首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
2.
The S locus glycoprotein (SLG) gene of Brassica encodes stigmatic glycoproteins that are implicated in the pollen-stigma interaction of self-incompatibility. We have transformed the related plant Arabidopsis thaliana with a chimaeric gene consisting of the promoter region of an SLG gene fused to the reporter gene beta-glucuronidase (GUS). In transgenic plants the gene was expressed in two cell types of the flower. In stigmas, the timing and distribution of GUS activity was similar to that previously described for SLG expression in Brassica. In anthers, expression was detected at an earlier stage of flower development with GUS activity restricted to the tapetal cell layer. The novel finding of SLG-promoter activity in the anther supports the hypothesis that sporophytic control of self-incompatibility is a result of SLG-gene expression in the tapetum.  相似文献   

3.
4.
5.
In Brassica species, self-incompatibility in the recognition reaction between self and non-self pollens is determined by two genes, SLG and SRK, at the S locus. We have cloned and characterized a genomic DNA fragment containing a complete open reading frame of the SLG gene from Chinese cabbage. The genomic clone, named BcSLG2, was found to possess the region that shares a homology of 77% in amino acid identity with the SLG46 gene of Brassica campestris. Northern blot analysis revealed that the BcSLG2 gene expression is restricted to the pistil of Chinese cabbage flower. In situ hybridization showed that in the pistil, the gene is expressed predominantly in the stigmatic tissue. Much lower expression in the tapetum was also detectable at an immature stage of the flower development. Southern blot hybridization with the BcSLG2 DNA probe showed polymorphism in the SLG gene organization of the Chinese cabbage plants. These results will provide valuable information in understanding the S gene complex of the Chinese cabbage plants.  相似文献   

6.
The view put forward by some authors that flowering plant self-incompatibility mechanisms of the homomorphic sporophytic and heteromorphic sporophytic types have a close evolutionary relationship, with one form being evolved from the other, or both forms directly evolved from ancestors with homomorphic gametophytic incompatibility, is challenged. A review is provided of the various facets of each of the three main self-incompatibility systems, including a detailed summary of our current knowledge of the rejection mechanism, to demonstrate that the implicit assumption that these systems have a common S locus, and also evolutionary theories linking the systems, need to be treated with considerable caution.  相似文献   

7.
In Brassica species, self-incompatibility has been mapped genetically to a single chromosomal location. In this region, there are two closely linked genes coding for the S locus glycoprotein (SLG) and S locus receptor kinase (SRK). They appear to comprise the pistil component of the self-incompatibility reaction. SLG and SRK are thought to recognize an unknown pollen component on the incompatible pollen, and the gene encoding this pollen component must also be linked to the SLG and SRK genes. To further our understanding of self-incompatibility, the chromosomal region carrying the SLG and SRK genes has been studied. The physical region between the SLG-910 and the SRK-910 genes in the Brassica napus W1 line was cloned, and a search for genes expressed in the anther revealed two additional S locus genes located downstream of the SLG-910 gene. Because these two genes are novel and are conserved at other S alleles, we designated them as SLL1 and SLL2 (for S locus-linked genes 1 and 2, respectively). The SLL1 gene is S locus specific, whereas the SLL2 gene is not only present at the S locus but is also present in other parts of the genomes in both self-incompatible and self-compatible Brassica ssp lines. Expression of the SLL1 gene is only detectable in anthers of self-incompatible plants and is developmentally regulated during anther development, whereas the SLL2 gene is expressed in anthers and stigmas in both self-incompatible and self-compatible plants, with the highest levels of expression occurring in the stigmas. Although SLL1 and SLL2 are linked to the S locus region, it is not clear whether these genes function in self-incompatibility or serve some other cellular roles in pollen-pistil functions.  相似文献   

8.
Brassica campestris Male Fertile 5 (BcMF5), a novel member of the pollen coat protein class A (PCP-A) gene family, was identified from Brassica campestris L. ssp. chinensis Makino (Chinese cabbage-pak-choi). Temporal and spatial expression analysis showed that BcMF5 is a late-expressed PCP gene related to the process of determining pollen fertility. Functional analysis by hairpin RNA (hpRNA)-mediated RNA interference also showed that the expression of BcMF5 is inhibited, which resulted in the low germination ability of the pollen and also in an abnormality of the pollen exemplified by a collapsed germination furrow. This demonstrates that the expression of BcMF5 is closely related to the tapetum. Further, the expression profile of the BcMF5 promoter in Arabidopsis was also analyzed. This analysis indicated that the BcMF5 promoter began expression in the early stage of anther development and drove high levels of glucuronidase (GUS) expression in anthers, pollen, and the pollen tube in the late stage of pollen development, but did not drive any expression in petals, sepals, or pistils. Together with the functional analysis, the hypothesis that BcMF5 may have a sporophytic or gametophytic expression pattern is presented.  相似文献   

9.
In angiosperm pollen the reticulate-perforate exine sculpturing is associated with sporophytic self-incompatibility (S.S.I.) and imperforate and microperforate exine sculpturing is associated with gametophytic self-incompatibility. The earliest unequivocal angiosperm pollen conforms to exine morphology of pollen from plants with S.S.I. The orgin of S.S.I. is hypothesized to have coincided with the appearance of what is now the earliest recognizable angiosperm pollen. Other angiosperm characteristics correlated with S.I., functional stigmatic areas, large showy flowers (or aggregated inflorescences), and passive seed dispersal, provide some insight into the biological aspects of the earliest angiosperms.  相似文献   

10.
The S locus receptor kinase (SRK) gene is one of two S locus genes required for the self-incompatibility response in Brassica. We have identified the product of the SRK6 gene in B. oleracea stigmas and have shown that it has characteristics of an integral membrane protein. When expressed in transgenic tobacco, SRK6 is glycosylated and targeted to the plasma membrane. These results provide definitive biochemical evidence for the existence in plants of a plasma membrane-localized transmembrane protein kinase with a known cell-cell recognition function. The timing of SRK expression in stigmas follows a time course similar to that previously described for another S locus-linked gene, the S locus glycoprotein (SLG) gene, and correlates with the ability of stigmas to mount a self-incompatibility response. Based on SRK6 promoter studies, the site of gene expression overlaps with that of SLG and exhibits predominant expression in the stigmatic papillar cells. Although reporter gene studies indicated that the SRK promoter was active in pollen, SRK protein was not detected in pollen, suggesting that SRK functions as a cell surface receptor exclusively in the papillar cells of the stigma.  相似文献   

11.
Abstract. Carbon dioxide is known to overcome sporophytic self-incompatibility in Brassica. Elevated CO2 (30 mmol CO2 mol-1 air), supplied via a flowthrough gas system, was shown to block the formation of rejection callose in the surface stigmatic papillae of Brassica campestris var. T15 following self-pollination. Possible mechanisms by which CO2 may affect callose formation are discussed.  相似文献   

12.
We have screened a total of 5,500 T-DNA tagging rice lines in which beta-glucuronidase (GUS) gene sequence was randomly inserted as a transgene into the plant genome. Histochemical GUS assays were carried out to select the T-DNA tagging rice lines that show its expression in anther. Of the tagging lines screened, three lines were found to express GUS specifically in the anther that is about 0.05%. Microscopic observation of the anther-expressed lines showed specific expression patterns of GUS in the anther, either gametophytic or sporophytic specificities. Southern blot analysis revealed that the integration copy number of the transgene was 2.3 in average. The detailed expression patterns were analyzed and discussed.  相似文献   

13.
In Brassica oleracea, sporophytic self-incompatibility prevents germination of self pollen, or normal growth of self pollen tubes. After self-pollination, the papillae of stigmas synthesize callose. The role of Ca++ in the formation of stigmatic callose was tested by adding compounds that interact with Ca++ to suspensions of pollen that were known to induce callose formation in self stigmas. The calcium channel antagonist, lanthanum, and the calcium chelating agent, EGTA, reduced or abolished the callose response to self-pollen suspensions. In the presence of Ca++, the calcium ionophore, A23187, induced callose in stigmatic papillae when added to pollen suspensions, or alone. Therefore, callose deposition in response to incompatible pollinations appears to be a calcium-dependent process. Pretreatment of pistils with 100 μm 2-deoxy-D-glucose abolished the callose response to self-pollination, while self pollen remained inhibited and cross pollen grew normally in treated pistils. Thus, callose formation in the stigma is not an essential part of the self-incompatibility mechanism preventing the growth of self pollen in Brassica.  相似文献   

14.
15.
16.
17.
Homomorphic multi-locus sporophytically determined self-incompatibility systems are much rarer than multi-locus gametophytic systems. This note examines some of the possible reasons for this disparity and concludes that, while each additional locus in a gametophytic system allows increased crossing among related plants as well as a lower mutation rate to maintain a given level of variability, the same conclusion cannot be drawn for sporophytic systems.  相似文献   

18.
在芸苔属植物的自交不亲和细胞信号转导过程中,信号分子-SCR配体是由花粉粒产生的,被柱头乳突细胞SRK受体识别后,进行细胞内信号转导。这对受体-配体是两个由S位点编码的且高度多态的蛋白质,它们决定着自交不亲和反应。配体是位于花粉粒表面的一个小的胞被蛋白,由SCR基因编码;受体是位于柱头乳突细胞原生质膜上的跨膜的蛋白质激酶,由SRK基因编码。在自交授粉过程中,配体SCR和受体SRK的相互作用激活了受体SRK,被激活的SRK通过其下游组分ARC1介导底物的泛肽化,然后泛肽化的底物在蛋白酶体/CSN中被降解,从而导致了自交不亲和性反应。这些降解的底物可能是促进花粉水合、萌发和花粉管生长的雌蕊亲和因子。主要针对芸苔属自交不亲和细胞信号转导作一综述。  相似文献   

19.
In Brassica, the S-locus glycoprotein (SLG) gene has been strongly implicated in the self-incompatibility reaction. Several alleles of this locus have been sequenced, and accordingly grouped as class I (corresponding to dominant S-alleles) and class II (recessive). We recently showed that a self-compatible (Sc) line of Brassica oleracea expressed a class II-like SLG (SLG-Sc) gene. Here, we report that the SLG-Sc glycoprotein is electrophoretically and immunochemically very similar to the recessive SLG-S15 glycoprotein, and is similarly expressed in stigmatic papillae. Moreover, by seed yield analysis, we observe that both alleles are associated with a self-compatibility response, in contrast with the other known recessive S haplotypes (S2 and S5). By genomic DNA blot analysis, we show the existence of molecular homologies between the Sc and S15 haplotypes, but demonstrate that they are not identical. On the other hand, we also report that the S2 haplotype expresses very low amounts of SLG glycoproteins, although it exhibits a self-incompatible phenotype. These results strongly question the precise role of the SLG gene in the molecular mechanisms that control the self-incompatibility reaction of Brassica.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号