首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Short-time iodination of metal-free ovotransferrin indicated that the tyrosine groups involved in the iron-binding activity are indistinguishable from other structural tyrosines. Modification of a minimum of 14 tyrosine residues per molecule of protein was required to achieve a complete loss of metal-binding activity. In contrast, a maximum modification of 10 tyrosine residues in iron-ovotransferrin complex could be produced with no loss of iron-binding activity. The difference in the extent of modification of tyrosines, therefore, indicated the involvement of four tyrosines in the binding of two atoms of iron. A minimal modification of histidine residues was also found, which was limited to one residue per molecule of both ovotransferrin and its iron complex. The possible participation of two tryptophan residues in the iron-binding activity is also suggested in the present study.  相似文献   

2.
1. When iron-saturated hen ovotransferrin was treated with subtilisin the N-terminal half was digested at a faster rate than the C-terminal half, allowing the latter to be isolated as a single-chain fragment of mol.wt 35000. 2. In mildly acid conditions iron-ovotransferrin loses iron preferentially from its N-terminal binding site. Trypsin digestion of the resulting monoferric ovotransferrin also gave rise to a C-terminal fragment. 3. Comparison of the N-terminal fragment with the C-terminal fragments shows differences in composition, peptide 'maps', CNBr-cleavage patterns and antigenic structures. The C-terminal fragments carry the carbohydrate group of ovotransferrin. 4. Both N-terminal and C-terminal fragments donate their bound iron to rabbit reticulocytes.  相似文献   

3.
The iron-binding ability of apotransferrins is rapidly abolished in the reaction with periodate anions, which destroys 4 mol of tyrosine per mol of protein. Treatment of ovotransferrin with cyanogen bromide and tryptic digestion of the glycopeptide fragment demonstrated the existence of an intramolecular cross-link in the C-terminal domain of the oxidized protein. The cross-linked residues were identified as Tyr-421 and Tyr-524 and the product is similar in structure to 3,3'-dityrosine.  相似文献   

4.
1. The half-cystine content of ovotransferrin, measured as cysteic acid, was 31mol/80000g of protein. 2. The amino acid sequences of cysteic acid-containing peptides from performic acid-oxidized ovotransferrin were studied. 3. 34 unique cysteic acid residues were identified. 4. It is concluded that hen ovotransferrin does not consist of two identical halves or subunits.  相似文献   

5.
Periodate inactivation of ovotransferrin and human serum transferrin   总被引:4,自引:0,他引:4  
Azari and Phillips (Azari, P., and Phillips, J. L. 1970 Arch. Biochem. Biophys. 138, 32-38) reported that periodate treatment of iron-free ovotransferrin causes a rapid loss of iron-binding activity and an oxidation of 3 to 5 tyrosines and 1 tryptophan. Rapid inactivation and loss of tyrosine in ovotransferrin has been confirmed, and the work extended to human serum transferrin and effects of denaturing concentrations of urea. Extensive (> 80%) inactivations of both ovotransferrin and human serum transferrin were observed when approximately 4 tyrosines were destroyed. Amino acid analysis and 360-MHz 1H NMR spectra confirmed that tyrosines are the only residues rapidly oxidized; the correlation of tyrosine loss with the loss of iron-binding activity suggests strongly that the tyrosines involved are those that function as ligands to metal ions bound to the protein. NMR spectra also showed that periodate oxidation causes local changes of structure in ovotransferrin (presumably at the metal-binding sites) but does not grossly alter the conformation. The addition of 5 to 8 M urea greatly retarded the inactivation and losses of tyrosine.  相似文献   

6.
Sciatin Is a Transferrin-Like Polypeptide   总被引:4,自引:0,他引:4  
Abstract: Sciatin, an acidic glycoprotein from chicken sciatic nerve, has myotrophic effects on avian skeletal muscle cells in culture. As sciatin was found to have certain structural similarities to transferrin, we further investigated the physicochemical characteristics of sciatin in order to determine the relationship between these two proteins. Sciatin was found to be strikingly similar to ovotransferrin in amino acid composition. In addition, amino acid sequence analysis revealed that sciatin and ovotransferrin had identical amino-terminal sequences for at least the first 20 amino acid residues. Chicken ovotransferrin, but not human serum transferrin, cross-reacted with rabbit antisciatin antibodies upon rocket immunoelectrophoresis and double immunodiffusion in agar. In addition, in the presence of bicarbonate, sciatin bound approximately 2 mol ferrous iron/mol protein. Using the purification procedure developed for sciatin, we purified a protein from chicken serum that cross-reacted with antisciatin serum, migrated at a position identical to that of sciatin or ovotransferrin on two-dimensional gel electrophoresis, had an amino composition very similar to ovotransferrin and sciatin, and had myotrophic effects on cultured muscle cells. From these data, we conclude that sciatin is a growth-promoting polypeptide closely related in structure to transferrin.  相似文献   

7.
1. Glycopeptides were prepared from proteolytic digests of ovotransferrin and serum transferrin of the hen. The carbohydrate compositions and amino acid sequences of the peptides were studied. 2. The bulk of the carbohydrate of ovotransferrin is present as a single oligosaccharide composed of 4 residues of mannose and 8 residues of N-acetylglucosamine. Transferrin has most of its carbohydrate in a single unit composed of 2 residues of mannose, 2 residues of galactose, 3 residues of N-acetylglucosamine and either 1 or 2 residues of sialic acid. 3. The amino acid sequences of the glycopeptides carrying these different oligosaccharides are the same in ovotransferrin and serum transferrin, showing that the carbohydrate groups are attached to the same site on the protein molecule.  相似文献   

8.
The ability of L-alpha-amino acids as synergistic anions for iron binding to ovotransferrin was investigated through electronic spectroscopy. Glycine and glutamic acid were found to form by far the most stable ternary Fe(3+)-ovotransferrin-amino acid complexes. Less stable adducts were formed by amino acids with a hydroxy, amide or sulphur-containing group in the side chain, while the complexes with leucine, isoleucine, valine, lysine, arginine, tyrosine and tryptophan failed to form. Evidence is obtained that the synergistic effectiveness of the H2N-CH-COO- moiety is determined not only by the isoelectric point of the amino acid and the steric hindrance of its side chain, but a significant role is also played by interactions of the side chain itself with residues in the metal binding domains. Zn2+, Cd2+ and Co2+ are found to bind to ovotransferrin in the presence of glycine. 113Cd-NMR spectra on the Cd-derivative indicate that, according to the interlocking-sites model, the amino group of glycine directly binds to the metal ion.  相似文献   

9.
The aim of this study was to gain a better understanding of the contribution of hydrogen bonds by tyrosine -OH groups to protein stability. The amino acid sequences of RNases Sa and Sa3 are 69 % identical and each contains eight Tyr residues with seven at equivalent structural positions. We have measured the stability of the 16 tyrosine to phenylalanine mutants. For two equivalent mutants, the stability increases by 0.3 kcal/mol (RNase Sa Y30F) and 0.5 kcal/mol (RNase Sa3 Y33F) (1 kcal=4.184 kJ). For all of the other mutants, the stability decreases with the greatest decrease being 3.6 kcal/mol for RNase Sa Y52F. Seven of the 16 tyrosine residues form intramolecular hydrogen bonds and the average decrease in stability for these is 2.0(+/-1.0) kcal/mol. For the nine tyrosine residues that do not form intramolecular hydrogen bonds, the average decrease in stability is 0.4(+/-0.6) kcal/mol. Thus, most tyrosine -OH groups contribute favorably to protein stability even if they do not form intramolecular hydrogen bonds. Generally, the stability changes for equivalent positions in the two proteins are remarkably similar. Crystal structures were determined for two of the tyrosine to phenylalanine mutants of RNase Sa: Y80F (1.2 A), and Y86F (1.7 A). The structures are very similar to that of wild-type RNase Sa, and the hydrogen bonding partners of the tyrosine residues always form intermolecular hydrogen bonds to water in the mutants. These results provide further evidence that the hydrogen bonding and van der Waals interactions of polar groups in the tightly packed interior of folded proteins are more favorable than similar interactions with water in the unfolded protein, and that polar group burial makes a substantial contribution to protein stability.  相似文献   

10.
Milligan JR  Tran NQ  Ly A  Ward JF 《Biochemistry》2004,43(17):5102-5108
Guanyl radical species are produced in DNA by electron removal caused by ionizing radiation, photoionization, oxidation, or photosensitization. DNA guanyl radicals can be reduced by electron donation from mild reducing agents. Important biologically relevant examples are the redox active amino acids cysteine, cystine, methionine, tryptophan, and tyrosine. We have quantified the reactivity of derivatives of these amino acids with guanyl radicals located in plasmid DNA. The radicals were produced by electron removal using the single electron oxidizing agent (SCN)(2)(*)(-). Disulfides (cystine) are unreactive. Thioethers (methionine), thiols (cysteine), and phenols (tyrosine) react with rate constants in the range 10(4)-10(6), 10(5)-10(6), and 10(5)-10(6) dm(3) mol(-1) s(-1), respectively. Indoles (tryptophan) are the most reactive with rate constants of 10(7)-10(8) dm(3) mol(-1) s(-1). Selenium analogues of amino acids are over an order of magnitude more reactive than their sulfur equivalents. Increasing positive charge is associated with a ca. 10-fold increase in reactivity. The results suggest that amino acid residues located close to DNA (for example, in DNA binding proteins such as histones) might participate in the repair of oxidative DNA damage.  相似文献   

11.
Transferrins are a group of iron-binding proteins that control the levels of iron in the body fluids of vertebrates by their ability to bind two Fe3+ and two CO3(2-). The transferrin molecule, with a molecular mass of about 80 kDa, is folded into two similarly sized homologous N- and C-lobes that are stabilized by many intrachain disulfides. As observed by X-ray crystallography, each lobe is further divided into two similarly sized domains, domain 1 and domain 2, and an Fe3+-binding site is within the interdomain cleft. Four of the six Fe3+ coordination sites are occupied by protein ligands (2 Tyr residues, 1 Asp, and 1 His) and the other two by a bidentate CO3(2-). Upon uptake and release of Fe3+, transferrins undergo a large-scale conformational change depending on a common structural mechanism: domains 1 and 2 rotate as rigid bodies around a rotation axis that passes through the two antiparallel beta-strands linking the domains. The extent of the rotation is, however, variable for different transferrin species and lobes. As a Fe3+ release mechanisms at low pH from the N-lobes of serum transferrin and ovotransferrin, the structural evidence for 'dilysine trigger mechanism' is shown. A structural mechanism for the Fe3+ release in presence of a non-synergistic anion is proposed on the basis of the sulfate-bound apo crystal structure of the ovotransferrin N-lobe. Domain-opened structures with the coordinated Fe3+ by the two tyrosine residues are demonstrated in fragment and intact forms, and their functional implications as a possible intermediate for iron uptake and release are discussed.  相似文献   

12.
The azide radical N3 reacts selectively with amino acids, in neutral solution preferentially with tryptophan (k (N3 + TrpH) = 4.1 X 10(9) dm3 mol(-1s-1) and in alkaline solution also with cysteine and tyrosine (k(N3 + CyS-) = 2.7 X 10(9) dm3 mol-1s-1) and k(N3 + TyrO-) equals 03.6 X 10(9) dm3 mol-1s-1). Oxidation of the enzyme yADH by N3 involves primary attacks, mainly at tryptophan residues, and subsequent slow secondary reactions. N3-induced inactivation of yADH is likely to occur upon oxidation of tryptophan residues in the substrate binding pocket (58-TrpH and 93-TrpH) since the substrate ethanol although unreactive with N3, protects yADH and since elADH, which does not contain tryptophan in the substrate pocket, is comparatively resistant against N3-attack. N3 exhibits low reactivity with nucleic acid derivatives and it is inert towards aliphatic compounds such as methanol and sodium dodecylsulphate.  相似文献   

13.
The comparative reactivity of the eight tyrosine residues which occur at homologous positions in human chorionic somatomammotropin and human pituitary growth hormone has been investigated by their reaction with tetranitromethane at 0 °C. The derivatives were characterized by circular dichroism spectra, spectrophotometric titrations, rate of tryptic digestion, and immunodiffusion. Pigeon crop-sac stimulating activities were fully retained in these derivatives. The extent of modification for human chorionic somatomammotropin and human pituitary growth hormone was 2.5 and 4.2 out of 8 residues, respectively. The location of each modified tyrosine residue in the derivatives was determined by amino acid analysis of isolated nitrated peptides after cyanogen bromide cleavage and enzymatic digestion. It was found that tyrosine-143 was highly reactive in the pituitary hormone but unreactive in the placental hormone.  相似文献   

14.
The cross-linking of tyrosine by treatment with tetranitromethane   总被引:3,自引:3,他引:0       下载免费PDF全文
1. Tyrosine was treated with tetranitromethane. 2. Approx. 10% of the tyrosine was converted into 3-nitrotyrosine. 3. Three fluorescent compounds were also formed. They appear to be a dimer, trimer and tetramer in which tyrosine units are linked by biphenyl bonds. 4. The dimer and trimer have also been isolated from some proteins after treatment with tetranitromethane. 5. The yield of 3-nitrotyrosine from ovotransferrin after treatment with tetranitromethane was much smaller than the loss of tyrosine. 6. Several unidentified compounds were also formed by the reaction between tyrosine and tetranitromethane.  相似文献   

15.
During the inactivation of the nucleotide-free F1-ATPase at pH 7.0, by p-fluorosulfonyl[14C]benzoyl-5'-adenosine ([14C]FSBA) in the presence of 20% glycerol, about 4.5 g atoms of 14C are incorporated/350,000 g of enzyme. Isolation of the subunits has shown: (a) over 90% of the incorporated label is associated with the alpha and beta subunits; (b) the amount of label incorporated into the alpha subunit is about 0.5 g atoms/mol which is nonspecifically associated with a number of tyrosine and lysine residues; (c) the amount of radioactivity incorporated into the beta subunit is about 0.9 g atoms/mol which correlates with the degree of inactivation of the enzyme and resides on a single tyrosine residue; (d) up to 2.2 mol of alpha subunit have been isolated from each mole of inactivated enzyme; and (e) about 2 mol of beta subunit have been isolated from each mole of inactivated enzyme. These results account for the incorporation of 4.5 g atoms of 14C which are incorporated/mol of ATPase during inactivation if there are three copies each of the alpha and beta subunit present in the enzyme. It has also been shown that 4-chloro-7-nitrobenzofurazan (NBD-Cl) and FSBA react with different tyrosine residues when they inactivate the ATPase. In addition, it has been shown that the ATPase inactivated with FSBA retains the capacity to bind up to 2.2 mol of [14C]ADP/350,000 g of enzyme.  相似文献   

16.
1. Oxidation of sperm-whale metmyoglobin and its apoprotein with periodate has been investigated under various conditions of pH and temperature to find those under which the reagent acted with specificity. 2. At pH6.8 and 22 degrees consumption of periodate ceased in 3(1/2)hr. at 43 moles of periodate/mole of myoglobin. The two methionine residues, the two tryptophan residues, the three tyrosine residues and two histidine residues were oxidized; serine increased in the hydrolysates from 6 to 9 residues/mol. 3. At pH5.0 and 22 degrees , consumption levelled off in 4(1/2)hr. at 26 moles of periodate/mole of myoglobin and resulted in the modification of the two methionine residues, the two tryptophan residues, the three tyrosine residues and two histidine residues; serine increased from 6 to 7 residues/mol. and, also, ferrihaem suffered considerable oxidation. 4. Oxidation at pH5.0 and 0 degrees resulted at completion (4hr.) in the consumption of 22 moles of periodate/mole of myoglobin and in the modification of the methionine, tyrosine and tryptophan residues. Spectral studies indicated oxidation of the haem group. This derivative reacted very poorly with rabbit antisera to MbX (the major component no. 10 obtained by CM-cellulose chromatography; Atassi, 1964). 5. Oxidation of apomyoglobin at pH5.0 and 0 degrees was complete in 4hr. with the consumption of 7.23 moles of periodate/mole of apoprotein. The rate of oxidation in decreasing order was: methionine; tryptophan; tyrosine; and after 7hr. of reaction the following residues/mol. were oxidized: methionine, 2.0; tryptophan, 1.6; tyrosine, 0.99. No peptide bonds were cleaved. Metmyoglobin prepared from the 7hr.-oxidized apoprotein showed that the reactivity with antisera to MbX had diminished considerably. 6. Milder oxidation of apoprotein (2 molar excess of periodate, pH5.0, 0 degrees , 2hr.) resulted in the modification of 1.66 residues of methionine/mol. Metmyoglobin prepared from this apoprotein was identical with native MbX spectrally, electrophoretically and immunochemically. It was concluded that the methionine residues at positions 55 and 131 were not essential parts of the antigenic sites of metmyoglobin.  相似文献   

17.
Of the three tyrosine residues available for nitration by tetranitromethane in hemerythrin, nitration of tyrosine residue 70 has no effect on dissociation of octomers to monomers, but nitration of tyrosines 18 and/or 67 results in dissociation to monomers. The latter data suggests these residues are important for subunit association. The reactive sulfhydryl, the modification of which produces dissociation, was protected as a mixed disulfide during the nitration but was regenerated for analysis of the state of association. Residue 70 can be selectively modified because of its exposed position and perhaps because of its slightly lower pk of 6.9, compared to 7.3 as an average of all nitrotyrosines in a completely nitrated hemerythrin. Solvent perturbation studies in 20% Me2SO indicate that 3 tyrosines, in agreement with the nitration results, and 2 tryptophan residues are exposed; however, oxidation at a 2-fold molar excess of N-bromosuccinimide oxidizes three tryptophan whereas a 3.5-fold excess oxidizes all four, but results in a rapid active site destruction. Photo-oxidation with methylene blue results in oxidation of only two tryptophan residues. These data have been interpreted to indicate that two tryptophans are free and two are involved in subunit association. Photo-oxidation with methylene blue results in the destruction of three histidines but no decrease in active site absorption. Histidine modification with diethyloxydiformate shows that three histidines react with no change in active site absorption. These results indicate that four histidines are unreactive toward these modifying agents and are therefore either buried or are ligands to the iron.  相似文献   

18.
A peptide corresponding to a surface loop in the C-terminal domain of chicken ovotransferrin (residues 570-584) was made by solid-phase synthesis and used to immunize rabbits. A 15-amino acid-residue disulphide-linked loop occurs in both domains of all five transferrins for which the sequence is available and lies on the opposite side of the iron-binding site from the interdomain cleft. Polyclonal antibodies to the peptide were specific for non-reduced holo-ovotransferrin and the C-terminal domain, as shown by e.l.i.s.a. and immunoblotting. The antibody did not inhibit binding of ovotransferrin to receptors on chick-embryo reticulocytes but was able to bind ovotransferrin bound to the cellular receptors at 0 degree C. The loop composed of residues 570-584 appears to be remote from the transferrin receptor-binding site.  相似文献   

19.
The states of tryptophan residues in castor bean hemagglutinin (CBH) were analyzed by solvent perturbation studies employing ultraviolet difference spectroscopy. Eight out of 22 tryptophan residues in CBH were exposed to ethylene glycol and glycerol, suggesting that the remaining 14 tryptophan residues are buried in the interior of the CBH molecule. The fraction of tryptophan residues accessible to the perturbant decreased with increase in the molecular size of the perturbant, and only 2 tryptophan residues were exposed to polyethylene glycol 600. Upon binding with raffinose, 2 tryptophan residues were shielded from the perturbing effect of the solvent, and binding of lactose reduced the number of tryptophan residues accessible to the perturbant by 1 mol per mol of protein. Binding of galactose, however, did not change the accessibility of tryptophan to the perturbant. On the other hand, the accessibility of tyrosine to the perturbant remained unchanged after binding with raffinose and lactose, suggesting that tyrosine is not directly involved in the saccharide binding of CBH. Based on these results, it is proposed that one tryptophan residue at the saccharide-binding site on each B-chain of CBH lies on the surface of the protein molecule and is located at a subsite which is accessible to a glucopyranoside moiety in the lactose molecule or a glycopyranosyl-fructofuranosyl moiety in the raffinose molecule, whereas such a residue is not present at the galactopyranoside-recognition site.  相似文献   

20.
The binding of tyrosine phosphorylated targets by SH2 domains is required for propagation of many cellular signals in higher eukaryotes; however, the determinants of phosphotyrosine (pTyr) recognition by SH2 domains are not well understood. In order to identify the attributes of pTyr required for high affinity interaction with SH2 domains, the binding of the SH2 domain of the Src kinase (Src SH2 domain) to a dephosphorylated peptide, a phosphoserine-containing peptide, and the amino acid pTyr was studied using titration calorimetry and compared with the binding of a high affinity tyrosyl phosphopeptide. The dephosphorylated peptide and the phosphoserine containing peptide both bind extremely weakly to the Src SH2 domain (DeltaGo (dephosphorylated)=-3.6 kcal/mol, DeltaGo (phosphoserine) >-3.7 kcal/mol); however, the DeltaGo value of pTyr binding is more favorable (-4.7 kcal/mol, or 50 % of the entire binding free energy of a high affinity tyrosyl phosphopeptide). These results indicate that both the phosphate and the tyrosine ring of the pTyr are critical determinants of high affinity binding. Alanine mutagenesis was also used to evaluate the energetic contribution to binding of ten residues located in the pTyr-binding site. Mutation of the strictly conserved Arg betaB5 resulted in a large increase in DeltaGo (DeltaDeltaGo=3.2 kcal/mol) while elimination of the other examined residues each resulted in a significantly smaller (DeltaDeltaGo<1.4 kcal/mol) reduction in affinity, indicating that Arg betaB5 is the single most important determinant of pTyr recognition. However, mutation of Cys betaC3, a residue unique to the Src SH2 domain, surprisingly increased affinity by eightfold (DeltaDeltaGo=-1.1 kcal/mol). Using a double mutant cycle analysis, it was revealed that residues of the pTyr-binding pocket are not coupled to the peptide residues C-terminal to the pTyr. In addition, comparison of each residue's DeltaDeltaGo value upon mutation with that residue's sequence conservation among SH2 domains revealed only a modest correlation between a residue's energetic contribution to pTyr recognition and its conservation throughout evolution. The results of this investigation highlight the importance of a single critical interaction, the buried ionic bond between the phosphate of the pTyr and Arg betaB5 of the SH2 domain, driving the binding of SH2 domains to tyrosine phosphorylated targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号