首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonspecific lipid transfer protein (i.e., sterol carrier protein 2) from human liver was purified to homogeneity using ammonium sulfate precipitation, CM-cellulose chromatography, molecular sieve chromatography and fast protein liquid chromatography. Its amino acid composition was determined and found to be very similar to that of the nonspecific lipid transfer protein from bovine and rat liver with, as main feature, the absence of arginine, histidine and tyrosine. By way of a specific enzyme immunoassay using affinity-purified antibodies, the levels of nonspecific lipid transfer protein were determined in human livers. Levels varied from approximately 150 ng nonspecific lipid transfer protein per mg 105,000 X g supernatant protein for juvenile and adult humans to 40 ng per mg supernatant protein for a young infant. Levels of nonspecific lipid transfer protein in livers of infants with cerebro-hepato-renal (Zellweger) syndrome were extremely low (i.e., 2 ng per mg supernatant protein). Immunoblotting revealed the presence of crossreactive proteins of molecular masses of 40,000 and 58,000. The 40 kDa and 58 kDa proteins occurred in control livers, whereas only the 40 kDa protein was present in Zellweger livers. As in rat the 58 kDa protein could be demonstrated in a peroxisomal preparation isolated from an adult liver. A possible link between the occurrence of nonspecific lipid transfer protein and the presence of peroxisomes is discussed.  相似文献   

2.
Calmodulin and calmodulin-binding proteins in liver cell nuclei   总被引:6,自引:0,他引:6  
Three nuclear subfractions were prepared from isolated hepatocytes nuclei. The calmodulin content in whole nuclei was 79 ng/mg of protein. The soluble fraction obtained after digestion of the nuclei with DNase I and RNase A (S1 fraction) contained 252 ng of calmodulin/mg of protein. The pellet obtained after the digestion with nucleases was treated with 1.6 M NaCl, and the soluble fraction and the residual structures obtained after the treatment were called S2 fraction and nuclear matrix, respectively. The calmodulin contents of the S2 fraction and of the nuclear matrix were 68 and 190 ng/mg of protein, respectively. If nuclei were digested only with DNase I, the calmodulin content in the soluble fraction increased to 703 ng/mg of protein, indicating that part of the nuclear calmodulin is associated with active DNA. Five nuclear calmodulin-binding proteins were identified. Two, having apparent molecular masses of 240 and 150 kDa were only found in the nuclear matrix, whereas the other three, having molecular masses of 120, 65, and 40 kDa were found in different proportions in all nuclear subfractions. A calmodulin-dependent inhibition of protein phosphorylation in the S1 fraction was discovered. Purification attempts on the calmodulin-binding proteins of the S1 subfraction by calmodulin affinity chromatography yielded four major polypeptides with apparent molecular masses of about 41, 46, and 120 (two products) kDa. These polypeptides retained the ability to inhibit protein phosphorylation but not the sensitivity to calmodulin.  相似文献   

3.
In response to a differentiation factor (G-CSF) the myelomonocytic leukemia cell line (WEHI-3B(D+) differentiates to form mature macrophages and neutrophils. The effect of G-CSF on WEHI-3B(D+) differentiation was augmented by low concentrations (5 ng/ml) of actinomycin D. Quantitative binding of an antineutrophil serum was used to segregate the differentiated cells from the leukemic blast cells. Molecular markers of later myeloid differentiation were detected in myelocytes and macrophages purified from differentiating WEHI-3B(D+) cells. To study the initial molecular processes associated with the initiation of WEHI-3B(D+) cells to differentiation, the protein changes were analyzed using gel electrophoresis. Quantitative analysis of the fluorographs from the two-dimensional (2D) electrophorograms of the 35S-labeled proteins revealed major changes in the biosynthetic rates for 16 proteins within 5 hr: The biosynthesis of six proteins was increased and another ten proteins were synthesized at a reduced rate. Two of the proteins (17K and 36K daltons) were located in the nucleus. Pulse-chase experiments indicated that protein turnover for these proteins was rapid but the degradation of four proteins was suppressed. At least six of the proteins (16K to 120K daltons) were acidic and were associated with the cytoplasm. Electrophoretic analysis of the 35S-labeled proteins indicated that a 35K protein induced by G-CSF was found in high abundance only in purified cells of intermediate differentiation (eg, myelocytes). Other proteins (eg, a very high molecular weight protein, and a 16K dalton protein) were obviously late markers of differentiated neutrophils or macrophages.  相似文献   

4.
Rabbit articular chondrocytes were incubated with recombinant transforming-growth-factor-beta 1 (rhTGF-beta 1) and its effect on newly synthesized proteoglycan measured. rhTGF-beta 1 stimulated proteoglycan synthesis at a concentration as low as 5 ng/ml without further increases in radiosulfate incorporation up to 50 ng/ml. The quantitative increase in radiosulfate incorporation in rh-TGF-beta 1-treated chondrocytes was greater in the cell-associated culture compartment than in the medium compartment. rhTGF-beta 1 promoted an increased proteoglycan retention in the cell-associated compartment as evidenced by an increase in the t1/2 of retention from 8 h to 11 h. Specific enhanced synthesis of [35S]-methionine-labeled core proteins was seen in rh-TGF-beta 1-treated chondrocytes. rh-TGF-beta 1 increased the synthesis of the 2 core proteins derived from hydrodynamically large proteoglycans. They possessed apparent molecular weights of greater than 480 kD and 390 kD after 3-5% acrylamide gel electrophoresis. A compartmental analysis revealed that the cell-associated culture compartment contained only the larger of the 2 core proteins derived from large proteoglycans. Two other core proteins with apparent molecular weights 52 kD and 46 kD were also stimulated by rhTGF-beta 1. These results indicated that TGF-beta probably plays a significant role in stimulating proteoglycan core protein synthesis in articular chondrocytes and therefore may be an important growth factor in the restoration of cartilage extracellular matrix after injury.  相似文献   

5.
Three proteins, BSP-A1/-A2, BSP-A3, and BSP-30 kilodaltons (collectively called BSP proteins), represent the major proteins of bovine seminal plasma (BSP). At ejaculation, these proteins bind to the sperm surface and induce molecular changes in the plasma membrane that are deemed to be essential for sperm capacitation. The present study was carried out to develop specific radioimmunoassays (RIAs) for the quantification of each of the BSP proteins in BSP and sperm. RIAs were developed using polyclonal antibodies raised in rabbits against each BSP protein. The purified and iodinated BSP proteins were used as standard and tracer, respectively. The RIAs that were developed were shown to be specific for each protein and the cross-reactivity toward various antigens was negligible (<2%). The average sensitivity limit was 5 ng/ml of sample for BSP-A1/-A2 and BSP-A3, and 40 ng/ml of sample for BSP-30-kDa. The concentration of BSP proteins was determined by analyzing the RIA data with spline function. BSP proteins represented 40% to 57% of seminal plasma total protein (25% to 47% of BSP-A1/-A2, 3% to 5% of BSP-A3, and 3% to 7% of BSP-30 kDa) and 4% to 6% of sperm total protein (2.5% to 4% of BSP-A1/-A2, 0.4% to 0.9% of BSP-A3, and 0.5% to 1% of BSP-30-kDa). We also determined the concentration of BSP proteins that were sperm-bound after semen cryopreservation in Tris-egg yolk-glycerol extender. A significant decrease (70%-80%) in sperm-bound BSP proteins was noted after cryopreservation. The availability of reliable RIA procedures should aid in the further understanding of the role of BSP proteins in sperm function as well as their effect on sperm cryopreservation.  相似文献   

6.
M Issandou  J M Darbon 《FEBS letters》1991,281(1-2):196-200
The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) is shown to be mitogenic for quiescent glomerular mesangial cells cultured in serum-free conditions. TPA induces DNA synthesis measured by [3H]thymidine incorporation in a dose-dependent manner with an ED50 of 7 ng/ml and an optimal response for 50 ng/ml. The phorbol ester action is potentiated by insulin with an increase of the maximal effect from 232 +/- 15% for TPA alone to 393 +/- 96% for TPA plus insulin. Down-regulation of protein kinase C by prolonged exposure to TPA completely abolishes the mitogenic effect of the phorbol ester. Using a highly resolutive 2D electrophoresis, we have shown that TPA is able to stimulate the phosphorylation of 2 major proteins of Mr 80,000, pl 4.5 (termed 80K) and Mr 28,000, pI 5.7-5.9 (termed 28K). The 80K protein phosphorylation is time- and dose-dependent with an ED50 of 8 ng/ml TPA. Exposure of mesangial cells to heat-shock induces synthesis of a 28K protein among a set of other proteins suggesting that the 28K protein kinase C substrate belongs to the family of low molecular mass stress proteins. Mitogenic concentrations of TPA and phorbol 12,13-dibutyrate inhibit [125 I]epidermal growth factor binding and stimulate the 80K protein phosphorylation with the same order of potency. The inactive tumor-promoter 4 alpha-phorbol was found to be ineffective both on these 2 parameters and on DNA synthesis. These results suggest a positive role for protein kinase C on mesangial cell proliferation and indicate the existence in this cell line of 2 major protein kinase C substrates.  相似文献   

7.
Blood plasma is the most complex human-derived proteome, containing other tissue proteomes as subsets. This proteome has only been partially characterized due to the extremely wide dynamic range of the plasma proteins of more than ten orders of magnitude. Thus, the reduction in sample complexity prior to mass spectrometric analysis is particularly important and alternative separation methodologies are required to more effectively mine the lower abundant plasma proteins. Here, we demonstrated a novel separation approach using 2-D free-flow electrophoresis (FFE) separating proteins and peptides in solution according to their pI prior to LC-MS/MS. We used the combination of sequential protein and peptide separation by first separating the plasma proteins into specific FFE fractions. Tryptic digests of the separated proteins were generated and subsequently separated using FFE. The protein separation medium was optimized to segregate albumin into specific fractions containing only few other proteins. An optimization of throughput for the protein separation reduced the separation time of 1 mL of plasma to approximately 3 h providing sufficient material for digestion and the subsequent peptide separation. Our approach revealed low-abundant proteins (e.g., L-selectin at 17 ng/mL and vascular endothelial-cadherin precursor at 30 ng/mL) and several tissue leakage products, thus providing a powerful orthogonal separation step in the proteomics workflow.  相似文献   

8.
To identify proteins that interact with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, we carried out coimmunoprecipitation analyses on detergent-solubilized rat forebrain membranes. Membranes were solubilized with Triton X-100, and immunoprecipitation was done using subunit-specific antibodies to GluR1, GluR2/3, and GluR4 attached to protein Aagarose. Proteins bound to the antibodies were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by silver staining and western blotting. With solubilization in low ionic strength buffer, several coimmunoprecipitating proteins, with Mr = 17,000-100,000, were identified in silver-stained gels. Western blots were then probed with antibodies to a series of candidate proteins that were chosen based on the molecular masses of the copurifying proteins. Two of these were identified as the molecular chaperones calnexin (90 kDa) and the immunoglobulin binding protein (BiP; 78 kDa). Immunoprecipitation with antibodies to calnexin and BiP demonstrated that glycosylated AMPA receptor subunits were associated. The relationship between AMPA receptors and calnexin and BiP was further studied with immunocytochemistry of the hippocampus. Both calnexin and BiP labeling was present not only in the cell body but also in dendrites of hippocampal pyramidal neurons, where double-label immunofluorescence also showed the presence of AMPA receptor subunits.  相似文献   

9.
Suspensions of aspirin-treated, 32P-prelabelled, washed platelets containing ADP scavengers in the buffer were activated with either phorbol 12,13-dibutyrate (PdBu) or the Ca2+ ionophore A23187. High concentrations of PdBu (greater than or equal to 50 nM) induced platelet aggregation and the protein kinase C (PKC)-dependent phosphorylation of proteins with molecular masses of 20 (myosin light chain), 38 and 47 kDa. No increase in cytosolic Ca2+ was observed. Preincubation of platelets with prostacyclin (PGI2) stimulated the phosphorylation of a 50 kDa protein [EC50 (concn. giving half-maximal effect) 0.6 ng of PGI2/ml] and completely abolished platelet aggregation [ID50 (concn. giving 50% inhibition) 0.5 ng of PGI2/ml] induced by PdBu, but had no effect on phosphorylation of the 20, 38 and 47 kDa proteins elicited by PdBu. The Ca2+ ionophore A23187 induced shape change, aggregation, mobilization of Ca2+, rapid phosphorylation of the 20 and 47 kDa proteins and the formation of phosphatidic acid. Preincubation of platelets with PGI2 (500 ng/ml) inhibited platelet aggregation, but not shape change, Ca2+ mobilization or the phosphorylation of the 20 and 47 kDa proteins induced by Ca2+ ionophore A23187. The results indicate that PGI2, through activation of cyclic AMP-dependent kinases, inhibits platelet aggregation at steps distal to protein phosphorylation evoked by protein kinase C and Ca2+-dependent protein kinases.  相似文献   

10.
Molecular weight standard proteins, mouse IgG as well as several antigens cross-reacting with the carcinoembryonic antigen (CEA), were biotin labeled, submitted to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and transferred to nitrocellulose. The bound proteins were revealed by the use of avidin-peroxidase conjugates and a suitable substrate. The ratio of N-hydrosuccinimido biotin (NHSB) to protein yielding the lowest detection limit was determined. At an optimal NHSB/protein ratio, 0.33 ng of IgG heavy chains and 0.17 ng of IgG light chains could be visualized. With the exception of human albumin and ovalbumin, the increase in apparent molecular weight after biotin labeling was less than 10% for the proteins tested. The method has proven to be a valuable addition to Western blots performed with CEA-related antigens and monoclonal anti-CEA antibodies.  相似文献   

11.
Biochemical and immunological properties of biosynthetically radiolabeled phosphatidylcholine-(PC-) binding proteins were investigated. The PC-binding proteins were extracted from the detergent lysate of biosynthetically radiolabeled P388D1 cells by affinity chromatography on PC-Sepharose and filtered through a Sephadex G-100 gel column in the presence of 6 M urea. Isoelectric focusing of the gel-filtered materials in the presence of 6 M urea revealed the presence of a major protein component of pIe of 5.8 and minor heterogeneous cellular proteins. The yield of the electrofocused PC-binding proteins based on protein determination by Lowry's method ranged from 0.7 to 4 mg per 10(9) cells. The purified PC-binding proteins appeared to be tightly associated with Triton X-100 and phospholipids in the weight ratio of 0.57 and 0.05 g/g of proteins, respectively. The majority of lipids that could be extracted from the PC-binding proteins by chloroform/methanol (2:1 v/v) are free fatty acids, whereas lipids extracted from Pronase-treated PC-binding proteins contained phosphatidylethanolamine. By amino acid analysis, the purified PC-binding proteins were found to consist of a minimum of 417 amino acid residues, suggesting a minimum molecular weight of about 38 000 for this protein. Results of radiolabeling experiments with [3H]glucosamine and amino acid analysis both showed the presence of a mole of glucosamine per a mole of the PC-binding proteins, suggesting their glycoprotein nature. About 40% of the purified PC-binding proteins coprecipitated with monoclonal anti-Fc gamma 2bR antibody (2.4G2) in detergent-containing buffer, whereas only 6% of the isolated IgG binding proteins reacted with this antibody.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The process of protein folding in the cell is now known to depend on the action of other proteins. These proteins include molecular chaperones, Which interact non-covalently with proteins as they fold and improve the final yields of active protein in the cell. The precise mechanism by which molecular chaperones act is obscure. Experiments reported recently(1) show that for one molecular chaperone (Cpn60, typified by the E. coli protein GroEL), the folding reaction is driven by cycles of binding and release of the co-chaperone Cpn10 (known as GroES in E. coli). These alternate with binding and release of the unfolded protein substrate. These cycles come about because of the opposite effects of Cpn10 and unfolded protein on the Cpn60 complex: the former stabilises the ADP-bound state of Cpn60, whereas the latter stimulates ADP-ATP exchange. This model proposes that the substrate protein goes through multiple cycles of binding and release, and is released into the cavity of the Cpn60 complex where it can undergo folding without interacting with other nearby folding intermediates. This is consistent with the ability of Cpn60 proteins to enhance folding by blocking pathways to aggregation.  相似文献   

13.
ABSTRACT: BACKGROUND: Regular exercises are commonly described as an important factor in health improvement, being directly related to contractile force development in cardiac cells.In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG) and three training groups (TG's), with low, moderate and high intensity of exercises.In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG) and three training groups (TG's), with low, moderate and high intensity of exercises. RESULTS: Findings here reported demonstrated clear morphologic alterations, significant cellular injury and increased energy supplies at high exercise intensities. alpha-MyHC, as well proteins associated with mitochondrial oxidative metabolism were shown to be improved. alpha-MyHC expression increase 1.2 fold in high intensity training group when compared with control group. alpha-MyHC was also evaluated by real-time PCR showing a clear expression correlation with protein synthesis data increase in 8.48 fold in high intensity training group. Other myofibrillar protein, troponin , appear only in high intensity group, corroborating the cellular injury data. High molecular masses proteins such as MRS2 and NADH dehydrogenase, involved in metabolic pathways also demonstrate increase expression, respectily 1.5 and 1.3 fold, in response to high intensity exercise. CONCLUSIONS: High intensity exercise demonstrated an increase expression in some high molecular masses myofibrilar proteins, alpha-MyHC and troponin. Furthermore this intensity also lead a significant increase of other high molecular masses proteins such as MRS2 and NADH dehydrogenase in comparison to low and moderate intensities. However, high intensity exercise also represented a significant degree of cellular injury, when compared with the individuals submitted to low and moderate intensities.  相似文献   

14.
The usefulness of three sensitive dyes, AuroDye, FerriDye, and India ink, for the quantification of proteins and peptides bound to nitrocellulose paper has been assessed. In general, the staining intensity varies linearly with the logarithm of protein concentrations. The detection limit of small peptides (Mr less than 5000) is higher than that of large peptides and proteins, but the sensitivity is independent of the molecular weight. Oligopeptides of four or less amino acids either stain with very high detection limits or do not stain at all. The detection limit of proteins stained by AuroDye is approximately 1 ng, and in a number of cases even lower. The useful range for quantification of proteins extends to around 100 ng. The FerriDye and India ink staining methods are less sensitive and can be used to quantify proteins over a wide nanogram range. Among the methods tested, the India ink staining method has the highest protein to protein variation in sensitivity.  相似文献   

15.
SNF1-related protein kinases 2 (SnRK2s) are plant-specific enzymes involved in environmental stress signaling and abscisic acid-regulated plant development. Here, we report that SnRK2s interact with and are regulated by a plant-specific calcium-binding protein. We screened a Nicotiana plumbaginifolia Matchmaker cDNA library for proteins interacting with Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK), a member of the SnRK2 family. A putative EF-hand calcium-binding protein was identified as a molecular partner of NtOSAK. To determine whether the identified protein interacts only with NtOSAK or with other SnRK2s as well, we studied the interaction of an Arabidopsis thaliana orthologue of the calcium-binding protein with selected Arabidopsis SnRK2s using a two-hybrid system. All kinases studied interacted with the protein. The interactions were confirmed by bimolecular fluorescence complementation assay, indicating that the binding occurs in planta, exclusively in the cytoplasm. Calcium binding properties of the protein were analyzed by fluorescence spectroscopy using Tb(3+) as a spectroscopic probe. The calcium binding constant, determined by the protein fluorescence titration, was 2.5 ± 0.9 × 10(5) M(-1). The CD spectrum indicated that the secondary structure of the protein changes significantly in the presence of calcium, suggesting its possible function as a calcium sensor in plant cells. In vitro studies revealed that the activity of SnRK2 kinases analyzed is inhibited in a calcium-dependent manner by the identified calcium sensor, which we named SCS (SnRK2-interacting calcium sensor). Our results suggest that SCS is involved in response to abscisic acid during seed germination most probably by negative regulation of SnRK2s activity.  相似文献   

16.
利用蛋白质工程技术对Cry蛋白进行改造是创制新Bt蛋白的主要途径之一。Cry蛋白改造涉及结构域交换、定点突变、蛋白截断等多种方法。利用结构域交换、密码子优化方法对Bt基因进行合理化设计改造,获得新型Bt蛋白编码基因cryNAc,进一步利用农杆菌介导法转入吉林省水稻主栽品种吉粳88中,并开展了转基因后代的分子鉴定和抗虫性功能评价相关研究工作。分子检测结果表明cryNAc基因成功整合进入吉粳88基因组中,且稳定表达;CryNAc蛋白在各个发育时期根、茎、叶中的表达存在显著差异,灌浆期水稻叶片中蛋白表达量最高(2 959.73 ng/g),分蘖期茎中蛋白表达量最低(150.9 ng/g);田间接虫试验表明cryNAc转基因水稻抗二化螟的能力显著。上述结果表明cryNAc基因可作为新的cry基因用于作物遗传改良。  相似文献   

17.
Free-flow electrophoresis (FFE) and rapid (6 min) RP-HPLC was used to fractionate human citrate-treated plasma. Prior to analysis, the six most abundant proteins in plasma were removed by immunoaffinity chromatography; both depleted plasma and the fraction containing the six abundant proteins depleted were taken for MS-based analysis. Fractionated proteins were digested with trypsin and the generated peptides were subjected to MS-based peptide sequencing. To date, 78 plasma proteins have been unambiguously identified by manual validation from 16% (15/96 FFE total fractions) of the collected FFE pools; 55 identifications were based on > or = 2 tryptic peptides and 23 using single peptides. The molecular weight range of proteins and peptides isolated by this method ranged from approximately 190 K (e.g., Complement C3 and C4) to approximately 4-6 K (e.g., CRISPP and Apolipoprotein C1). This FFE/RP-HPLC approach reveals low-abundance proteins and peptides (e.g., L-Selectin approximately 17 ng/mL and the cancer-associated SCM-recognition, immunodefense suppression, and serine protease protection peptide (CRISPP) at approximately 0.5-1 ng/mL), where CRISPP was found in association with alpha-1-antitrypsin as a non-covalent complex, in the fraction containing the depleted high-abundance proteins. In contrast to shotgun proteomic approaches, the FFE/RP-HPLC method described here allows the identification of potentially interesting peptides to be traced back to their protein of origin, and for the first time, has confirmed the "protein sponge" hypothesis where the 35 residue CRISPP polypeptide is non-covalently complexed with the major circulating plasma protein alpha-1-antitrypsin.  相似文献   

18.
Apoptosis-linked gene 2 (ALG-2) is a member of the family of Ca(2+)-binding proteins with penta-EF-hand and is essential for the execution of apoptosis by various signals including Fas activation. We studied the regulation of ALG-2 during Fas-mediated apoptosis in Jurkat cells. The 22-kDa ALG-2 protein is cleaved and becomes a 19-kDa protein after Fas activation. The appearance of 19-kDa ALG-2 protein increases for 4 h after treatment with 200 ng/ml of anti-Fas Ab treatment and gradually degrades afterward. Confocal microscopic analysis showed that ALG-2 translocated from the plasma membrane to the cytosol during Fas-mediated apoptosis. Therefore, we examined if ALG-2 interacts with Fas. The protein-protein interaction of ALG-2 with Fas was demonstrated using yeast two-hybrid assays as well as in vitro GST pull-down assay. Endogenous ALG-2 was immunoprecipitated with anti-Fas Ab in Jurkat cells without Fas activation. However, the endogenous ALG-2 was no longer immunoprecipitated with anti-Fas Ab 2 h after anti-Fas Ab treatment. This study, for the first time, presents a direct molecular connection of ALG-2 to apoptosis by its direct interaction with Fas, and enlists ALG-2 as a new member of posttranslationally modified proteins during Fas-mediated apoptotic process.  相似文献   

19.
20.
Vitellogenin (Vg) and choriogenin (Chg) are sensitive biomarkers for testing endocrine disruption in fish. Therefore, we have developed immunoassays for Vg and Chg in the Indian freshwater murrel, Channa punctatus. Vg is a known precursor of egg-yolk proteins, whereas Chg contributes to the formation of egg-envelope. Vg and Chg were induced in male murrel by administration of estradiol-17beta. Chg had an apparent native molecular mass of 180 kDa. It consisted of a single peptide with a molecular mass of 110 kDa, whereas native Vg protein (530 kDa) contained 175 kDa peptide. Highly specific polyclonal antibodies against purified plasma proteins, Vg and Chg, were employed for developing competitive enzyme linked immunosorbent assays (ELISAs). The sensitivity of Vg assay was 3.9 ng/mL (working range 15-500 ng/mL) and of Chg assay was 1.56 ng/mL (working range 6-200 ng/mL). The inter- and intra-assay variations were well within acceptable limits. The two antisera did not cross-react with male plasma proteins. Antiserum to Vg did not cross-react with Chg. Similarly, antiserum to Chg showed no correlation with Vg. Further, immunofluorescence and Western blotting confirmed the specificity of Vg and Chg antisera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号