首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New methods for the chromatographic isolation of inclusion bodies directly from crude Escherichia coli homogenates and for the refolding of denatured protein are presented. The traditional method of differential centrifugation for the isolation of purified inclusion bodies is replaced by a single gel-filtration step. The principle is that the exclusion limit of the gel particles is chosen such that only the inclusion bodies are excluded, i.e., all other components of the crude homogenate penetrate the gel under the conditions selected. In the novel column refolding process, a decreasing gradient of denaturant (urea or Gu-HCl), combined with an increasing pH gradient, is introduced into a gel-filtration column packed with a gel medium that has an exclusion limit lower than the molecular mass of the protein to be refolded. A limited sample volume of the protein, dissolved in the highest denaturant concentration at the lowest pH of the selected gradient combination, is applied to the column. During the course of elution, the zone of denatured protein moves down the column at a speed approximately threefold higher than that of the denaturant. This means that the protein sample will gradually pass through areas of increasingly lower denaturant concentrations and higher pH, which promotes refolding into the native conformation. The shape and slope of the gradients, as well as the flow rate, will influence the refolding rate and can be adjusted for different protein samples. The principle is illustrated using a denatured recombinant scFv fusion protein obtained from E. coli inclusion bodies.  相似文献   

2.
Optimized conditions are needed to refold recombinant proteins from bacterial inclusion bodies into their biologically active conformations. In this study, we found two crucial requirements for efficient refolding of cationic tetrameric chicken avidin. The first step is to eliminate nucleic acid contaminants from the bacterial inclusion body. The electrostatic interactions between the remaining nucleic acids and proteins strongly enhanced protein aggregation during the refolding process. The cysteine specific reversible S-cationization procedure was successfully employed for large-scale preparation of nucleic acid free denatured protein without purification tag system. The second step is the intramolecular disulfide formation prior to refolding in dialysis removing denaturant. Disulfide intact monomeric avidin showed efficient formation of biologically active tetrameric conformation during the refolding process. Using this optimized refolding procedure, highly cationic avidin derivative designed as an intracellular delivery carrier of biotinylated protein was successfully prepared.  相似文献   

3.
A novel two-step protein refolding strategy has been developed, where continuous renaturation-bydilution is followed by direct capture on an expanded bed adsorption (EBA) column. The performance of the overall process was tested on a N-terminally tagged version of human beta2-microglobulin (HAT-hbeta2m) both at analytical, small, and preparative scale. In a single scalable operation, extracted and denatured inclusion body proteins from Escherichia coli were continuously diluted into refolding buffer, using a short pipe reactor, allowing for a defined retention and refolding time, and then fed directly to an EBA column, where the protein was captured, washed, and finally eluted as soluble folded protein. Not only was the eluted protein in a correctly folded state, the purity of the HAThbeta2m was increased from 34% to 94%, and the product was concentrated sevenfold. The yield of the overall process was 45%, and the product loss was primarily a consequence of the refolding reaction rather than the EBA step. Full biological activity of HAT-hbeta2m was demonstrated after removal of the HAT-tag. In contrast to batch refolding, a continuous refolding strategy allows the conditions to be controlled and maintained throughout the process, irrespective of the batch size; i.e., it is readily scalable. Furthermore, the procedure is fast and tolerant toward aggregate formation, a common complication of in vitro protein refolding. In conclusion, this system represents a novel approach to small and preparative scale protein refolding, which should be applicable to many other proteins.  相似文献   

4.
A refolding strategy was described for on-column refolding of recombinant human interferon-gamma (rhIFN-gamma) inclusion bodies by expanded bed adsorption (EBA) chromatography. After the denatured rhIFN-gamma protein bound onto the cation exchanger of STREAMLINE SP, the refolding process was performed in expanded bed by gradually decreasing the concentration of urea in the buffer and the refolded rhIFN-gamma protein was recovered by the elution in packed bed mode. It was demonstrated that the denatured rhIFN-gamma protein could be efficiently refolded by this method with high yield. Under appropriate experimental conditions, the protein yield and specific activity of rhIFN-gamma was up to 52.7% and 8.18 x 10(6) IU/mg, respectively.  相似文献   

5.
Expanded bed adsorption (EBA) chromatography was investigated for clarification and capture of high‐concentration refold pools of Escherichia coli‐based therapeutics. Refolding of denatured inclusion bodies (IBs) at high protein concentration significantly improved product throughput; however, direct filtration of the refold materials became very challenging because of high content of protein precipitates formed during refolding. In addition, irreversible protein precipitation caused by high local concentration was encountered in packed bed capture during cation exchange chromatography elution, which limited column loading capacity and capture step productivity. In this study, the two issues are addressed in one unit operation by using EBA. Specifically, EBA can handle feed streams with significant amount of particles and precipitates, which eliminated the need for refold pool clarification through filtration. The relatively broad EBA elution profile is particularly suitable for proteins of low solubility and can effectively avoid product loss previously associated with on‐column precipitation during capture. As the EBA resin (RHOBUST® FastLine SP IEX) used here has unique properties, it can be operated at high linear velocity (800–1,600 cm/h), while achieving a selectivity and impurity clearance largely comparable to the packed bed resin of the same ligand chemistry (SP Sepharose FF). Furthermore, the filtration of the EBA elution pool is easily manageable within facility capability. Overall, this study demonstrates that the EBA process helps debottleneck the purification of high‐turbidity refold pools by removing precipitates and concurrently capturing the product, which can be applied to other E. coli‐based therapeutics that also requires refolding of IBs. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:113–123, 2014  相似文献   

6.
Practical considerations in refolding proteins from inclusion bodies   总被引:13,自引:0,他引:13  
Refolding of proteins from inclusion bodies is affected by several factors, including solubilization of inclusion bodies by denaturants, removal of the denaturant, and assistance of refolding by small molecule additives. We will review key parameters associated with (1) conformation of the protein solubilized from inclusion bodies, (2) change in conformation and flexibility or solubility of proteins during refolding upon reduction of denaturant concentration, and (3) the effect of small molecule additives on refolding and aggregation of the proteins.  相似文献   

7.
Our objective was to investigate the Escherichia coli localization (such as supernatant, cytoplasm and inclusion bodies) of an anti-alphaIIb-beta3 (alphaIIbbeta3) scFv fragment referred to as scFv[EBB3] produced in batch fermentation. Immobilized metal affinity chromatography (IMAC) purification was performed on supernatant using expanded bed absorbed technology (EBA) and on sonicated cells in native conditions over an immobilized copper-ion affinity column. Inclusion bodies were solubilized before IMAC purification and the refolding procedure was performed on the column. The majority of scFv[EBB3] were present as inclusion bodies (55%), whereas 36% were found in the cytoplasm and only 9% secreted in the supernatant. The scFv activity was assessed by enzyme-linked immunosorbent assay (ELISA), flow cytometry and immunohistochemistry analyses performed on a thrombus induced in vivo on an atherosclerotic rabbit model.  相似文献   

8.
A size exclusion chromatography (SEC) process, in the presence of denaturant in the refolding buffer was developed to refold recombinant human interferon-γ (rhIFN-γ) at a high concentration. The rhIFN-γ was overexpressed inE. coli, resulting in the formation of inactive inclusion bodies (IBs). The IBs were first solubilized in 8 M urea as the denaturant, and then the refolding process performed by decreasing the urea concentration on the SEC column to suppress protein aggregation. The effects of the urea concentration, protein loading mode and column height during the refolding step were investigated. The combination of the bufferexchange effect of SEC and a moderate urea concentration in the refolding buffer resulted in an efficient route for producing correctly folded rhIFN-γ, with protein recovery of 67.1% and specific activity up to 1.2×107 IU/mg.  相似文献   

9.
In the course of developing a cost-effective, scaleable process for the purification of a recombinant protein from Chinese hamster ovary (CHO) suspension cell culture, we investigated direct capture of this molecule using expanded bed adsorption (EBA). EBA combines clarification, purification, and concentration of the product into a single step. The unclarified bioreactor material was directly applied to a STREAMLINE 25 column containing an affinity STREAMLINE adsorbent. This work focused on simplifying the EBA operations and minimizing the overall processing time by running the EBA column unidirectionally, eluting in the expanded bed mode, and coupling the EBA column directly with ion exchange or hydrophobic interaction chromatography. Unidirectional EBA was clearly a simpler unit operation and did not require the use of specialized equipment. The increase in the elution pool volume was insignificant, especially when the EBA column was eluted directly onto the downstream column. Scale-down was simple and could be automated. Coupling of unidirectional EBA with a downstream purification step reduced processing time, equipment requirements and cost.  相似文献   

10.
Enzymatically active Delta(5)-3-ketosteroid isomerase (KSI) protein with a C-terminus his(6)-tag was produced following insoluble expression using Escherichia coli. A simple, integrated process was used to extract and purify the target protein. Chemical extraction was shown to be as effective as homogenization at releasing the inclusion body proteins from the bacterial cells, with complete release taking less than 20 min. An expanded bed adsorption (EBA) column utilizing immobilized metal affinity chromatography (IMAC) was then used to purify the denatured KSI-(His(6)) protein directly from the chemical extract. This integrated process greatly simplifies the recovery and purification of inclusion body proteins by removing the need for mechanical cell disruption, repeated inclusion body centrifugation, and difficult clarification operations. The integrated chemical extraction and EBA process achieved a very high purity (99%) and recovery (89%) of the KSI-(His(6)), with efficient utilization of the adsorbent matrix (9.74 mg KSI-(His(6))/mL adsorbent). Following purification the protein was refolded by dilution to obtain the biologically active protein. Seventy-nine percent of the expressed KSI-(His(6)) protein was recovered as enzymatically active protein with the described extraction, purification, and refolding process. In addition to demonstrating the operation of this intensified inclusion body process, a plate-based concentration assay detecting KSI-(His(6)) is validated. The intensified process in this work requires minimal optimization for recovering novel his-tagged proteins, and further improves the economic advantage of E. coli as a host organism.  相似文献   

11.
Expanded-bed adsorption (EBA) is a technique for primary recovery of proteins starting from unclarified broths. This process combines centrifugation, concentration, filtration, and initial capturing of the proteins in a single step. An expanded bed (EB) is comparable to a packed bed in terms of separation performance but its hydrodynamics are that of a fluidized bed. Downstream process development involving EBA is normally carried out in small columns to minimize time and costs. Our purpose here is to characterize the hydrodynamics of expanded beds of different diameters, to develop scaling parameters that can be reliably used to predict separation efficiency of larger EBA columns. A hydrodynamic model has been developed which takes into account the radial liquid velocity profile in the column. The scale-down effect can be characterized in terms of apparent axial dispersion, D(axl,app), and plate number, N(EB), adapted for expanded bed. The model is in good agreement with experimental results obtained from 1- and 5-cm column diameters with buffer solutions of different viscosities. The model and the experiments show an increase of apparent axial dispersion with an increase in column diameter. Furthermore, the apparent axial dispersion is affected by an increase in liquid velocity and viscosity. Supported by visual observations and predictions from the model, it was concluded that operating conditions (liquid viscosity and superficial velocity) resulting in a bed-void fraction between 0.7 and 0.75 would provide the optimal separation efficiency in terms of N(EB).  相似文献   

12.
抗血红素多二硫键ScFv在大肠杆菌中绝大多数表达产物为包涵体,为了获得可溶性的具有生物活性的ScFv,摸索了不同的复性条件,包括透析法、稀释和层析相结合的方法。研究发现,先对溶解的变性ScFv溶液稀释,进行初步的蛋白质复性,再利用Sephadex G-25凝胶层析进一步复性、降低变性剂浓度和纯化,至少可以得到95%纯度,产率为150mg/L的目标蛋白,通过一次凝胶过滤层析,达到了去除变性剂、复性及纯化ScFv蛋白三种目的,为多二硫键ScFv在大肠杆菌中的表达和纯化提供了一种经济可行的方法。  相似文献   

13.
In the present study, the performances of conventional purification methods, packed bed adsorption (PBA), and expanded bed adsorption (EBA) for the purification of the nucleocapsid protein (NP) of Newcastle disease virus (NDV) from Escherichia coli homogenates were evaluated. The conventional methods for the recovery of NP proteins involved multiple steps, such as centrifugation, precipitation, dialysis, and sucrose gradient ultracentrifugation. For the PBA, clarified feedstock was used for column loading, while in EBA, unclarified feedstock was used. Streamline chelating immobilized with Ni2+ ion was used as an affinity ligand for both PBA and EBA. The final protein yield obtained in conventional and PBA methods was 1.26% and 5.56%, respectively. It was demonstrated that EBA achieved the highest final protein yield of 9.6% with a purification factor of 7. Additionally, the total processing time of the EBA process has been shortened by 8 times compared to that of the conventional method.  相似文献   

14.
Streamline Direct CST I is a new type of ion exchanger with multi-modal functional groups, specially designed for an expanded bed adsorption (EBA) process, which can capture directly the proteins from the high ionic strength feedstocks with a high binding capacity. In this study, an experimental study is carried out for two-component proteins (BSA and myoglobin) competitive adsorption and desorption in an expanded bed packed with Streamline Direct CST I. Based on the measurements of the single- and two-component bovine serum albumin (BSA)/myoglobin adsorption isotherm on Streamline Direct CST I, the binding and elution conditions for the whole EBA process are selected; and then frontal analysis for a longer timescale and column displacement experiments in a fixed bed (XK16/20 column) are carried out to evaluate the two-component proteins (BSA and myoglobin) competitive adsorption and displacement on Streamline Direct CST I. Finally, the feasibility of capturing both BSA and myoglobin by an expanded bed packed with Streamline Direct CST I is addressed in a Streamline 50 column packed with 300 mL Streamline Direct CST I.  相似文献   

15.
Recombinant human tissue-type plasminogen activator derivative (r-PA), fused with thioredoxin (Trx), was expressed in Escherichia coli. The resultant fusion protein, Trx-r-PA, was almost completely in the form of inclusion bodies and without activity. Different refolding strategies were investigated including different post-treatment of solubilized Trx-r-PA inclusion bodies, on-column refolding by size-exclusion chromatography (SEC) using three gel types (Sephacryl S-200, S-300 and S-400), refolding by Sephacryl S-200 with a urea gradient and two-stage temperature control in refolding. An optimized on-column refolding process for Trx-r-PA inclusion bodies was established. The collected Trx-r-PA inclusion bodies were dissolved in 6 m guanidine hydrochloride (Gdm·HCl), and the denatured protein was separated from dithiothreitol (DTT) and Gdm·HCl with a G25 column and simultaneously dissolved in 8 m urea containing oxidized glutathione (GSSG). Finally a refolding of Trx-r-PA protein on Sephacryl S-200 column with a decreasing urea gradient combined with two-stage temperature control was employed, and the activity recovery of refolded protein was increased from 3.6 to 13.8% in comparison with the usual dilution refolding. Revisions requested 31 October 2005; Revisions received 20 December 2005  相似文献   

16.
Dilution and column-based protein refolding techniques are compared for refolding Delta 5-3-ketosteroid isomerase (KSI) with a C-terminus his6-tag. Column refolding was performed by removing the denaturant while the protein was adsorbed in an immobilized metal affinity chromatography column. Both dilution refolding and a single-step column-based refolding strategy were optimized to maximize the recovery of KSI enzyme activity, and achieved refolding yields of 87% and 70% respectively. It was found that the column-based refolding yield was reduced at higher adsorbed protein concentrations. An elution gradient with increasing imidazole concentration was used to selectively elute the biologically active KSI protein following column refolding, with high molecular weight KSI aggregates retained in the column. An iterative column-refolding process was then developed to denature and refold protein retained in the column, which significantly increased the refolding yield at high-adsorbed protein concentrations. Repetition of the column refolding operation increased the refolding yield from 50% to 75% for protein adsorbed at a concentration of 2.9 mg/mL of adsorbent. Although for the KSI protein column-based refolding did not improve the overall refolding yield compared to dilution refolding, it may still be advantageous due to the ease of integration with purification operations, increased control over the refolding conditions, and the ability to segregate refolded protein from inactive aggregates during elution.  相似文献   

17.
Cho TH  Ahn SJ  Lee EK 《Bioseparation》2001,10(4-5):189-196
To avoid the intrinsic problem of aggregation associated with the traditional solution-phase refolding process, we proposed a solid-phase refolding method integrated with the expanded bed adsorption chromatography. The model protein was a fusion protein of recombinant human growth hormone and a glutathione S-transferase fragment. It was demonstrated that the inclusion body proteins in the cell homogenate could be directly refolded with higher yield. To verify the applicability of this method, we have tested with success three types of the starting materials, i.e., rhGH monomer, inclusion bodies containing the fusion protein, and the E. coli cell homogenate. This direct refolding process could reduce the number of the renaturation steps required and allow the refolding at a higher concentration, approximately 2 mg fusion protein per ml resin. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The protein refolding of inclusion bodies was investigated using reversed micelles formed by aerosol OT (AOT). Ribonuclease A (RNase A) was overexpressed in Escherichia coli and used as native inclusion bodies. The enzymatic activity of RNase A was completely regained from the inclusion bodies within 14 h by solubilization in reversed micelles. To further enhance the refolding rate, a molecular chaperone, GroEL, was incorporated into the refolding system. The resultant refolding system including GroEL showed better performance under optimized conditions for the refolding of RNase A inclusion bodies. The refolding rate was considerably improved by the addition of the molecular chaperone, and the refolding step was completed in 1 h. The protein refolding in the GroEL-containing refolding system was strongly dependent on the coexistence of ATP and Mg2+, suggesting that the GroEL hosted in the reversed micelles was biologically active and assisted in the renaturation of the inclusion bodies. The addition of cold acetone to the reversed micellar solution allowed over 90% recovery of the renatured RNase A.  相似文献   

19.
Expanded bed adsorption (EBA) was examined as the initial capture/purification step in the purification of monoclonal antibodies from Chinese hamster ovary (CHO) cultures. Two process alternatives each using EBA were compared to a conventional Protein A process without EBA. One alternative used Protein A affinity EBA followed by packed-bed cation and anion-exchange steps. The other alternative used cation-exchange EBA as the capture step followed by packed-bed Protein A and anion-exchange steps. The process using Protein A EBA produced comparable purity (host cell protein, DNA, Protein A, antibody aggregate) to the conventional process. However, the Protein A EBA column showed a significant decrease in dynamic capacity with a limited number of cycles. The process using cation EBA achieved comparable levels of host cell proteins (HCP) and DNA but not antibody aggregate or leached Protein A compared to the conventional process.  相似文献   

20.
An exopolyphosphatase gene has been cloned by polymerase chain reaction (PCR) from Trypanosoma brucei and the corresponding protein overexpressed as a recombinant His-tag (histidine tag) exopolyphosphatase in E. coli in order to characterize its biochemical activity and to produce antibody to determine its localization. Because overexpression of this protein in bacteria resulted in the formation of inactive inclusion bodies, these structures were first solubilized in denaturant condition (6 M urea). Secondly, after a capture step using immobilized metal affinity chromatography (IMAC), a gradual refolding of the protein was performed on-column from 6 M to 0 M urea in the presence of 1% Triton X-100. Triton X-100 was used to abolish protein aggregation during the refolding step. The purified enzyme was active, demonstrating that at least part of the proteins was properly refolded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号