首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amygdala plays a central role in evaluating the behavioral importance of sensory information. Anatomical subcortical pathways provide direct input to the amygdala from early sensory systems and may support an adaptively valuable rapid appraisal of salient information. However, the functional significance of these subcortical inputs remains controversial. We recorded magnetoencephalographic activity evoked by tones in the context of emotionally valent faces and tested two competing biologically motivated dynamic causal models against these data: the dual and cortical models. The dual model comprised two parallel (cortical and subcortical) routes to the amygdala, whereas the cortical model excluded the subcortical path. We found that neuronal responses elicited by salient information were better explained when a subcortical pathway was included. In keeping with its putative functional role of rapid stimulus appraisal, the subcortical pathway was most important early in stimulus processing. However, as often assumed, its action was not limited to the context of fear, pointing to a more widespread information processing role. Thus, our data supports the idea that an expedited evaluation of sensory input is best explained by an architecture that involves a subcortical path to the amygdala.  相似文献   

2.
A total of 12 Fischer rats was prepared surgically for chronic EEG recording from cortical and subcortical sites. Most rats, within 2 to 9 weeks after electrode implantation, developed polyspike activity in cortical and subcortical recordings that were without motor manifestations. Six of these rats, chronically treated po with Δ9-tetrahydrocannabinol (Δ9-THC) 10 mg/kg exhibited acute EEG changes with more frequent occurrence of EEG desynchronization and polyspike activity. On day 109 one of 6 rats displayed consulsive activity, with jerky movements of the head and paws, characteristics of Δ9-THC neurotoxicity. EEG alterations concomitant with motor signs included bursts of spikes of approximately 0.2 sec that occurred in subcortical, but not in cortical, recordings. It is concluded that in the Fischer rat acute and chronic treatment with Δ9-THC facilitated the occurrence of surgically-induced “polyspike” activity while chronic treatment caused occasional transient subcortical spike bursts with concomitant motor manifestations.  相似文献   

3.
By the slow bioelectrical activity parameter, with vector representation of experimental data, an attempt was made to reveal elements of integrative activity in the neuronally isolated cortex at early stages after its isolation from subcortical formations. Animals with an intact cerebral cortex were used as controls. It has been found that in spite of isolation of the cerebral cortex from synaptic influences of the subcortical structures, it possesses even at early stages after isolation (10--17th day) its own mechanisms of integrative activity, providing for the organization of background and evoked activity which are gradually normalized by the 30th to 40th day, without however reaching the level of activity of the intact cerebral cortex.  相似文献   

4.
Spectral-correlation analysis of the summate electrical activity of a number of subcortical structures of rabbit brain, having, by literature data, a relation to drinking behaviour showed that the increase of drinking excitability, induced by water deprivation was accompanied by definite reconstruction of biopotentials. In electrical activity of the studied structures, the spectrum power, as a rule, decreased (except in the paraventricular nucleus), and a definite structure of coherent connections between the subcortical and cortical potentials was established. Among the studied subcortical formations, structures (anterior hypothalamic area, lateral preoptic area, medial preoptic area, paraventricular nucleus) could be singled out where reconstructions of spectral characteristics of biopotentials took place most regularity, and the electrical processes in which were characterised by coherence index by an increase of spatial interconnection with the neocortex potentials, what allows to consider them as most significant for organization of drinking excitation.  相似文献   

5.
Changes in the activities of Leu- and Arg-arylamidase in rat frontal and parietal cortices and the subcortical area (including thalamus, hypothalamus, and striatum) were examined in the 2nd, 4th, 8th, 12th, and 24th weeks of life. Average levels found in the subcortical region were greater than those in the cortical areas. The most marked changes in enzymatic activity in the course of brain development were found in the subcortical structure. Leu-arylamidase activity increased from the 2nd week up to the 8th week, returning to the 2nd week level at the 12th and 24th weeks. The maximum levels of Arg-arylamidase activity were found at the 4th and 8th weeks. These data suggest that proteolytic activity is involved in the postnatal development of rat brain.  相似文献   

6.
Synchronized activity (spindles, augmentation response) evoked by stimulation of thalamic nonspecific, association, and specific nuclei was investigated in chronic experiments on 11 cats before and after successive destruction of the caudate nuclei. After destruction of the caudate nuclei the duration of spindle activity in the frontal cortex and subcortical formations (thalamic nuclei, globus pallidus, putamen) was reduced to only three or four oscillations. In the subcortical nuclei its amplitude fell significantly (by 50±10%); in the cortex the decrease in amplitude was smaller and in some cases was not significant. Different changes were observed in the amplitude of the augmentation response, depending on where it was recorded. In the subcortical formations it was considerably and persistently reduced (by 50±10%); in the cortex these changes were unstable in character. Unilateral destruction of the caudate nucleus inhibited synchronized activity evoked by stimulation of the thalamic nuclei on the side of the operation only. Destruction of the basal ganglia (caudate nucleus, globus pallidus, entopeduncular nucleus, and putamen) did not prevent the appearance of synchronized activity; just as after isolated destruction of the caudate nucleus, after this operation synchronized activity was simply reduced in duration and amplitude. It is suggested that the caudate nucleus exerts an ipsilateral facilitatory influence on the nonspecific system of the thalamus during the development of evoked synchronized activity.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 9, No. 3, pp. 239–248, May–June, 1977.  相似文献   

7.
Histochemical studies have been made on the distribution of acetyl- and butyrylcholinesterases (ACHE and BCHE) in various parts of the human and rat brain. Statistical analysis showed that at the 8th week, the highest ACHE activity in the human foetus is observed in the intermediate and plexiform layers of the cerebral cortex. The highest BCHE activity was found in the ependymal layer of various cerebral regions. High BCHE and ACHE activities were noted in the dorsal thalamus and epithalamus. In 10-week human foetuses, total high level of ACHE and BCHE was revealed in various nuclei of the thalamus and subcortical structures of the forebrain (Meynert nucleus, nucleus caudatum). In rats, the highest ACHE activity at the 14th day of prenatal life was found only in subcortical structures of the forebrain. Accumulation of BCHE activity in some of the thalamic nuclei of rats begins at the 10-17th day of postnatal life.  相似文献   

8.
The main objective of the present study was to determine whether cholinergic markers (choline acetyltransferase activity and nicotinic and muscarinic receptors) are altered in Alzheimer's disease. Choline acetyltransferase activity in Alzheimer's brains was markedly reduced in various cortical areas, in the hippocampus, and in the nucleus basalis of Meynert. The maximal density of nicotinic sites, measured using the novel nicotinic radioligand N-[3H]methylcarbamylcholine, was decreased in cortical areas and hippocampus but not in subcortical regions. M1 muscarinic cholinergic receptor sites were assessed using [3H]pirenzepine as a selective ligand; [3H]pirenzepine binding parameters were not altered in most cortical and subcortical structures, although the density of sites was modestly increased in the hippocampus and striatum. Finally, M2-like muscarinic sites were studied using [3H]-acetylcholine, under muscarinic conditions. In contrast to M1 muscarinic sites, the maximal density of M2-like muscarinic sites was markedly reduced in all cortical areas and hippocampus but was not altered in subcortical structures. These findings reveal an apparently selective alteration in the densities of putative nicotinic and muscarinic M2, but not M1, receptor sites in cortical areas and in the hippocampus in Alzheimer's disease.  相似文献   

9.
Previous studies have shown that the somatosensory evoked potentials (SEPs) recorded from the scalp are modified or gated during motor activity in man. Animal studies show corticospinal tract terminals in afferent relays, viz. dorsal horn of spinal cord, dorsal column nuclei and thalamus. Is the attenuation of the SEP during movement the result of gating in subcortical nuclei? This study has investigated the effect of manipulation and fractionated finger movements of the hand on the subcortically generated short latency SEPs in 9 healthy subjects. Left median nerve SEPs were recorded with electrodes optimally placed to record subcortical activity with the least degree of contamination. There was no statistically significant change in amplitude or latency of the P9, N11, N13, P14, N18 and N20 potentials during rest or voluntary movement of the fingers of the left hand or manipulation of objects placed in the hand. The shape of the N13 wave form was not modified during these 3 conditions. It is concluded that in man attenuation of cortical waves during manipulation is not due to an effect of gating in the subcortical sensory relay nuclei.  相似文献   

10.
Event-related potentials in visual and auditory target detection tasks were recorded simultaneously from the scalp, somatosensory thalamus and periaqueductal gray in a chronic pain patient with electrodes implanted subcortically for therapeutic purposes. Short latency tactile responses confirmed the location of the thalamic electrodes.Rare auditory stimuli which were detected by the subject were accompanied by a prominent P300 component at the scalp, and by negative activity at the subcortical sites with the same latency as the scalp positivity. This activity was not seen in responses to frequent non-target stimuli and was not dependent on an overt motor response.Similarly, rare visual stimuli generated a scalp P300 and negative activity subcortically; both scalp and subcortical waves had a longer latency than in the auditory experiment. The reaction time was similarly longer to visual targets.These data are inconsistent with a hippocampal generator for P300, but are consistent with a generator in the thalamus or more dorsally located structures.  相似文献   

11.
The role of the cerebral subcortical structures in speech formation was studied by analyzing the data on the comprehensive examination of children with alalia. Alalia is a systemic underdevelopment of speech in which all the speech components are disordered. The assessment of the functional state of the brain structures by means of EEG allowed us to identify two groups differing in the pattern of changes in bioelectrical activity (BEA): group 1 with α rhythm changes and/or local BEA changes, predominantly in the left hemisphere, and group 2 with predominantly generalized EEG changes of brainstem origin. Integrated analysis of clinical data allowed us to suggest that a lesion of the left hemisphere subcortical structures and the brainstem divisions underlies the formation of alalia. The analysis of the perinatal risk factors allowed us to advance the hypothesis that damage to the subcortical structures was linked to antenatal complications in the first half of pregnancy.  相似文献   

12.
Subcortical structures are involved in many healthy and pathological brain processes. It is crucial for many studies to use magnetoencephalography (MEG) to assess the ability to detect subcortical generators. This study aims to assess the source localization accuracy and to compare the characteristics of three inverse operators in the specific case of subcortical generators. MEG has a low sensitivity to subcortical sources mainly because of their distance from sensors and their complex cyto-architecture. However, we show that using a realistic anatomical and electrophysiological model of deep brain activity (DBA), the sources make measurable contributions to MEG sensors signals. Furthermore, we study the point-spread and cross-talk functions of the wMNE, sLORETA and dSPM inverse operators to characterize distortions in cortical and subcortical regions and to study how noise-normalization methods can improve or bias accuracy. We then run Monte Carlo simulations with neocortical and subcortical activations. In the case of single hippocampus patch activations, the results indicate that MEG can indeed localize the generators in the head and the body of the hippocampus with good accuracy. We then tackle the question of simultaneous cortical and subcortical activations. wMNE can detect hippocampal activations that are embedded in cortical activations that have less than double their amplitude, but it does not completely correct the bias to more superficial sources. dSPM and sLORETA can still detect hippocampal activity above this threshold, but such detection might include the creation of ghost deeper sources. Finally, using the DBA model, we showed that the detection of weak thalamic modulations of ongoing brain activity is possible.  相似文献   

13.
Complex children examination with alalia was based the analysis by the role of subcortical brain structures for the formation of speech was investigated. Alalia is systemic speech underdevelopment in children, which violated all the components of speech. Evaluation of the functional state of brain structures on the EEG has allowed to distinguish the two groups, which depend on the nature of changes in bioelectric activity (BEA). The first group is one with the changes of alpha rhythm and/or local changes in BEA predominantly in the left hemisphere, the second group with violations ofbrainstem origin, mainly generalized EEG changes. A comprehensive analysis of clinical data has allowed to suggest the basis of the formation alalia lies subcortical structures lesion of the left hemisphere of the brain and stem departments of one. The analysis of perinatal risk factors has allowed to hypothesize about the connection of subcortical structures lesion with antenatal complications in the first half of pregnancy.  相似文献   

14.
Histochemical investigations of acetyl- and butyrilcholinesterase (AChE and BChE) activity in the cortical plate and in some subcortical areas of the human brain have demonstrated that on the 8th week of the prenatal development of the greatest AChE and BChE activity is observed in the dorsal thalamus, epithalamus and in the ependymal layer of various cerebral parts, the forebrain including. The data obtained, prove previous observations, concerning predominant localization of AChE in the intermediate layer of the isocortex (10 weeks). In a 10-week-old human fetus a total high level of AChE and BChE activity is demonstrated in various nuclei of the thalamus and in subcortical structures of the forebrain (nucl. caudatus, Meynert nucl.).  相似文献   

15.
Background electrical activity and thresholds for the appearance of direct cortical responses (DCR) were studied in acute and chronic experiments on cats in some gyri of the intact and neuronally isolated cortex (the whole cortex was subjected to neuronal isolation [10]). It was determined that in intact animals the suprasylvian gyrus, particularly its central part, differs by its higher electrical activity and lower DCR thresholds from the ectosylvian gyrus. These differences are retained after neuronal isolation of the cortex from the subcortical structures. Hence the differences found in the neurophysiologic characteristics of the gyri under study reflect specific properties and are not mediated by subcortical neural effects.Institute of Experimental Medicine, Academy of Medical Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 2, No. 1, pp. 52–58, January–February, 1970.  相似文献   

16.
The effect of adrenaline (0.15 i.p./kg b.w.) and of the synthetic glucocorticoid triamcinolone (40 mg i.p./kg b.w.) on cytochrome oxidase activity, the terminal enzyme of the cytochrome system, was studied in homogenates of the cerebral cortex, subcortical formations (including the basal ganglia, the thalamus and the hypothalamus), the medulla oblongata and the liver of 5-day-old and adult rats. Activity in the above mentioned homogenates was measured polarographically 15 and 30 min after administering adrenaline or 48 h after administering triamcinolone. Fifteen minutes after its injection, adrenaline caused a statistically significant drop in cytochrome oxidase activity in the cerebral cortex, subcortical formations and liver of 5-day-old rats. The decrease still persisted 30 min after administration of the hormone, but was intensified only in the liver. In adult rats, on the other hand, a significant increase in activity was observed in the cerebral cortex and liver after adrenaline. Triamcinolone had no effect on cytochrome oxidase activity in any of the given parts of the brain in either young or adult rats. It significantly stimulated cytochrome oxidase activity in the liver of 5-day-old rats, but severely inhibited it in the liver of adult rats.  相似文献   

17.
By cytochemical and biochemical methods it is established that in rats with low motor activity the increased content of proteins of cytoplasma and nuclei of neurones of the sensorimotor cortex, caudate nucleus and n. accumbens, the increased activity of a number enzymes of oxidizing and protein metabolism in them are combined with a low activity of enzymes of mediator exchange. In the studied formations in rats with high motor activity an increased activity of synaptic and membrane forms of acetylcholinesterase appears at the same level of activity of cholineacetyltransferase in these subcortical formations and at high monoamineoxidase activity in cellular structures of the cortex and in subcortical formations. It is shown that in animals of the same line but differing by the behaviour in the open field, brain formations such as the sensorimotor cortex, caudate nucleus and n. accumbens have their own biochemical properties of the studied characteristics.  相似文献   

18.
Jiao Q  Ding J  Lu G  Su L  Zhang Z  Wang Z  Zhong Y  Li K  Ding M  Liu Y 《PloS one》2011,6(9):e25159

Background

A functional discrepancy exists in adolescents between frontal and subcortical regions due to differential regional maturational trajectories. It remains unknown how this functional discrepancy alters and whether the influence from the subcortical to the frontal system plays a primacy role in medication naïve adolescent with major depressive disorder (MDD).

Methodology/Principal Findings

Eighteen MDD and 18 healthy adolescents were enrolled. Depression and anxiety severity was assessed by the Short Mood and Feeling Questionnaire (SMFQ) and Screen for Child Anxiety Related Emotional Disorders (SCARED) respectively. The functional discrepancy was measured by the amplitude of low-frequency fluctuations (ALFF) of resting-state functional MRI signal. Correlation analysis was carried out between ALFF values and SMFQ and SCARED scores. Resting brain activity levels measured by ALFF was higher in the frontal cortex than that in the subcortical system involving mainly (para) limbic-striatal regions in both HC and MDD adolescents. The difference of ALFF values between frontal and subcortical systems was increased in MDD adolescents as compared with the controls.

Conclusions/Significance

The present study identified an increased imbalance of resting-state brain activity between the frontal cognitive control system and the (para) limbic-striatal emotional processing system in MDD adolescents. The findings may provide insights into the neural correlates of adolescent MDD.  相似文献   

19.
脊椎动物听觉皮层下该团的功能性研究被揭示时尚很有限,(?)报导用神经生化的方法,研究了大白鼠中枢神经系统中,与听觉有关的下丘,桥脑比全脑MAO-B monoamme oxidase E C 1.23.4的活性,及在药物作用下的变化,以探讨单胺类神经递质在支因下听觉中枢作用的可能性,结果表明:1.与听觉有关的下丘,桥脑MAO-B活性明显高于全脑的平均水平.2.药物制首乌对下丘、桥脑及全脑的MAO-B活性均有显著的抑制作用,结果提示:下丘、桥脑MAO-B对单胺类神经递质的氧化脱氨作用高于全脑的平均水平,单胺类神经递质有可能作为皮层下听觉中枢的神经递质参与听觉的活动.  相似文献   

20.
We have recently reported on the differential alterations of various cholinergic markers in cortical and subcortical regions in Alzheimer's disease (AD). The main purpose of the present study was to determine if cholinergic deficits observed in patients with AD are unique to this disorder or can be generalized to others such as idiopathic Parkinson's disease (PD) and PD with Alzheimer-type dementia (PD/AD). Muscarinic M1, M2, and nicotinic receptor binding parameters (KD and Bmax) were determined in various cortical and subcortical areas using selective radioligands ([3H]pirenzepine, [3H]AF-DX 116, and N[3H]methylcarbamylcholine). Choline acetyltransferase activity was also determined as a marker of the integrity of cholinergic innervation. Alterations of cholinergic markers are comparable in cortical areas in AD, PD, and PD/AD brains. In frontal and temporal cortices, as well as in the hippocampus, choline acetyltransferase activity and binding capacities of M2 and nicotinic binding sites are similarly decreased in these three disorders compared with age-matched control values. M1 receptor binding parameters are not significantly modified in cortical areas in patients with these disorders. In contrast, important differences between AD and PD brain tissues are found in subcortical areas such as the striatum and the thalamus. The density of M1 sites is significantly increased in striatal areas only in patients with AD, whereas densities of nicotinic sites are decreased in thalamus and striatum in PD and PD/AD, but not AD, brain tissues. The binding capacity of M2 sites is apparently unchanged in subcortical areas in all three disorders, although tendencies toward reductions are observed in the striatum of PD and PD/AD patients. Thus, although comparable alterations of various cholinergic markers are observed in cortical areas in the three neurological disorders investigated in the present study, important differences are seen in subcortical areas. This may be relevant to the respective etiological and clinical profiles of AD and PD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号