首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This laboratory has used a composite tissue allograft model as a vehicle for studies on a new type of bone marrow transplant, the vascularized bone marrow transplant. The model consists of a rat hind limb transplant that incorporates integumentary musculoskeletal, and lymphopoietic tissues. These transplants, in comparison with conventional marrow transplants, have the advantage of providing a syngeneic microenvironment and immediate engraftment of both mature and progenitor hemopoietic cells at the time of transplantation. The characteristics of graft-versus-host disease were studied in this model. Lewis X Brown Norway F1 (LBN RT-1(1+n)) rats received hind limbs from Lewis (LEW RT-1(1)) donors (n = 19). Animals were observed daily for signs of graft-versus-host disease. Necropsies were performed. A minority of animals developed lethal disease (7 of 19 recipients) and demonstrated cachexia with concomitant histopathologic changes of the disease. Acute and chronic groups emerged with distinct clinical courses, which are similar to other models of this disease. Recipients of vascularized bone marrow transplants (limb transplants) showed clinical and histopathologic changes of the disease. The transplants may be used as a model of graft-versus-host disease in humans. Most interestingly, the transplant has a lower incidence of disease compared with other methods of bone marrow transplantation and represents an alternative to conventional bone marrow transplantation, which deserves further exploration. It may be possible to develop a new technique for bone marrow transplantation based on this surgical approach. It is proposed that the transfer of vascularized blocks of bone/marrow into prospective recipients as opposed to cellular bone marrow transplants may be preferable.  相似文献   

2.
A new approach to avoid typical complications from bone marrow transplantation into MHC different mice was studied. Rat monoclonal anti-Thy-1 antibodies of the IgG 2b isotype were identified, which inhibit T lymphocytes in vivo so that transplanted donor T cells as well as residual T cells of the conditioned marrow recipient were suppressed. A single injection of these antibodies after irradiation and before marrow transplantation did not only prevent graft-versus-host mortality but suppressed also host-versus-graft reactivity so that the radiation dose necessary for engraftment of donor cells differing in H-2, IA (both haplotypes) major histocompatibility antigens could be reduced to 6.0 Gy. In addition an anti-T leukemic cell effect from the injected monoclonal T cell antibodies was observed.  相似文献   

3.
Total lymphoid irradiation (TLI), originally developed as a non-myeloablative treatment for Hodgkin's disease, has been adapted for the induction of immune tolerance to organ allografts in rodents, dogs and non-human primates. Moreover, pretransplantation TLI has been used in prospective studies to demonstrate the feasibility of the induction of tolerance to cadaveric kidney allografts in humans. Two types of tolerance, chimeric and non-chimeric, develop after TLI treatment of hosts depending on whether donor bone marrow cells are transplanted along with the organ allograft. An advantageous feature of TLI for combined marrow and organ transplantation is the protection against graft-versus-host disease (GVHD) and facilitation of chimerism afforded by the predominance of CD4+ NK1.1(+) -like T cells in the irradiated host lymphoid tissues. Recently, a completely post-transplantation TLI regimen has been developed resulting in stable mixed chimerism and tolerance that is enhanced by a brief course of cyclosporine. The post-transplantation protocol is suitable for clinical cadaveric kidney transplantation. This review summarizes the evolution of TLI protocols for eventual application to human clinical transplantation and discusses the mechanisms involved in the induction of mixed chimerism and protection from GVHD.  相似文献   

4.
A 23-year-old woman gravely ill with Pseudomonas septicemia secondary to presumed drug-induced bone marrow aplasia received marrow transplantation from two male HL-A identical sibling donors. She had a successful engraftment with excellent but temporary clinical improvement. Subsequently she succumbed to graft-versus-host disease manifested by Pseudomonas and Candida albicans septicemia, cytomegalovirus pneumonitis, three phases of dermatitis, nausea, vomiting, dysphagia, diarrhea, fever, edema and bone pain, with gradual but complete graft suppression by the 74th day after the transplantation. A second marrow transplant on the 70th day was unsuccessful.  相似文献   

5.
Mesenchymal stromal/stem cells (MSC) of bone marrow (BM) origin not only provide the supportive microenvironmental niche for hematopoietic stem cells (HSC) but are capable of differentiating into various cell types of mesenchymal origin, such as bone, fat and cartilage. In vitro and in vivo data suggest that MSC have low inherent immunogenicity, modulate/suppress immunologic responses through interactions with immune cells, and home to damaged tissues to participate in regeneration processes through their diverse biologic properties. MSC derived from BM are being evaluated for a wide range of clinical applications, including disorders as diverse as myocardial infarction and newly diagnosed diabetes mellitus type 1. However, their use in HSC transplantation, either for enhancement of hematopoietic engraftment or for treatment/prevention of graft-versus-host disease, is far ahead of other indications. Ease of isolation and ex vivo expansion of MSC, combined with their intriguing immunomodulatory properties and their impressive record of safety in a wide variety of clinical trials, make these cells promising candidates for further investigation.  相似文献   

6.
The critical role of antigen-specific T cells in cancer immunotherapy has been amply demonstrated. Though success of clinical trials still remains far behind expectations, the continuous improvement in our understanding of the biology of the immune response will provide the basis for optimized cancer vaccines. This review focuses on active therapeutic vaccination after allogeneic bone marrow cell transplantation with nonmyeloablative conditioning. This approach could provide a major breakthrough in cancer immunotherapy, particularly of elderly patients. The senescent immune system, mainly the T-cell compartment, displays reduced responsiveness, and this has to be overcome if therapeutic vaccination is to be of benefit for the patient. Although the defects are quite well characterized, the inducing factors and ways to overcome them are still to be explored in more detail. Many questions also remain to be answered in the field of allogeneic bone marrow transplantation after nonmyeloablative conditioning to optimize this therapeutic setting in cancer immunotherapy. Current considerations to improve engraftment and to reduce graft-versus-host disease while strengthening graft-versus-tumor reactivity will be briefly reviewed. Finally, I will discuss whether tumor-reactive T cells can be naturally maintained during the process of T-cell maturation in the allogeneic host. Provided this hypothesis can be substantiated, a T-cell vaccine will meet a pool of virgin T cells in the allogeneically reconstituted host, which are tolerant toward the host but not anergized toward tumor antigens presented by MHC molecules of the host. Inevitably, the problem of the aged immune system would be circumvented.Abbreviations APC antigen-presenting cell - BMCT bone marrow cell transplantation - CTL cytotoxic T cell - DC dendritic cell - GvHD graft-versus-host disease - GvT graft versus tumor - HvG host-versus-graft - LAK lymphokine-activated killer cell - mAB monoclonal antibody - MHC major histocompatibility complex - TCR T-cell receptor - TH helper T cell - TIL tumor-infiltrating leukocyteM. Zöller was supported by the Tumorzentrum Heidelberg/Mannheim, the Mildred-Scheel-Stiftung für Krebsforschung, the José Carreras Leukemia Foundation, and a German-Israel Joint Program.  相似文献   

7.

Background

Heparanase, endoglycosidase that cleaves heparan sulfate side chains of heparan sulfate proteoglycans, plays important roles in cancer metastasis, angiogenesis and inflammation.

Design and Methods

Applying a mouse model of bone marrow transplantation and transgenic mice over-expressing heparanase, we evaluated the effect of heparanase on the engraftment process and the development of graft-versus-host disease.

Results

Analysis of F1 mice undergoing allogeneic bone marrow transplantation from C57BL/6 mice demonstrated a better and faster engraftment in mice receiving cells from donors that were pretreated with heparanase. Moreover, heparanase treated recipient F1 mice showed only a mild appearance of graft-versus-host disease and died 27 days post transplantation while control mice rapidly developed signs of graft-versus-host disease (i.e., weight loss, hair loss, diarrhea) and died after 12 days, indicating a protective effect of heparanase against graft-versus-host disease. Similarly, we applied transgenic mice over-expressing heparanase in most tissues as the recipients of BMT from C57BL/6 mice. Monitoring clinical parameters of graft-versus-host disease, the transgenic mice showed 100% survival on day 40 post transplantation, compared to only 50% survival on day 14, in the control group. In vitro and in vivo studies revealed that heparanase inhibited T cell function and activation through modulation of their cytokine repertoire, indicated by a marked increase in the levels of Interleukin-4, Interleukin-6 and Interleukin-10, and a parallel decrease in Interleukin-12, tumor necrosis factor-alfa and interferon-gamma. Using point mutated inactive enzyme, we found that the shift in cytokine profile was independent of heparanase enzymatic activity.

Conclusions

Our results indicate a significant role of heparanase in bone marrow transplantation biology, facilitating engraftment and suppressing graft-versus-host disease, apparently through an effect on T cell activation and cytokine production pattern.  相似文献   

8.
《Cytotherapy》2014,16(1):84-89
Background aimsAdvantages associated with the use of cord blood (CB) transplantation include the availability of cryopreserved units, ethnic diversity and lower incidence of graft-versus-host disease compared with bone marrow or mobilized peripheral blood. However, poor engraftment remains a major obstacle. We and others have found that ex vivo fucosylation can enhance engraftment in murine models, and now ex vivo treatment of CB with fucosyltransferase (FT) VI before transplantation is under clinical evaluation (NCT01471067). However, FTVII appears to be more relevant to hematopoietic cells and may alter acceptor substrate diversity. The present study compared the ability of FTVI and FTVII to improve the rapidity, magnitude, multi-lineage and multi-tissue engraftment of human CB hematopoietic stem and progenitor cells (HSPCs) in vivo.MethodsCD34-selected CB HSPCs were treated with recombinant FTVI, FTVII or mock control and then injected into immunodeficient mice and monitored for multi-lineage and multi-tissue engraftment.ResultsBoth FTVI and FTVII fucosylated CB CD34+ cells in vitro, and both led to enhanced rates and magnitudes of engraftment compared with untreated CB CD34+ cells in vivo. Engraftment after treatment with either FT was robust at multiple time points and in multiple tissues with similar multi-lineage potential. In contrast, only FTVII was able to fucosylate T and B lymphocytes.ConclusionsAlthough FTVI and FTVII were found to be similarly able to fucosylate and enhance the engraftment of CB CD34+ cells, differences in their ability to fucosylate lymphocytes may modulate graft-versus-tumor or graft-versus-host effects and may allow further optimization of CB transplantation.  相似文献   

9.
Mixed hemopoietic chimerism has the potential to correct genetic hemological diseases (sickle cell anemia, thalassemia) and eliminate chronic immunosuppressive therapy following organ transplantation. To date, most strategies require either recipient conditioning (gamma-irradiation, depletion of the peripheral immune system) or administration of "mega" doses of bone marrow to facilitate reliable engraftment. Although encouraging, many issues remain that may restrict or prevent clinical application of such strategies. We describe an alternative, nonirradiation based strategy using a single dose of busulfan, costimulation blockade, and T cell-depleted donor bone marrow, which promotes titratable macrochimerism and a reshaping of the T cell repertoire. Chimeras exhibit robust donor-specific tolerance, evidenced by acceptance of fully allogeneic skin grafts and failure to generate donor-specific proliferative responses in an in vivo graft-versus-host disease model of alloreactivity. In this model, donor cell infusion and costimulation blockade without busulfan were insufficient for tolerance induction as donor-specific IFN-gamma-producing T cells re-emerged and skin grafts were rejected at approximately 100 days. When applied to a murine beta-thalassemia model, this approach allows for the normalization of hemologic parameters and replacement of the diseased red cell compartment. Such a protocol may allow for clinical application of mixed chimerism strategies in patients with end-stage organ disease or hemoglobinopathies.  相似文献   

10.
Umbilical cord blood(UCB) is a valuable source of hematopoietic stem cells(HSCs) and potential alternative for bone marrow transplantation for patients who lack human leukocyte antigen(HLA)-matched donors. The main practical advantages of UCB over other HSC sources are the immediate availability, lower incidence of graft-versus-host disease, minimal risk to the donor, and lower requirement for HLA compatibility. However, the use of UCB is limited by delayed engraftment and poor immune reconstitution, leading to a high rate of infection-related mortality. Therefore, severe infectious complications, especially due to viral pathogens remain the leading cause of morbidity and mortality during the post-UCB transplantation(UCBT) period. In this context, careful screening and excluding the viral-contaminated UCB units might be an effective policy to reduce the rate of UCBT-related infection and mortality. Taken together,complete prevention of the transmission of donor-derived viral pathogens in stem cell transplantation is not possible. However, having the knowledge of the transmission route and prevalence of viruses will improve the safety of transplantation. To the best of our knowledge, there are few studies that focused on the risk of virus transmission through the UCB transplant compared to other HSC sources. This review summarizes the general aspects concerning the prevalence, characteristics, and risk factors of viral infections with a focus on the impact of viral pathogens on cord blood transplantation safety.  相似文献   

11.
Establishing mixed chimerism is a promising approach for inducing donor-specific transplant tolerance. The establishment and maintenance of mixed chimerism may enable long-term engraftment of organ transplants while minimizing the use of immunosuppressants. Several protocols for inducing mixed chimerism have been reported; however, the exact mechanism underlying the development of immune tolerance remains to be elucidated. Therefore, understanding the kinetics of engraftment during early post-transplant period may provide insight into establishing long-term mixed chimerism and permanent transplant tolerance. In this study, we intentionally induced allogeneic mixed chimerism using a nonmyeloablative regimen by host natural killer (NK) cell depletion and T cell-depleted bone marrow (BM) grafts in a major histocompatibility complex (MHC)-mismatched murine model and analyzed the kinetics of donor (C57BL/6) and recipient (BALB/c) engraftment in the weeks following transplantation. Donor BM cells were well engrafted and stabilized without graft-versus-host disease (GVHD) as early as one week post-bone marrow transplantation (BMT). Donor-derived thymic T cells were reconstituted four weeks after BMT; however, the emergence of newly developed T cells was more obvious at the periphery as early as two weeks after BMT. Also, the emergence and changes in ratio of recipient- and donor-derived NKT cells and antigen presenting cells (APCs) including dendritic cells (DCs) and B cells were noted after BMT. Here, we report a longitudinal analysis of the development of donor- and recipient-originated hematopoietic cells in various lymphatic tissues of intentionally induced mixed chimerism mouse model during early post-transplant period. Through the understanding of immune reconstitution at early time points after nonmyeloablative BMT, we suggest guidelines on intentionally inducing durable mixed chimerism.  相似文献   

12.
Allogeneic bone marrow transplantation (in immunocompetent adults) has always required cytoreductive treatment of recipients with irradiation or cytotoxic drugs to achieve lasting engraftment at levels detectable by non-PCR-based techniques ('macrochimerism' or 'mixed chimerism'). Only syngeneic marrow engraftment at such levels has been achieved in unconditioned hosts. This requirement for potentially toxic myelosuppressive host pre-conditioning has precluded the clinical use of allogeneic bone marrow transplantation for many indications other than malignancies, including tolerance induction. We demonstrate here that treatment of naive mice with a high dose of fully major histocompatibility complex-mismatched allogeneic bone marrow, followed by one injection each of monoclonal antibody against CD154 and cytotoxic T-lymphocyte antigen 4 immunoglobulin, resulted in multi-lineage hematopoietic macrochimerism (of about 15%) that persisted for up to 34 weeks. Long-term chimeras developed donor-specific tolerance (donor skin graft survival of more than 145 days) and demonstrated ongoing intrathymic deletion of donor-reactive T cells. A protocol of high-dose bone marrow transplantation and co-stimulatory blockade can thus achieve allogeneic bone marrow engraftment without cytoreduction or T-cell depletion of the host, and eliminates a principal barrier to the more widespread use of allogeneic bone marrow transplantation. Although efforts have been made to minimize host pre-treatment for allogeneic bone marrow transplantation for tolerance induction, so far none have succeeded in eliminating pre-treatment completely. Our demonstration that this can be achieved provides the rationale for a safe approach for inducing robust transplantation tolerance in large animals and humans.  相似文献   

13.
The clinical pathologic syndrome of graft-versus-host disease (GVHD) is usually a sequela of bone marrow transplantation. This disorder occurs as a result of recognition by engrafted donor-derived lymphocytes of "foreign" recipient transplantation antigens. GVHD may also result from engraftment of lymphocytes from other sources, including (1) transfusion of lymphocytes containing blood components, (2) transplacental maternal fetal transfusion, and (3) passive transfer of lymphocytes in solid organ transplantation. The recipients are usually severely immunodeficient and thus incapable of rejecting the transfused lymphocytes. This syndrome may, however, also develop in immunologically competent patients receiving blood products from individuals with histocompatibility antigens not recognized as foreign.  相似文献   

14.
Regulatory T cell (Treg) therapy for immune modulation is a promising therapeutic strategy for the treatment and prevention of autoimmune disease and graft-versus-host disease (GvHD) after bone marrow transplantation. However, Treg are heterogeneous and express a variety of chemokine receptor molecules. The optimal subpopulation of Treg for therapeutic use may vary according to the pathological target. Indeed, clinical trials of Treg for the prevention of GvHD where the skin is a major target of the anti-host response have employed Treg derived from a variety of different sources. We postulated that for the effective treatment of GvHD-related skin pathology, Treg must be able to migrate to skin in order to regulate local alloimmune responses efficiently. To test the hypothesis that different populations of Treg display distinct efficacy in vivo based on their expression of tissue-specific homing molecules, we evaluated the activity of human Treg derived from two disparate sources in a model of human skin transplantation. Treg were derived from adult blood or cord blood and expanded in vitro. While Treg from both sources displayed similar in vitro suppressive efficacy, they exhibited marked differences in the expression of skin homing molecules. Importantly, only adult-derived Treg were able to prevent alloimmune-mediated human skin destruction in vivo, by virtue of their improved migration to skin. The presence of Treg within the skin was sufficient to prevent its alloimmune-mediated destruction. Additionally, Treg expressing the skin homing cutaneous lymphocyte antigen (CLA) were more efficient at preventing skin destruction than their CLA-deficient counterparts. Our findings highlight the importance of the careful selection of an effective subpopulation of Treg for clinical use according to the pathology of interest.  相似文献   

15.
Thus, we can conclude that marrow transplantation has already influenced medical practice greatly. It has offered a treatment which often cures patients of more than 20 otherwise lethal diseases. The treatment so horrendously difficult and dangerous at first has already been greatly improved, simplified, and made much safer. The availability of a suitable donor has been much extended and real progress has been made in prevention and perhaps even in treatment of graft-versus-host disease. This has made possible the option of marrow transplantation for every patient in whom we think the treatment may be beneficial. The problem underlying many cases of interstitial pneumonia has been identified and patients are already benefitting clinically from this progress. Progress has also been made which promises antiviral therapy which could reduce, prevent, and ultimately eliminate the intercurrent virus infections which limit the applicability of marrow transplantation, especially for children with severe immunodeficiencies. I do not know how far this line of investigation can be taken. However, just as we have learned stepwise to use marrow transplants from matched siblings to treat many diseases, to use fetal liver in place of bone marrow, to employ matched relative donors when a matched sibling is not available, and, finally, even to use parental donors to achieve correction of SCID, we now have good reason to believe that, ultimately, we can use marrow transplantation without fear of GVHD to address many additional genetically determined and acquired diseases; certainly, for those diseases that involve any of the cells that are derived from bone marrow cells, and perhaps for those attributable even to cells of other organs and tissues, the functions of which are, in whole or in part, a consequence of interactions of marrow-derived cells and cells of ectodermal or endodermal origin, marrow transplantation may be useful. To us, the future of marrow transplantation as a major modality of treatment or prevention of many diseases, including hemoglobinopathesis, immunodeficiencies, hematologic abnormalities, abnormalities of function of marrow-derived cells, and even inborn errors of function of cells of organs and tissues not of marrow origin, seems bright, indeed. Further, with the capacity to introduce resistance genes against viruses and malignancies, autoimmune diseases, and diseases dependent on anomalies of immune response genes, marrow transplantation for many other diseases seems a more remote possibility.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Prompted by our recent finding that lymphokine-activated killer (LAK) cells mediate both veto and natural suppression, we tested the ability of adoptively transferred LAK cells to block two in vivo alloreactions which complicate bone marrow transplantation: resistance to transplanted allogeneic bone marrow cells, and lethal graft-vs-host disease. Adoptive transfer of either donor type B6D2 or recipient-type B6 lymphokine-activated bone marrow cells, cells found to have strong LAK activity, abrogated or inhibited the resistance of irradiated B6 mice to both B6D2 marrow and third party-unrelated C3H marrow as measured by CFU in spleen on day 7. The ability of lymphokine-activated bone marrow cells to abrogate allogeneic resistance was eliminated by C lysis depletion of cells expressing asialo-GM1, NK1.1, and, to a variable degree, Thy-1, but not by depletion of cells expressing Lyt-2, indicating that the responsible cells had a LAK cell phenotype. Similar findings were obtained by using splenic LAK cells generated by 3 to 7 days of culture with rIL-2. Demonstration that allogeneic resistance could be blocked by a cloned LAK cell line provided direct evidence that LAK cells inhibit allogeneic resistance. In addition to inhibiting allogeneic resistance, adoptively transferred recipient-type LAK cells prevented lethal graft-vs-host disease, and permitted long term engraftment of allogeneic marrow. Irradiation prevented LAK cell inhibition of both allogeneic resistance and lethal graft-vs-host disease. These findings suggest that adoptive immunotherapy with LAK cells may prove useful in preventing graft rejection and graft-versus-host disease in human bone marrow transplant recipients.  相似文献   

17.
Allogenic bone marrow transplantation was carried out on a 3 year old girl with Niemann-Pick disease type B. Successful engraftment was achieved, and nine months after the procedure there was definite clearing of the sphingomyelin from the liver and pronounced clearing from the bone marrow. Any patient with Niemann-Pick disease type B complicated by early or severe hepatic impairment should be considered for bone marrow transplantation.  相似文献   

18.
The lack of understanding of the interplay between hematopoietic stem cells (HSCs) and the immune system has severely hampered the stem cell research and practice of transplantation. Major problems for allogeneic transplantation include low levels of donor engraftment and high risks of graft-versus-host disease (GVHD). Transplantation of purified allogeneic HSCs diminishes the risk of GVHD but results in decreased engraftment. Here we show that ex?vivo expanded mouse HSCs efficiently overcame the major histocompatibility complex barrier and repopulated allogeneic-recipient mice. An 8-day expansion culture led to a 40-fold increase of the allograft ability of HSCs. Both increased numbers of HSCs and culture-induced elevation of expression of the immune inhibitor CD274 (B7-H1 or PD-L1) on the surface of HSCs contributed to the enhancement. Our study indicates the great potential of utilizing ex?vivo expanded HSCs for allogeneic transplantation and suggests that the immune privilege of HSCs can be modulated.  相似文献   

19.
Hematopoietic stem cells have been successfully employed for tolerance induction in a variety of rodent and large animal studies. However, clinical transplantation of fully allogeneic bone marrow or blood-borne stem cells is still associated with major obstacles, such as graft-versus-host disease or cytoreductive conditioning-related toxicity. Here we show that when rat embryonic stem cell-like cells of WKY origin are injected intraportally into fully MHC-mismatched DA rats, they engraft permanently (>150 days) without supplementary host conditioning. This deviation of a potentially alloreactive immune response sets the basis for long-term graft acceptance of second-set transplanted WKY cardiac allografts. Graft survival was strictly correlated with a state of mixed chimerism, which required functional thymic host competence. Our results provide a rationale for using preimplantation-stage stem cells as vehicles in gene therapy and for the induction of long-term graft acceptance.  相似文献   

20.
This paper reviews the role of the acute phase response and of cytokines in clinical bone marrow transplantation. Data are discussed from the literature and from the authors experience which show that measurement of C-reactive protein is a rather non-specific marker of tissue injury, but that it is elevated in graft-versus-host disease, and especially in infection. Cytokines are clearly implicated in several aspects of transplantation, and tumour necrosis factor in particular may be important. Although there are some data which associate high TNF levels with severe graft-versus-host disease, this association may not hold true in individual patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号