首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proto-oncogene, C-KIT (KIT), encodes a tyrosine kinase receptor, and mutations in this gene are causative for several mammalian diseases, including cancer and a form of pigmentation-associated hereditary deafness. Our laboratories are interested in a form of hereditary deafness that is associated with abnormalities in pigmentation and is common in the Dalmatian. Thus, KIT is being analyzed as a candidate gene for deafness in this breed. In addition to our interest in deafness, we are involved in mapping gene loci in the canine genome. Reported here is the identification of two isoforms of canine C-kit and radiation hybrid mapping of KIT to CFA13.  相似文献   

2.
Allantoin is the end product of purine catabolism in all mammals except humans, great apes, and one breed of dog, the Dalmatian. Humans and Dalmatian dogs produce uric acid during purine degradation, which leads to elevated levels of uric acid in blood and urine and can result in significant diseases in both species. The defect in Dalmatians results from inefficient transport of uric acid in both the liver and renal proximal tubules. Hyperuricosuria and hyperuricemia (huu) is a simple autosomal recessive trait for which all Dalmatian dogs are homozygous. Therefore, in order to map the locus, an interbreed backcross was used. Linkage mapping localized the huu trait to CFA03, which excluded the obvious urate transporter 1 gene, SLC22A12. Positional cloning placed the locus in a minimal interval of 2.5 Mb with a LOD score of 17.45. A critical interval of 333 kb containing only four genes was homozygous in all Dalmatians. Sequence and expression analyses of the SLC2A9 gene indicated three possible mutations, a missense mutation (G616T;C188F) and two promoter mutations that together appear to reduce the expression levels of one of the isoforms. The missense mutation is associated with hyperuricosuria in the Dalmatian, while the promoter SNPs occur in other unaffected breeds of dog. Verification of the causative nature of these changes was obtained when hyperuricosuric dogs from several other breeds were found to possess the same combination of mutations as found in the Dalmatian. The Dalmatian dog model of hyperuricosuria and hyperuricemia underscores the importance of SLC2A9 for uric acid transport in mammals.  相似文献   

3.
Cargill EJ  Famula TR  Strain GM  Murphy KE 《Genetics》2004,168(3):1385-1393
Hereditary loss of hearing affects many breeds of the domestic dog, but the Dalmatian has the highest prevalence. Approximately 30% are affected in the United States (U.S.) population. It is widely accepted that a relationship exists between deafness and pigmentation in the dog and also in other animals. While the Dalmatian exemplifies this relationship, the genetic origin and mode of inheritance of deafness in this breed are unknown. The goals of this study were to: (1) estimate the heritability of deafness in an extended kindred of U.S. Dalmatians and (2) determine, through complex segregation analysis, whether there is a major segregating locus that has a large effect on the expression of deafness. A kindred of 266 Dalmatians was assembled, of which 199 had been diagnosed using the brainstem auditory evoked response to determine auditory status. Of these, 74.4% (N = 148) had normal hearing, 18.1% (N = 36) were unilaterally deaf, and 7.5% (N = 15) were bilaterally deaf. A heritability of 0.73 was estimated considering deafness a dichotomous trait and 0.75 considering it as a trichotomous trait. Although deafness in the Dalmatian is clearly heritable, the evidence for the presence of a single major gene affecting the disorder is not persuasive.  相似文献   

4.
A genome-wide association study (GWAS) was performed for 235 Dalmatian dogs using the canine Illumina high density bead chip to identify quantitative trait loci (QTL) associated with canine congenital sensorineural deafness (CCSD). Data analysis was performed for all Dalmatian dogs and in addition, separately for brown-eyed and blue-eyed dogs because of the significant influence of eye colour on CCSD in Dalmatian dogs. Mixed linear model analysis (MLM) revealed seven QTL with experiment-wide significant associations (-log10P>5.0) for CCSD in all Dalmatian dogs. Six QTL with experiment-wide significant associations for CCSD were found in brown-eyed Dalmatian dogs and in blue-eyed Dalmatian dogs, four experiment-wide significant QTL were detected. The experiment-wide CCSD-associated SNPs explained 82% of the phenotypic variance of CCSD. Five CCSD-loci on dog chromosomes (CFA) 6, 14, 27, 29 and 31 were in close vicinity of genes shown as causative for hearing loss in human and/or mouse.  相似文献   

5.
Target exon resequencing using Massively Parallel DNA Sequencing (MPS) is a new powerful strategy to discover causative genes in rare Mendelian disorders such as deafness. We attempted to identify genomic variations responsible for deafness by massive sequencing of the exons of 112 target candidate genes. By the analysis of 216randomly selected Japanese deafness patients (120 early-onset and 96 late-detected), who had already been evaluated for common genes/mutations by Invader assay and of which 48 had already been diagnosed, we efficiently identified causative mutations and/or mutation candidates in 57 genes. Approximately 86.6% (187/216) of the patients had at least one mutation. Of the 187 patients, in 69 the etiology of the hearing loss was completely explained. To determine which genes have the greatest impact on deafness etiology, the number of mutations was counted, showing that those in GJB2 were exceptionally higher, followed by mutations in SLC26A4, USH2A, GPR98, MYO15A, COL4A5 and CDH23. The present data suggested that targeted exon sequencing of selected genes using the MPS technology followed by the appropriate filtering algorithm will be able to identify rare responsible genes including new candidate genes for individual patients with deafness, and improve molecular diagnosis. In addition, using a large number of patients, the present study clarified the molecular epidemiology of deafness in Japanese. GJB2 is the most prevalent causative gene, and the major (commonly found) gene mutations cause 30–40% of deafness while the remainder of hearing loss is the result of various rare genes/mutations that have been difficult to diagnose by the conventional one-by-one approach. In conclusion, target exon resequencing using MPS technology is a suitable method to discover common and rare causative genes for a highly heterogeneous monogenic disease like hearing loss.  相似文献   

6.
The analysis of inherited diseases in the domestic dog (Canis familiaris) provides a resource for the continued use of this species as a model system for human diseases. Many different dog breeds are affected by congenital sensorineural deafness. Since mutations in various genes have already been found causative for sensorineural hearing impairment in humans or mice, 20 of these genes were considered as candidates for deafness in dogs. For each of the candidate genes a canine BAC clone was isolated by screening with heterologous human or murine cDNA probes. The gene-containing BAC clones were physically assigned to the canine genome by FISH and the BAC-derived STS-markers were positioned with the RHDF5000 panel on the canine RH map. The mapping data, which confirm the established conservation of synteny between canine and human chromosomes, provide a resource for further association studies in segregating canine populations and the basis for new insights into this common canine and human disease.  相似文献   

7.
8.
Waardenburg syndrome (WS) is a rare disorder characterized by distinctive facial features, pigment disturbances, and sensorineural deafness. There are four WS subtypes. WS1 is mostly caused by PAX3 mutations, while MITF, SNAI2, and SOX10 mutations are associated with WS2. More than 100 different disease-causing mutations have been reported in many ethnic groups, but the data from Chinese patients with WS remains poor. Herein we report 18 patients from 15 Chinese WS families, in which five cases were diagnosed as WS1 and the remaining as WS2. Clinical evaluation revealed intense phenotypic variability in Chinese WS patients. Heterochromia iridis and sensorineural hearing loss were the most frequent features (100% and 88.9%, respectively) of the two subtypes. Many brown freckles on normal skin could be a special subtype of cutaneous pigment disturbances in Chinese WS patients. PAX3, MITF, SNAI2, and SOX10 genes mutations were screened for in all the patients. A total of nine mutations in 11 families were identified and seven of them were novel. The SOX10 mutations in WS2 were first discovered in the Chinese population, with an estimated frequency similar to that of MITF mutations, implying SOX10 is an important pathogenic gene in Chinese WS2 cases and should be considered for first-step analysis in WS2, as well as MITF.  相似文献   

9.
Waardenburg syndrome type I (WS-I) is an autosomal dominant disorder characterized by sensorineural hearing loss, dystopia canthorum, pigmentary disturbances, and other developmental defects. Klein-Waardenburg syndrome (WS-III) is a disorder with many of the same characteristics as WS-I and includes musculoskeletal abnormalities. We have recently reported the identification and characterization of one of the first gene defects, in the human PAX3 gene, which causes WS-I. PAX3 is a DNA-binding protein that contains a structural motif known as the paired domain and is believed to regulate the expression of other genes. In this report we describe two new mutations, in the human PAX3 gene, that are associated with WS. One mutation was found in a family with WS-I, while the other mutation was found in a family with WS-III. Both mutations were in the highly conserved paired domain of the human PAX3 gene and are similar to other mutations that cause WS. The results indicate that mutations in the PAX3 gene can cause both WS-I and WS-III.  相似文献   

10.
Waardenburg syndrome (WS) is a dominantly inherited and clinically variable syndrome of deafness, pigmentary changes, and distinctive facial features. Clinically, WS type I (WS1) is differentiated from WS type II (WS2) by the high frequency of dystopia canthorum in the family. In some families, WS is caused by mutations in the PAX3 gene on chromosome 2q. We have typed microsatellite markers within and flanking PAX3 in 41 WS1 kindreds and 26 WS2 kindreds in order to estimate the proportion of families with probable mutations in PAX3 and to study the relationship between phenotypic and genotypic heterogeneity. Evaluation of heterogeneity in location scores obtained by multilocus analysis indicated that WS is linked to PAX3 in 60% of all WS families and in 100% of WS1 families. None of the WS2 families were linked. In those families in which equivocal lod scores (between −2 and +1) were found, PAX3 mutations have been identified in 5 of the 15 WS1 families but in none of the 4 WS2 families. Although preliminary studies do not suggest any association between the phenotype and the molecular pathology in 20 families with known PAX3 mutations and in four patients with chromosomal abnormalities in the vicinity of PAX3, the presence of dystopia in multiple family members is a reliable indicator for identifying families likely to have a defect in PAX3.  相似文献   

11.
Genetic factors, the most common etiology in severe to profound hearing loss, are one of the key determinants of Cochlear Implantation (CI) and Electric Acoustic Stimulation (EAS) outcomes. Satisfactory auditory performance after receiving a CI/EAS in patients with certain deafness gene mutations indicates that genetic testing would be helpful in predicting CI/EAS outcomes and deciding treatment choices. However, because of the extreme genetic heterogeneity of deafness, clinical application of genetic information still entails difficulties. Target exon sequencing using massively parallel DNA sequencing is a new powerful strategy to discover rare causative genes in Mendelian disorders such as deafness. We used massive sequencing of the exons of 58 target candidate genes to analyze 8 (4 early-onset, 4 late-onset) Japanese CI/EAS patients, who did not have mutations in commonly found genes including GJB2, SLC26A4, or mitochondrial 1555A>G or 3243A>G mutations. We successfully identified four rare causative mutations in the MYO15A, TECTA, TMPRSS3, and ACTG1 genes in four patients who showed relatively good auditory performance with CI including EAS, suggesting that genetic testing may be able to predict the performance after implantation.  相似文献   

12.
13.
Subscapular skinfold, elbow breadth and upper arm indicators of nutritional status were studied in the population of Dalmatia in Croatia. Age- and sex-specific percentiles were obtained from 4373 subjects, 18 to 74 years of age, and compared to the U.S. NHANES I and II reference data. There were significant differences between these data sets in all studied variables. The results complement those reported previously for BMI and triceps skinfold and indicate that high prevalence of overweight in Dalmatians largely reflects their muscularity and skeletal robustness rather than excess body fatness. The findings suggest that the U.S. upper percentiles of BMI and skinfolds are inadequate for the assessment of excess body fatness in Dalmatian population. The obtained population-specific percentile distributions should be used provisionally as the reference data for group comparisons in the Dalmatian region.  相似文献   

14.
Inherited deafness has been shown to have high genetic heterogeneity. For many decades, linkage analysis and candidate gene approaches have been the main tools to elucidate the genetics of hearing loss. However, this associated study design is costly, time-consuming, and unsuitable for small families. This is mainly due to the inadequate numbers of available affected individuals, locus heterogeneity, and assortative mating. Exome sequencing has now become technically feasible and a cost-effective method for detection of disease variants underlying Mendelian disorders due to the recent advances in next-generation sequencing (NGS) technologies. In the present study, we have combined both the Deafness Gene Mutation Detection Array and exome sequencing to identify deafness causative variants in a large Chinese composite family with deaf by deaf mating. The simultaneous screening of the 9 common deafness mutations using the allele-specific PCR based universal array, resulted in the identification of the 1555A>G in the mitochondrial DNA (mtDNA) 12S rRNA in affected individuals in one branch of the family. We then subjected the mutation-negative cases to exome sequencing and identified novel causative variants in the MYH14 and WFS1 genes. This report confirms the effective use of a NGS technique to detect pathogenic mutations in affected individuals who were not candidates for classical genetic studies.  相似文献   

15.
Osteogenesis imperfecta (OI) is a hereditary disease occurring in humans and dogs. It is characterized by extremely fragile bones and teeth. Most human and some canine OI cases are caused by mutations in the COL1A1 and COL1A2 genes encoding the subunits of collagen I. Recently, mutations in the CRTAP and LEPRE1 genes were found to cause some rare forms of human OI. Many OI cases exist where the causative mutation has not yet been found. We investigated Dachshunds with an autosomal recessive form of OI. Genotyping only five affected dogs on the 50 k canine SNP chip allowed us to localize the causative mutation to a 5.82 Mb interval on chromosome 21 by homozygosity mapping. Haplotype analysis of five additional carriers narrowed the interval further down to 4.74 Mb. The SERPINH1 gene is located within this interval and encodes an essential chaperone involved in the correct folding of the collagen triple helix. Therefore, we considered SERPINH1 a positional and functional candidate gene and performed mutation analysis in affected and control Dachshunds. A missense mutation (c.977C>T, p.L326P) located in an evolutionary conserved domain was perfectly associated with the OI phenotype. We thus have identified a candidate causative mutation for OI in Dachshunds and identified a fifth OI gene.  相似文献   

16.
Hyperuricosuria, an autosomal recessive disorder, is characterized by high levels of uric acid in the urine of Dalmatian dogs. Whereas high levels of uric acid are known to be caused by the silencing of the urate oxidase (uox) gene in humans and higher primates, the molecular basis for the Dalmatian defect is unknown. Transplantation studies show that the organ responsible for the Dalmatian phenotype is the liver, which is where urate oxidase is exclusively expressed and uric acid is converted into allantoin. We cloned and sequenced the canine uox cDNA and compared the sequence between a Dalmatian and non-Dalmatian dog. No change in cDNA sequence was identified. A Dalmatian x pointer backcross family was used to track the segregation of microsatellite markers surrounding the urate oxidase locus. The uox gene was excluded for Dalmatian hyperuricosuria based on the cDNA sequence identity and negative LOD scores.  相似文献   

17.
Autosomal dominant non-syndromic hearing loss is highly heterogeneous, and eyes absent 4 (EYA4) is a disease-causing gene. Most EYA4 mutations founded in the Eya-homologous region, however, no deafness causative missense mutation in variable region of EYA4 have previously been found. In this study, we identified a pathogenic missense mutation located in the variable region of the EYA4 gene for the first time in a four-generation Chinese family with 57 members. Whole-exome sequencing (WES) was performed on samples from one unaffected and two affected individuals to systematically search for deafness susceptibility genes, and the candidate mutations and the co-segregation of the phenotype were verified by polymerase chain reaction amplification and by Sanger sequencing in all of the family members. Then, we identified a novel EYA4 mutation in exon 8, c.511G>C; p.G171R, which segregated with postlingual and progressive autosomal dominant sensorineural hearing loss (SNHL). This report is the first to describe a missense mutation in the variable region domain of the EYA4 gene, which is not highly conserved in many species, indicating that the potential unconserved role of 171G>R in human EYA4 function is extremely important.  相似文献   

18.

Background  

The distinctive coat pattern of a Dalmatian is the result of the interaction of several loci. While the encoded function of these genes is not fully understood, it is known the Piebald, Ticking, and Flecking loci interact to produce the Dalmatian's classic pigmented spots on a white background. The color of the pigmented spots in purebred Dalmatians can either be black or liver, but the locus responsible for color determination is unknown. Studies have been conducted to determine the underlying genes involved in coat color determination in the dog, e.g., in the Labrador Retriever, but none to date have addressed black versus liver in the Dalmatian.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号