首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Central chemoreceptors are widespread within the brain stem. We suggest that their function at some sites may vary with the state of arousal. In this study, we tested the hypothesis that the function of chemoreceptors in the retrotrapezoid nucleus (RTN) varies with sleep and wakefulness. In unanesthetized rats, we produced focal acidification of the RTN by means of a microdialysis probe (tip containing the semipermeable membrane = 1-mm length, 240-microm diameter, and 45-nl volume). With the use of a dialysate equilibrated with 25% CO(2), the tissue pH change (measured in anesthetized animals) was 1) limited to within 550 microm of the probe and, 2) at the probe tip, was equivalent to that observed with end-tidal PCO(2) of 63 Torr. This focal acidification of the RTN increased ventilation significantly by 24% above baseline, on average, in 13 trials in seven rats only during wakefulness. The effect was entirely due to an increase in tidal volume. During sleep defined by behavioral criteria, ventilation was unaffected, on average, in 10 trials in seven rats. During sleep, the chemoreceptors in the RTN appear to be inactive, or, if active, the respiratory control system either is not responding or is responding with very low gain. Because ventilation is increased during sleep with all central chemoreceptor sites stimulated via systemic CO(2) application, other central chemoreceptor locations must have enhanced effectiveness.  相似文献   

2.
In conscious rats, focal CO2 stimulation of the medullary raphe increases ventilation, whereas interference with serotonergic function here decreases the ventilatory response to systemic hypercapnia. We sought to determine whether repeated administration of a selective serotonin reuptake inhibitor in this region would increase the ventilatory response to hypercapnia in unanesthetized rats. In rats instrumented with electroencephalogram-electromyogram electrodes, 250 or 500 microM fluoxetine or artificial cerebrospinal fluid (aCSF) was microdialyzed into the medullary raphe for 30 min daily over 15 days. To compare focal and systemic treatment, two additional groups of rats received 10 mg x kg(-1) x day(-1) fluoxetine or vehicle systemically. Ventilation was measured in normocapnia and in 7% CO2 before treatment (day 0), acutely (days 1 or 3), on day 7, and on day 15. There was no change in normocapnic ventilation in any treatment group. Rats that received 250 microM fluoxetine microdialysis showed a significant 13% increase in ventilation in wakefulness during hypercapnia on day 7, due to an increase in tidal volume. In rats microdialyzed with 500 microM fluoxetine, there were 16 and 32% increases in minute ventilation during hypercapnia in wakefulness and sleep on day 7, and 20 and 28% increases on day 15, respectively, again due to increased tidal volume. There was no change in the ventilatory response to CO2 in rats microdialyzed with aCSF or in systemically treated rats. Chronic fluoxetine treatment in the medullary raphe increases the ventilatory response to hypercapnia in an unanesthetized rat model, an effect that may be due to facilitation of chemosensitive serotonergic neurons.  相似文献   

3.
4.
Uptake of radioactively labelled insulin by the mammary gland of the rat increased 12-fold in lactation compared with non-lactating controls. This uptake was decreased by the presence of unlabelled insulin, indicating that it occurred via insulin receptors. The plasma half-life of insulin is decreased in lactation from 9.4 min to 4.8 min, and the metabolic clearance rate for insulin increased from 7.26 to 13.03 ml/kg body wt. per min. The basal insulin and glucose concentrations in the plasma were decreased in lactation. Infusion of insulin at a dose which led to a small physiological rise in plasma insulin concentration increased lipogenic rates in the mammary gland by 100% without causing marked hypoglycaemia. It is concluded that the lactating mammary gland is a highly insulin-sensitive tissue and that the lower plasma insulin during lactation occurs primarily as a result of this sensitivity increasing extraction of glucose by the gland and thus producing a decrease in the plasma glucose concentration. It is suggested that a secondary result of the fall in plasma insulin concentration is the preferential direction of substrates (glucose and non-esterified fatty acids) towards the lactating mammary gland and away from adipose tissue and the liver.  相似文献   

5.
Thyrotropin releasing hormone (TRH) was administered intracerebrally into various brain regions of conscious and pentobarbitalnarcotized rabbits. In conscious animals tachypnea was observed after TRH administration into all brain regions investigated. Behavioral excitation was most pronounced after TRH administration into the cerebral cortex, caudate nucleus and hypothalamus. Hyperthermia was produced only after hypothalamic injections of TRH. In pentobarbital-narcotized rabbits TRH exerted analeptic activity (shortening of narcosis) regardless of the brain area injected, although some quantitative differences were observed. These results indicate that the analeptic effect of TRH may be initiated from various areas of the brain.  相似文献   

6.
7.
We have tested our hypothesis that alterations in the levels of TRH receptors, and the synthesis and release of tripeptide TRH, and other neurotropic TRH-like peptides mediate some of the mood stabilizing effects of valproate (Valp). We have directly compared the effect of 1 week of feeding two major mood stabilizers, Valp and lithium chloride (LiCl) on TRH binding in limbic and extra-limbic regions of male WKY rats. Valp increased TRH receptor levels in nucleus accumbens and frontal cortex. Li increased TRH receptor binding in amygdala, posterior cortex and cerebellum. The acute, chronic and withdrawal effects of Valp on brain levels of TRH (pGlu-His-Pro-NH2, His-TRH) and five other TRH-like peptides, Glu-TRH, Val-TRH, Tyr-TRH, Leu-TRH and Phe-TRH were measured by combined HPLC and RIA. Acute treatment increased TRH and TRH-like peptide levels within most brain regions, most strikingly in pyriform cortex. The fold increases (in parentheses) were: Val-TRH (58), Phe-TRH (54), Tyr-TRH (25), TRH (9), Glu-TRH (4) and Leu-TRH (3). We conclude that the mood stabilizing effects of Valp may be due, at least in part, to its ability to alter TRH and TRH-like peptide, and TRH receptor levels in the limbic system and other brain regions implicated in mood regulation and behavior.  相似文献   

8.
Hyperthyroidism induces a number of metabolic and physiological changes in the heart including hypertrophy, increase in inotropic status, and alterations of myocardial energy metabolism. The effects of hyperthyroidism on adenosine metabolism which is intimately involved in the control of many aspects of myocardial energetics, have not been clarified. The aim of this study was thus to evaluate the potential role of adenosine in the altered physiology of the hyperthyroid heart. Transport of adenosine was studied in cardiomyocytes isolated from hyperthyroid and euthyroid rats. Activities of different enzymes of purine metabolism were studied in heart homogenates and concentrations of nucleotide and creatine metabolites were determined in hearts freeze-clampedin situ.Both transport of adenosine into cardiomyocytes and the rate of intracellular phosphorylation were higher in the hyperthyroid rat. At 10 M concentration, adenosine transport rates were 275 and 197 pmol/min/mg protein in hyperthyroid and euthyroid cardiomyocytes respectively whilst rates of adenosine phosphorylation were 250 and 180 pmol/min/mg prot. An even more pronounced difference was observed if values were expressed per number of cells due to cardiomyocyte enlargement. Hyperthyroidism was associated with a 20% increase in adenosine kinase, 30% decrease in membrane 5-nucleotidase and 15% decrease in adenosine deaminase activities measured in heart homogenates. In addition there was a substantial depletion in the total creatine pool from 63.7 to 41.6 mol/g dry wt, a small decrease in the adenylate pool (from 27.2 to 24.3 mol/g dry wt) and an elevation of the guanylate pool (from 1.22 to 1.36).These results show that adenosine transport and phosphorylation capacity is enhanced in hyperthyroidism. These may represent a feedback response to accelerated nucleotide degradation suggested in turn by the decrease in steady-state adenine nucleotide content. The decrease in membrane 5-nucleotidase activity may represent another feature of hypertrophy where the cell surface to cell volume ratio decreases. The decrease of this activity may modify the conversion of extracellular nucleotides to adenosine and consequently reduce endogenous cardioprotection.  相似文献   

9.
In this paper we report the detection and identification of methanol as an intermediate formed during both the in vivo and the in vitro metabolism of dimethylnitrosamine (DMN) in the rat. Methanol was formed in both hepatic 10,000 g av. supernatant and washed microsomal fractions over a wide range of nitrosamine substrate concentrations. Furthermore the total amounts of methanol and formaldehyde formed largely accounted for the metabolic fate of both methyl moieties of DMN. Although a number of inhibitors of alcohol metabolism profoundly inhibited the hepatic metabolism of DMN they had little effect on the activities of two mixed function oxidase dependent enzymes. The results suggest that DMN and possibly other dialkylnitrosamines are degraded by enzymic pathway(s) not dependent on cytochrome P-450.  相似文献   

10.
The basic ventilation values - tidal volume (VT), breathing frequency (f), minute ventilation (VE) and the duration of inspiration (TI) and expiration (TE) -- were determined in adult male rats. The range of these values is given and the pattern of breathing is defined as the relationship between VE and VT, which in the rat is linear throughout its entire range. The role of TI and TE in changing f in the rat were evaluated. The breathing pattern of the rat was compared with data for the rabbit and man, using percentual expression of the basic values. A shift of the breathing pattern to higher f values was observed in rats with experimental lung diseases. In these rats, the inhalation of 100% O2 shifted the pattern of breathing markedly to lower VE values, though not to values comparable with the controls. Bilateral cervical vagotomy was followed by a pronouced decrease in f, an increase in VT and T1 persisted even after vagotomy, however; it can be assumed that this relationship is effected either by means of receptors in the chest muscles, or by the direct action of CO2 which is used to stimulate breathing, on the bulbopontine pacemaker.  相似文献   

11.
To study the impact of exercise or fasting and of subsequent glucose supplementation on glucose metabolism in rats, a spectrophotometric method was used to determine peripheral blood glucose; a technique associating (1)H-NMR spectroscopy and cortical microdialysis was also used to observe intra- plus extracellular and extracellular brain glucose variations, respectively. Compared with control animals (204 +/- 19 microM in dialysate, n = 10), exercise increased brain extracellular glucose levels to 274 +/- 22 microM (n = 8; P < 0.05), whereas fasting induced a drop in glucose levels down to 140 +/- 9 microM (n = 8; P < 0.05). After fasting, glucose supplemented by infusion increased glycemia from 7.4 +/- 0.4 to 19.9 +/- 0.8 mM (n = 10; P < 0.001), as well as extracellular and extra- plus intracellular brain glucose to 263 +/- 20% (n = 8; P < 0.001) and 342 +/- 28% (n = 8; P < 0.001), respectively, over basal for that group. After exercise, a similar infusion increased glycemia from 7. 3 +/- 0.3 to 16.8 +/- 1.1 mM (n = 10; P < 0.001), as well as extracellular and extra- plus intracellular brain glucose to 178 +/- 19% (n = 8; P < 0.001) and 244 +/- 20% (n = 8; P < 0.001), respectively, over basal for that group. These results confirmed the existence of a link between glucose level variations in peripheral and cerebral areas but also showed that exercise increased extracellular brain glucose levels despite peripheral hypoglycemia, suggesting a specific regulation mechanism of cerebral glucose metabolism during exercise.  相似文献   

12.
13.
14.
Rats were given intraventricular (ivt) injections of various doses (50-400 micrograms, hydrobromide salt) of 6-hydroxydopamine (6-OHDA) and killed 1, 3 or 6 days later. Brains were removed, dissected into 11 regions, and the thyrotropin-releasing hormone (TRH) content of each region was measured by radioimmunoassay. 6-OHDA (400 micrograms) caused significant elevations in the TRH content of 6 regions: olfactory bulb, anterior cortex, brainstem, posterior cortex, hippocampus, and amygdala-piriform cortex. The magnitude of these increases ranged from 59% in olfactory bulb to 497% in hippocampus and was, in all cases, greatest at 3 days. These results suggest that the TRH content of certain brain regions may be regulated by catecholamine neurotransmitters.  相似文献   

15.
Stahle L  Borg N 《Life sciences》2000,66(19):1805-1816
Extracellular unbound concentrations of alovudine were sampled by microdialysis in order to study the transport of alovudine between the blood and the brain and the cerebrospinal fluid (CSF) in the rat. The AUC (area under the curve) ratio CSF/blood was higher than the brain/blood ratio after i.v. infusion of alovudine 25mg/kg/hr after a loading dose of 25 mg/kg in 5 minutes (n=4). Neither i.v. infusion of thymidine (25 mg/kg/hr, n=5; 100 mg/kg/hr, n=2) nor acetazolamide (50 mg/kg i.p. bolus followed by 25 mg/kg i.p. every second hour, n=3) influenced the brain/blood AUC ratio after alovudine 25 mg/kg s.c. injection compared to controls (n=5). Finally, perfusion through the microdialysis probe with thymidine (1000 microM, n=3) had also no effect on the brain/blood AUC ratio after alovudine 25 mg/kg s.c. Because neither thymidine nor acetazolamide has significant influence on the ability of alovudine to penetrate the blood-brain barrier in the rat, neither thymidine transport nor carboanhydrase dependent CSF production appear to be major determinants of the blood-brain concentration gradient. Thus, it is concluded that alovudine reaches the extracellular fluid of the brain not by cerebrospinal fluid, but via the cerebral capillaries and that the existence of a concentration gradient over both blood-brain and CSF-brain barrier can probably be explained by the presence of an active process pumping alovudine out from the brain.  相似文献   

16.
17.
The ability of four normal subjects to detect increases in their ventilation was studied at rest and at two levels of exercise using a raised inspired Pco2 to further increase ventilation. Subjects signaled when the increase in ventilation was recognized. The average tidal volume (VT) at rest was 520 ml with a frequency of 14; these values increased to an average of 3,300 ml and 21 at the highest work load. There was no significant change in frequency with CO2. Detection occurred when the tidal volume increased by 700 ml (varying 550-890 between subjects but constant for any one subject at the three levels of ventilation.) Thus the appreciation of increase is proportionately more sensitive at higher levels of ventilation. Experiments in which the ventilation was increased by hypoxia or by following a visual demand, and observations of other sensations (oral, cerebral) indicate that the increase in vetilation is recognized through increased breathing rather than awareness of ventilatory stimuli.  相似文献   

18.
19.
Ethanol exerts profound effects on the endocrine and exocrine pancreas. Some effects of chronic alcohol consumption on insulin secretion in response to glucose load are similar to those of TRH gene disruption. TRH is present in insulin-producing B-cells of the islets of Langerhans; its role in this location is still not fully explored. To examine the possible effect of long-term in vivo ethanol treatment on pancreatic TRH we compared three groups of rats: a 10% (wt:vol) ethanol-drinking group (E), absolute controls (AC) and pair-fed (PF) group with solid food intake corresponding to that of E. The fluidity of pancreatic membranes was not affected by chronic in vivo exposure of rats to ethanol, but was significantly decreased in PF group. Four-week treatment resulted in significantly higher TRH content in isolated islets of the E group and increased basal and 80 mM isotonic ethanol-induced secretion compared to AC and PF. Plasma levels of insulin, C-peptide, IGF-I, and glycemia were, however, not affected by ethanol treatment. Cell swelling, which can be induced by the presence of permeants (e.g. ethanol) in an isotonic extracellular medium, is a strong stimulus for secretion in various types of cells. In the present study, isosmotic ethanol (40, 80, and 160 mM) induced dose-dependent release of TRH and insulin from adult rat pancreatic islets in vitro. The same concentrations were not effective when applied in a hyperosmotic medium (addition of ethanol directly to the medium), thus indicating the participation of cell swelling in the ethanol-induced secretion. In conclusion, chronic ethanol treatment significantly affected pancreatic TRH and this effect might be mediated by cell swelling. The role of these changes in the profound effect of ethanol on the endocrine and exocrine pancreas remains to be established.  相似文献   

20.
In the present study, the effect of TRH on amylase secretion was determined both in vivo, by cannulating the pancreatic duct of rats, as well as in vitro, by using isolated lobules and dissociated acini. The results show that TRH inhibited both basal and stimulated in vivo amylase secretion. Nevertheless, the in vitro experiments failed to show a TRH-related inhibitory effect when TRH was used alone, although the hormone did blunt the secretion elicited by CCK8 and bethanechol from isolated lobules and dissociated acini. Results suggest that TRH can inhibit stimulated amylase secretion in rats through a direct effect on acinar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号