首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Farge E 《Current biology : CB》2003,13(16):1365-1377
BACKGROUND: Morphogenetic movements are closely regulated by the expression of developmental genes. Here I examine whether developmental gene expression can in turn be mechanically regulated by morphogenetic movements. I have analyzed the effects of mechanical stress on the expression of Twist, which is normally expressed only in the most ventral cells of the cellular blastoderm embryo under the control of the Dorsal morphogen gradient. At embryogenesis gastrulation (stage 7), Twist is also expressed in the anterior foregut and stomodeal primordia. RESULTS: Submitting the early Drosophila embryo to a transient 10% uniaxial lateral deformation induces the ectopic expression of Twist around the entire dorsal-ventral axis and results in the ventralization of the embryo. This induction is independent of the Dorsal gradient and is triggered by mechanically induced Armadillo nuclear translocation. I also show that Twist is not expressed in the anterior foregut and stomodeal primordia at stage 7 in mutants that block the morphogenetic movement of germ-band extension. Because I can rescue the mutants with gentle compression of these cells, my interpretation is that the stomodeal-cell compression normally caused by the germ-band extension induces the expression of Twist. Correspondingly, laser ablation of dorsal cells in wild-type embryos relaxes stomodeal cell compression and reduces Twist expression in the stomodeal primordium. I also demonstrate that the induction of Twist in these cells depends on the nuclear translocation of Armadillo. CONCLUSIONS: I propose that anterior-gut formation is mechanically induced by the movement of germ-band extension through the induction of Twist expression in stomodeal cells.  相似文献   

2.
3.
4.
In each of 30 dipteran species, representing 13 acalyptrate and 7 calyptrate families, the cardia is formed from specialized cells at the junction between foregut and midgut. Foregut epithelium forms the stomodeal valve; midgut epithelium envelops the valve to form the cardia's outer wall. Cytological characteristics within these epithelia differ from region to region and from species to species. Since the cardia secretes the peritrophic membrane, cardias with diverse patterns of cellular differentiation may be expected to produce peritrophic membranes with similarly diverse properties. Close relatives often share more details of cardia structure than do distantly related taxa. Within the monophyletic Calyptratae, a common pattern of cellular differentiation includes three distinct zones of columnar midgut cells enclosing a flanged stomodeal valve. Among species in the paraphyletic Acalyptratae, midgut typically includes a single zone of tall columnar cells, while the valve may be spheroidal, cylindrical, conical, or flanged. The correlation of phylogenetic distance with divergence in cardia organization implies a strong influence of ancestry upon current structure, regardless of current diet. However, at least some of the observed diversity in cardia structure is associated with dietary divergence. Calyptrate flies with derived blood-feeding behavior display cellular differentiation that is simplified from that seen in calyptrate relatives with less specialized feeding habits. This evolutionary modification suggests that cardia organization and hence peritrophic membrane structure can adapt to dietary changes, with possible significance for the spatial organization of digestive processes and interactions with ingested microorganisms.  相似文献   

5.
6.
On the Antarctica continent the wingless midge, Belgica antarctica (Diptera, Chironomidae) occurs further south than any other insect. The digestive tract of the larval stage of Belgica that inhabits this extreme environment and feeds in detritus of penguin rookeries has been described for the first time. Ingested food passes through a foregut lumen and into a stomodeal valve representing an intussusception of the foregut into the midgut. A sharp discontinuity in microvillar length occurs at an interface separating relatively long microvilli of the stomodeal midgut region, the site where peritrophic membrane originates, from the midgut epithelium lying posterior to this stomodeal region. Although shapes of cells along the length of this non-stomodeal midgut epithelium are similar, the lengths of their microvilli increase over two orders of magnitude from anterior midgut to posterior midgut. Infoldings of the basal membranes also account for a greatly expanded interface between midgut cells and the hemocoel. The epithelial cells of the hindgut seem to be specialized for exchange of water with their environment, with the anterior two-thirds of the hindgut showing highly convoluted luminal membranes and the posterior third having a highly convoluted basal surface. The lumen of the middle third of the hindgut has a dense population of resident bacteria. Regenerative cells are scattered throughout the larval midgut epithelium. These presumably represent stem cells for the adult midgut, while a ring of cells, marked by a discontinuity in nuclear size at the midgut-hindgut interface, presumably represents stem cells for the adult hindgut.  相似文献   

7.
8.
9.
10.
11.
12.
Vasculogenic mimicry (VM) refers to the unique ability of highly aggressive human tumor cells to form matrix-rich networks de novo when cultured on a three-dimensional matrix, thus mimicking embryonic vasculogenesis. Some studies have shown that tumor hypoxia can promote tumor cells to form vessel-like tubes in vitro and express genes associated with VM. Although, the mechanisms involved in hypoxia-induced VM remain elusive, we hypothesized that the epithelial–mesenchymal transition (EMT) regulator Twist may play a major role in hypoxia-induced VM. We investigated this hypothesis in vitro by pretreating hepatocellular carcinoma cells under hypoxic conditions. Following the hypoxia treatment, the cells formed typical pipe-like VM networks. Moreover, the expression of VM markers was increased. Hypoxia-induced VM was accompanied by the increased expression of Twist. Twist siRNA reversed the effects of hypoxia on VM. These results suggest that the overexpression of Twist correlates to hypoxia-induced VM in hepatocellular carcinoma cells.  相似文献   

13.
14.
15.
The continued turn over of human embryonic stem cells (hESC) while maintaining an undifferentiated state is dependent on the regulation of the cell cycle. Here we asked the question if a single cell cycle gene could regulate the self-renewal or pluripotency properties of hESC. We identified that the protein expression of the p27Kip1 cell cycle inhibitor is low in hESC cells and increased with differentiation. By adopting a gain and loss of function strategy we forced or reduced its expression in undifferentiating conditions to define its functional role in self-renewal and pluripotency. Using undifferentiation conditions, overexpression of p27Kip1 in hESC lead to a G1 phase arrest with an enlarged and flattened hESC morphology and consequent loss of self-renewal ability. Loss of p27Kip1 caused an elongated/scatter cell-like phenotype involving upregulation of Brachyury and Twist gene expression. We demonstrate the novel finding that p27Kip1 protein occupies the Twist1 gene promoter and manipulation of p27Kip1 by gain and loss of function is associated with Twist gene expression changes. These results define p27Kip1 expression levels as critical for self-renewal and pluripotency in hESC and suggest a role for p27Kip1 in controlling an epithelial to mesenchymal transition (EMT) in hESC.  相似文献   

16.
17.
A twist code determines the onset of osteoblast differentiation   总被引:11,自引:0,他引:11  
Runx2 is necessary and sufficient for osteoblast differentiation, yet its expression precedes the appearance of osteoblasts by 4 days. Here we show that Twist proteins transiently inhibit Runx2 function during skeletogenesis. Twist-1 and -2 are expressed in Runx2-expressing cells throughout the skeleton early during development, and osteoblast-specific gene expression occurs only after their expression decreases. Double heterozygotes for Twist-1 and Runx2 deletion have none of the skull abnormalities observed in Runx2(+/-) mice, a Twist-2 null background rescues the clavicle phenotype of Runx2(+/-) mice, and Twist-1 or -2 deficiency leads to premature osteoblast differentiation. Furthermore, Twist-1 overexpression inhibits osteoblast differentiation without affecting Runx2 expression. Twist proteins' antiosteogenic function is mediated by a novel domain, the Twist box, which interacts with the Runx2 DNA binding domain to inhibit its function. In vivo mutagenesis confirms the antiosteogenic function of the Twist box. Thus, relief of inhibition by Twist proteins is a mandatory event precluding osteoblast differentiation.  相似文献   

18.
19.
20.
The continued turn over of human embryonic stem cells (hESC) while maintaining an undifferentiated state is dependent on the regulation of the cell cycle. Here we asked the question if a single cell cycle gene could regulate the self-renewal or pluripotency properties of hESC. We identified that the protein expression of the p27Kip1 cell cycle inhibitor is low in hESC cells and increased with differentiation. By adopting a gain and loss of function strategy we forced or reduced its expression in undifferentiating conditions to define its functional role in self-renewal and pluripotency. Using undifferentiation conditions, overexpression of p27Kip1 in hESC lead to a G1 phase arrest with an enlarged and flattened hESC morphology and consequent loss of self-renewal ability. Loss of p27Kip1 caused an elongated/scatter cell-like phenotype involving upregulation of Brachyury and Twist gene expression. We demonstrate the novel finding that p27Kip1 protein occupies the Twist1 gene promoter and manipulation of p27Kip1 by gain and loss of function is associated with Twist gene expression changes. These results define p27Kip1 expression levels as critical for self-renewal and pluripotency in hESC and suggest a role for p27Kip1 in controlling an epithelial to mesenchymal transition (EMT) in hESC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号