bacillus subtilis, Escherichia coli, Micrococcus luteus, and Staphylococcus aureus showed intense staining of DNA with AO and CPO near the top of the gel, but little or no staining of other cellular constituents. EtBr stained both DNA and RNA in the gels. Protein standards and non-nucleic acid cellular constituents stained faintly with high concentrations (> 100 μM) of AO, lower concentrations (13.9 μM) of CPO, and did not stain with 0.5 μg/ml EtBr in denaturing gels. The complete set of cellular biochemicals was visualized by silver staining, while the protein subset was detected by Coomassie blue staining. The highest concentrations of AO (120 μM) and CPO (13.9 μM) were shown to detect purified DNA in gels with a sensitivity in the range of 25–50 ng per band. This work demonstrates the specificity of acridine and ethidium dyes for nucleic acids, while illustrating the level of non-nucleic acid-specific interactions with other cellular components by staining of electrophoretically separated cellular components in a gel matrix.  相似文献   

13.
Cytological and biochemical experiments were undertaken to elucidate the mechanisms responsible for the reciprocal Giemsa staining of BrdU-substituted and unsubstituted chromosome regions subjected to high or low pH NaH2PO4 treatments. These experiments included staining of chromosome preparations with ethidium bromide (EB), acridine orange (AO), or dansyl chloride, digestion of BrdU-substituted and unsubstituted chromatin with pancreatic DNase I, and SDS polyacrylamide gel electrophoresis of the proteins extracted from, and those remaining in isolated, fixed, air-dried nuclei subjected to either NaH2PO4 treatment. The collective evidence from this and previous work clearly indicates that, although the staining reactions following the different pH treatments are reciprocal, the mechanisms of induction of the staining effects are not. After the high pH treatment, BrdU-substituted and unsubstituted chromosome regions are palely and intensely stained with Giemsa, respectively. This treatment preferentially solubilizes BrdU-substituted DNA, probably as a result of the photolysis or high temperature hydrolysis of BrdU-DNA. Concomitantly, this treatment selectively denatures the BrdU-DNA. The reduction in the amount of DNA in the BrdU regions leads to a quantitative decrease in Giemsa-dye binding, resulting in pale staining relative to unsubstituted regions. The extraction of BrdU-substituted DNA does not appear to simultaneously extract much chromosomal protein. After the low pH treatment, BrdU-substituted and unsubstituted regions appear intensely and palely stained with Giemsa, respectively. BrdU substitution greatly increases the binding affinity of histone H1 to DNA, and the low pH treatment preferentially extracts the less tightly bound H1 of the unsubstituted chromatin. This extraction of H1 is presumably responsible for the preferential dispersion of unsubstituted DNA outside the boundaries of the chromosome onto the surrounding area of the slide. The unsubstituted chromosome regions subsequently stain relatively palely with Giemsa, because the DNA in these regions is more dispersed than that in the BrdU-substituted regions. The low pH treatment concomitantly denatures the unsubstituted DNA.  相似文献   

14.
A combined stain solution is made by dissolving 0.1 gm bromphenol blue and 0.2 gm nigrosin in 100 ml of a M/15 buffer solution of KH2PO4 and Na2HPO4 adjusted to pH 7.5. This staining solution was used to prepare stained fowl semen smears. Such smears give stable differentiation of live from dead sperms. The dead sperms are stained with a dark violet color while the live ones are not stained.  相似文献   

15.
The effects of pH, ionic strength, stain concentration, magnesium concentration, and various fixative agents on DNA staining with the fluorescent antibiotics olivomycin, chromomycin A3, and mithramycin were examined with DNA in solution and in mammalian cells. Ethanol-fixed Chinese hamster cell populations (line CHO) stained with mithramycin and analyzed by flow cytometry provided DNA distribution patterns with a high degree of resolution. Glutaraldehyde-fixed cells exhibited about one-half the fluorescence intensity of ethanol-fixed cells; however, the percentages of cells in G1, S, and G2 + M were comparable. DNA distributions obtained for formalin-fixed cells were unacceptable for computer analysis. Cell staining over a pH range of 5-9 in solutions containing 0.15-1 M NaCl and 15-200 mM MgCl2 provided optimal results based on the DNA profiles obtained by flow cytometry. The intensity of cells stained in 1 M NaCl was one and one-half times greater than cells stained in the absence of NaCl; however, spectrophotofluorometric analysis of mithramycin-magnesium-DNA complexes in solution revealed no significant changes in fluorescence intensity over a range of 0-1.75 M NaCl. These results and those obtained by flow cytometry analysis indicate that the increase in fluorescence of stained cells as a function of increasing ionic strength is due to changes in chromatin structure, providing a larger number of binding sites for the dye-magnesium complex.  相似文献   

16.
Experiments were performed in an attempt to obtain a rapid method for staining the chromophilic substance of formalin-fixed nerve cells differentially without resorting to over-staining and subsequent acid-decolorizing. A satisfactory procedure using thionin in dilute buffered solutions was developed: Prepare a stock solution of the dye using 1 g. in 100 ml. of distilled water. Prepare veronal-acetate buffers (Michaelis, 1931) in the range of pH 5 to pH 3.S. To each 10 ml. of the buffer add 0.5 ml. of the stock dye solution. After rinsing in CO2-free distilled water place mounted or unmounted sections in this solution. (Freshly fixed material, 10μ to 20μ thick, is completely stained in 10 to 20 minutes but over-staining does not occur when longer times are allowed.) Return sections to distilled water (2 changes) and wash until diffusion of excess dye is no longer visible. Wash in 70% ethyl alcohol (2 changes) until diffusion of excess dye is no longer visible. Dehydrate in 95% ethyl alcohol and normal butyl alcohol, clear and mount.

Optimum staining of chromophilic material occurs at pH 3.65. Glial processes are well stained at pH 4.6. Nissl bodies and glial cytoplasm are purplish blue, nuclear chromatin is blue, background is clear at pH 3.65 but pale blue at pH 4.9.  相似文献   

17.
A simple and fast method for isolation of large amounts of the histone octamer (H2A-H2B-H3-H4)2 is proposed. This method is based on chromatin adsorption by hydroxyapatite with subsequent extraction of the histone octamer with 50 mM sodium-phosphate buffer containing 4 M NaCl pH 8.0. It was shown that the properties of the histone octamer isolated by this extractive procedure are identical with those of the histone octamer obtained by elution on a Sephadex G-100 column. The histone tetramer (H3-H4)2 and dimer (H2A-H2B) were obtained after gel filtration on Sephadex G-100 in 50 mM sodium-acetate (pH 5.6).  相似文献   

18.
It is shown that the release of the slightly lysine-rich histones f2a2 and f2b by 0.4 M ammonium sulfate from conventionally isolated chromatin is diminished in comparison to the lysed nuclei. The change in extractability is further demonstrated by the application of ethidium bromide. At a molar input ratio of 0.09 (moles ethidium bromide/moles nucleotide) and 0.4 M ammonium sulfate the slightly lysine-rich histones are released from the chromatin to 70 - 80% if the lysed nuclei are used. At 0.1 M ammonium sulfate ethidium bromide effected also a release of 50 % of histone f1. Comparable effects could not be observed with chromatin prepared in a conventional way but instead a tendency towards loss of histone f3 in the presence of ethidium bromide was observed.  相似文献   

19.
Synopsis The metachromatic staining of polyacrylamide films containing different glycosaminoglycans is described. This model system made direct recording of metachromatic curves possible, under circumstances comparable to those of stained sections under the microscope, with virtually no interference of the corresponding orthochromatic peaks.The staining was carried out under standardized conditions (of buffer concentration, pH and temperature) and was shown to follow the Lambert-Beer law. The metachromatic peaks obtained with this system are listed for seven basic dyes, each complexed with seven different glycosaminoglycans.  相似文献   

20.
In the present investigation certain stain properties of the zinc iodide-osmium tetroxide mixture were investigated. It was observed that the type of reaction of certain cell structures with a ZIO mixture largely depended on several factors, namely, the pH of the mixture, aldehyde prefixation and type (s) of buffer (s) used. The standardization of these parameters led to the development of four procedures, each one of them with distinct stain properties. A nomenclature to designate these methods is proposed. The following procedures were applied to material processed for electron microscopy: 1. C.4.4-ZIO-4 degree -18 h: the ZIO mixture was prepared in citric acid-disodium phosphate buffer pH 4.4 and the tissue was incubated at 4 degree C during 18 H; 2. K-P.7.4-C.4.4-ZIO-4 degree -18 h: the tissue was prefixed in Karnovsky fixative prepared in phosphate buffer pH 7.4 and then incubated in C.4.4-ZIO at 4 degree C during 18 h; 3. V.7.4-ZIO-4 degree -18 H: the ZIO was prepared in veronal buffer pH 7.4 and incubation of the tissue was at 4 degree during 18 H; 4.K-P.7.4-V.7.4-ZIO-4 degree -18 h: the tissue was prefixed in Karnovsky fixative prepared in phosphate buffer pH 7.4 and then incubated in V.7.4-ZIO at 4 degree C during 18 h. The chromaffin cells and the cholinergic endings of the rat adrenal medulla and the vas deferens nerves were studied. C.4.4-ZIO-4 degree -18 h: This procedure stained adrenaline and noradrenaline storing granules. Synaptic vesicles at cholinergic endings were not stained. K-P.7.4.4-ZIO-4 degree -18 h: One type of chromaffin granule (probably storing noradrenaline) and both, the small and the granulated synaptic vesicles of cholinergic endings were deeply stained with this method. The aminergic fibres of the vas deferens reacted synaptic vesicles at cholinergic endings were not stained. K-P.7.4.4-ZIO-4 degree -18 h: One type of chromaffin granule (probably storing noradrenaline) and both, the small and the granulated synaptic vesicles of cholinergic endings were deeply stained with this method. The aminergic fibres of the vas deferens reacted synaptic vesicles at cholinergic endings were not stained. K-P.7.4.4-ZIO-4 degree -18 h: One type of chromaffin granule (probably storing noradrenaline) and both, the small and the granulated synaptic vesicles of cholinergic endings were deeply stained with this method. The aminergic fibres of the vas deferens reacted negatively. V.7.4-ZIO-4 degree -18 H: Both types of chromaffin granules and only the small synaptic vesicles of cholinergic endings were revealed with this procedure. In addition, some compartments of the Golgi complex were also stained. K-P.7.4-V.7.4-ZIO-4 degree -18 h: This method did not stain adrenaline and noradrenaline storing granules. Cholinergic synaptic vesicles appeared stained. However, the most striking stain property of this procedure was the staining of many cell organelles. The probable mechanisms by which different factors affect the ZIO reaction are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号