首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Calcium pyrophosphate dihydrate deposition disease is a relatively rare disease with variable clinical presentations. CASE: A 73-year-old man presented with worsening lower back pain and fever. Fine needle aspiration biopsy of the lumbar vertebral bodies (L3-L4) revealed abundant neutrophils admixed with small, birefringent, rhomboid crystals in Diff-Quik-stained smears. These crystals were confirmed as calcium pyrophosphate dihydrate on cell block sections. A diagnosis of osteomyelitis and calcium pyrophosphate dihydrate deposition disease was rendered. The patient was treated with antibiotics and responded well. CONCLUSION: Calcium pyrophosphate dihydrate deposition disease can be diagnosed by fine needle aspiration biopsy, and an accurate diagnosis can be greatly facilitated by cell block sections. However, such a diagnosis may be neglected if the specimen is not carefully inspected.  相似文献   

2.
Ank is a multipass transmembrane protein that regulates the cellular transport of inorganic pyrophosphate. In the progressive ankylosis (ank) mouse, a premature termination mutation at glutamic acid 440 results in a phenotype characterized by inappropriate deposition of basic calcium phosphate crystals in skeletal tissues. Mutations in the amino terminus of ANKH, the human homolog of Ank, result in familial calcium pyrophosphate dihydrate deposition disease. It has been hypothesized that these mutations result in a gain-of-function with respect to the elaboration of extracellular inorganic pyrophosphate. To explore this issue in a mineralization-competent system, we stably transduced ATDC5 cells with wild-type Ank as well as with familial chondrocalcinosis-causing Ank mutations. We evaluated the elaboration of inorganic pyrophosphate, the activity of pyrophosphate-modulating enzymes, and the mineralization in the transduced cells. Expression of transduced protein was confirmed by quantitative real-time PCR and by ELISA. Levels of inorganic pyrophosphate were measured, as were the activities of nucleotide pyrophosphatase phosphodiesterase and alkaline phosphatase. We also evaluated the expression of markers of chondrocyte maturation and the nature of the mineralization phase elaborated by transduced cells. The cell line expressing the proline to leucine mutation at position 5 (P5L) consistently displayed higher levels of extracellular inorganic pyrophosphate and higher phosphodiesterase activity than the other transduced lines. During hypertrophy, however, extracellular inorganic pyrophosphate levels were modulated by alkaline phosphatase activity in this cell system, resulting in the deposition of basic calcium phosphate crystals only in all transduced cell lines. Cells overexpressing wild-type Ank displayed a higher level of expression of type X collagen than cells transduced with mutant Ank. Other markers of hypertrophy and terminal differentiation, such as alkaline phosphatase, osteopontin, and runx2, were not significantly different in cells expressing wild-type or mutant Ank in comparison with cells transduced with an empty vector or with untransduced cells. These results suggest that the P5L Ank mutant is capable of demonstrating a gain-of-function with respect to extracellular inorganic pyrophosphate elaboration, but this effect is modified by high levels of expression of alkaline phosphatase in ATDC5 cells during hypertrophy and terminal differentiation, resulting in the deposition of basic calcium phosphate crystals.  相似文献   

3.
Ank is a multipass transmembrane protein that regulates the cellular transport of inorganic pyrophosphate. In the progressive ankylosis (ank) mouse, a premature termination mutation at glutamic acid 440 results in a phenotype characterized by inappropriate deposition of basic calcium phosphate crystals in skeletal tissues. Mutations in the amino terminus of ANKH, the human homolog of Ank, result in familial calcium pyrophosphate dihydrate deposition disease. It has been hypothesized that these mutations result in a gain-of-function with respect to the elaboration of extracellular inorganic pyrophosphate. To explore this issue in a mineralization-competent system, we stably transduced ATDC5 cells with wild-type Ank as well as with familial chondrocalcinosis-causing Ank mutations. We evaluated the elaboration of inorganic pyrophosphate, the activity of pyrophosphate-modulating enzymes, and the mineralization in the transduced cells. Expression of transduced protein was confirmed by quantitative real-time PCR and by ELISA. Levels of inorganic pyrophosphate were measured, as were the activities of nucleotide pyrophosphatase phosphodiesterase and alkaline phosphatase. We also evaluated the expression of markers of chondrocyte maturation and the nature of the mineralization phase elaborated by transduced cells. The cell line expressing the proline to leucine mutation at position 5 (P5L) consistently displayed higher levels of extracellular inorganic pyrophosphate and higher phosphodiesterase activity than the other transduced lines. During hypertrophy, however, extracellular inorganic pyrophosphate levels were modulated by alkaline phosphatase activity in this cell system, resulting in the deposition of basic calcium phosphate crystals only in all transduced cell lines. Cells overexpressing wild-type Ank displayed a higher level of expression of type X collagen than cells transduced with mutant Ank. Other markers of hypertrophy and terminal differentiation, such as alkaline phosphatase, osteopontin, and runx2, were not significantly different in cells expressing wild-type or mutant Ank in comparison with cells transduced with an empty vector or with untransduced cells. These results suggest that the P5L Ank mutant is capable of demonstrating a gain-of-function with respect to extracellular inorganic pyrophosphate elaboration, but this effect is modified by high levels of expression of alkaline phosphatase in ATDC5 cells during hypertrophy and terminal differentiation, resulting in the deposition of basic calcium phosphate crystals.  相似文献   

4.
Chronic calcium pyrophosphate crystal arthritis is a clinical consequence of the formation and deposition of these crystals in joints and can result in persistent arthritis. Curative treatment would require the removal of crystals from joints and tissues, but to date all agents tested have proven ineffective. Management of the inflammatory manifestations of chronic calcium pyrophosphate disease includes glucocorticoids, non-steroidal anti-inflammatory drugs, or colchicine, and responses are usually satisfactory. However, in some patients, the response to these agents is poor or they are contraindicated. Methotrexate had been reported as a promising option in small case series; however, in a recent issue of Arthritis Research & Therapy, a clinical trial failed to confirm the anticipated benefits. Here, we discuss some issues that might have influenced the results of the study, before deciding to abandon methotrexate as a therapeutic option for patients with chronic calcium pyrophosphate arthritis.  相似文献   

5.
Calcium pyrophosphate dihydrate crystal deposition disease (CPDD) was recognized in 4 of 30 free-ranging rhesus macaques. By means of tissue radiography, focal radiodensities were noted in lumbar intervertebral discs, menisci, and articular cartilage. Crystal deposits were identified as calcium pyrophosphate dihydrate (Ca2P2O7 X 2H2O) by means of X-ray diffraction. The pathogenesis of calcium pyrophosphate dihydrate arthropathy in man remains elusive. However, with the recognition of this arthritis in a well defined population of aged nonhuman primates, a model now exists to facilitate the study of this disease.  相似文献   

6.
Familial autosomal dominant calcium pyrophosphate dihydrate (CPPD) chondrocalcinosis has previously been mapped to chromosome 5p15. We have identified a mutation in the ANKH gene that segregates with the disease in a family with this condition. ANKH encodes a putative transmembrane inorganic pyrophosphate (PPi) transport channel. We postulate that loss of function of ANKH causes elevated extracellular PPi levels, predisposing to CPPD crystal deposition.  相似文献   

7.
Among 61 patients undergoing maintenance peritoneal dialysis for an average of 20 months, 13 (21%) had a history of attacks of acute arthritis and 19 (31%) were found to have tender and often swollen joints. Deposits of calcium pyrophosphate dihydrate crystals in articular cartilage were identified in four patients and inflammation probably induced by hydroxyapatite crystals was noted in one. Periarticular calcification was observed in 12 patients and subperiosteal resorption of the phalanges in 20. The average calcium X phosphorus product was significantly higher (P < 0.025) in patients with a history of attacks of acute arthritis or with inflamed joints (58 +/- 12) than in those without (50 +/- 12). In the 19 patients whose treatment was changed to continuous ambulatory peritoneal dialysis there was a significant decrease (P < 0.025) in the calcium X phosphorus product but not in the proportion of patients with attacks of acute arthritis or with inflamed joints. The results indicate that articular complications are frequent among patients undergoing maintenance peritoneal dialysis and may be more common than with long-term hemodialysis.  相似文献   

8.
9.
The activation patterns of human neutrophils elicited by unopsonized monosodium urate and calcium pyrophosphate dihydrate crystals were investigated. The parameters chosen, the mobilization of calcium and the synthesis of leukotrienes, are generally accepted to be relevant to the activation of the cells and their pathophysiological roles. Both particles were found to elicit increases in cytoplasmic free calcium and leukotriene synthesis. However, the rank order of potency of these two stimuli was found to be sharply dependent on the test chosen. Monosodium urate crystals were significantly more effective than calcium pyrophosphate dihydrate crystals in terms of calcium mobilization, while the latter are more potent at inducing leukotriene synthesis. These results demonstrate that these two phagocytic particles which are related to separate inflammatory joint diseases differentially activate the excitation-response coupling sequence of human neutrophils.  相似文献   

10.
Inorganic pyrophosphate elaboration by articular cartilage may favor calcium pyrophosphate dihydrate crystal deposition. Frequently crystal deposits form in persons affected with metabolic diseases. The cartilage organ culture system was used to model these metabolic conditions while measuring the influence on extracellular pyrophosphate elaboration. Alterations of ambient pH, thyroid stimulating hormone levels, and parathyroid hormone levels did not change pyrophosphate accumulation in the media. However, subphysiologic ambient calcium concentrations (25, 100, 500 microM) increased pyrophosphate accumulation about chondrocytes 3- to 10-fold. Low calcium also induced release of [14C]adenine-labeled nucleotides from chondrocytes, potential substrates for generation of extracellular pyrophosphate by ectoenzymes. Exposing cartilage to 10% fetal bovine serum also enhanced by 50% the egress of inorganic pyrophosphate from the tissue.  相似文献   

11.
A G Fam  J R Topp  H B Stein  A H Little 《CMAJ》1981,124(5):545-551
Pseudogout, defined as recurrent acute arthritis due to intrasynovial deposition of calcium pyrophosphate dihydrate crystals, is a relatively common arthritic disorder of the elderly. The clinical and roentgenographic aspects of 50 cases of pseudogout in hospitalized patients are reviewed in this paper. Oligoarticular and polyarticular episodes were observed in half of these patients. Antecedent problems included infection, trauma, surgery and vascular events. Consistent with previous reports, most patients had roentgenographic evidence of chondrocalcinosis. A third had asymptomatic capsular or periarticular calcific deposits or both, and a third had pyrophosphate arthropathy, a progressive, destructive, accelerated form of osteoarthritis. An attack of pseudogout may offer a clue to the presence of an unsuspected metabolic disease, such as primary hyperparathyroidism or idiopathic hemochromatosis.  相似文献   

12.
Purinergic Signalling - Overproduction of extracellular diphosphate due to hydrolysis of ATP by NPP1 leads to pathological calcium diphosphate (pyrophosphate)&nbsp;dihydrate deposition (CPPD)...  相似文献   

13.
John P  Ali G  Chishti MS  Naqvi SM  Leal SM  Ahmad W 《Human genetics》2006,118(5):665-667
Alopecia with mental retardation syndrome is a rare autosomal recessive disorder characterized clinically by total or partial alopecia and mental retardation. In an effort to understand the molecular bases of this form of alopecia syndrome, large Pakistani consanguineous kindred with multiple affected individuals has been ascertained from a remote region in Pakistan. Genome wide scan mapped the disease locus on chromosome 3q26.33–q27.3. A maximum two-point LOD score of 3.05 (θ=0.0) was obtained at marker D3S3583. Maximum multipoint LOD score exceeding 5.0, obtained with several markers, supported the linkage. Recombination events observed in affected individuals localized the disease locus between markers D3S1232 and D3S2436, spanning 11.49-cM region on chromosome 3q26.33–q27.3. Sequence analysis of a candidate gene ETS variant gene 5 from DNA samples of two affected individuals of the family revealed no mutation.  相似文献   

14.
The interaction of particulates with resident macrophages is a consistent feature in certain forms of crystal-induced inflammation, for example, in synovial tissues, lung, and the peritoneum. The mitogenic activity of basic calcium phosphate (BCP) crystals and calcium pyrophosphate dihydrate (CPPD) crystals on synovial fibroblasts has been considered relevant to the synovial hyperplasia observed in crystal-induced arthritis. The aim of the study was to determine whether microcrystals such as these could enhance macrophage survival and induce DNA synthesis, thus indicating that they may contribute to the tissue hyperplasia.  相似文献   

15.
Craniometaphyseal dysplasia--Jackson type (CMDJ) is an autosomal dominant bone dysplasia with hyperostosis and sclerosis of the skull and abnormal modelling of the metaphyses. In a large German pedigree, a locus for CMDJ has been mapped previously to the short arm of chromosome 5 (5p15.2-p14.1), defining a 19-cM disease interval between markers D5S2004 and D5S502. Analysis of a large Australian pedigree together with a second German family confirms linkage to the same region. Obligate recombinations in the new families and confirmation of a supposed recombination in the previously reported German kindred have enabled us to narrow the critical region down to approximately 4 cM between markers D5S1987 and D5S1991.  相似文献   

16.
Calcium pyrophosphate dihydrate (CPPD) crystals are commonly found in osteoarthritic joint tissues, where they predict severe disease. Unlike other types of calcium phosphate crystals, CPPD crystals form almost exclusively in the pericellular matrix of damaged articular cartilage, suggesting a key role for the extracellular matrix milieu in their development. Osteopontin is a matricellular protein found in increased quantities in the pericellular matrix of osteoarthritic cartilage. Osteopontin modulates the formation of calcium-containing crystals in many settings. We show here that osteopontin stimulates ATP-induced CPPD crystal formation by chondrocytes in vitro. This effect is augmented by osteopontin's incorporation into extracellular matrix by transglutaminase enzymes, is only modestly affected by its phosphorylation state, and is inhibited by integrin blockers. Surprisingly, osteopontin stimulates transglutaminase activity in cultured chondrocytes in a dose-responsive manner. As elevated levels of transglutaminase activity promote extracellular matrix changes that permit CPPD crystal formation, this is one possible mechanism of action. We demonstrate the presence of osteopontin in the pericellular matrix of chondrocytes adjacent to CPPD deposits and near active transglutaminases. Thus, osteopontin may play an important role in facilitating CPPD crystal formation in articular cartilage.  相似文献   

17.
The cause of Parkinson disease (PD) is still unknown, but genetic factors have recently been implicated in the etiology of the disease. So far, four loci responsible for autosomal dominant PD have been identified. Autosomal recessive juvenile parkinsonism (ARJP) is a clinically and genetically distinct entity; typical PD features are associated with early onset, sustained response to levodopa, and early occurrence of levodopa-induced dyskinesias, which are often severe. To date, only one ARJP gene, Parkin, has been identified, and multiple mutations have been detected both in families with autosomal recessive parkinsonism and in sporadic cases. The Parkin-associated phenotype is broad, and some cases are indistinguishable from idiopathic PD. In > or = 50% of families with ARJP that have been analyzed, no mutations could be detected in the Parkin gene. We identified a large Sicilian family with four definitely affected members (the Marsala kindred). The phenotype was characterized by early-onset (range 32-48 years) parkinsonism, with slow progression and sustained response to levodopa. Linkage of the disease to the Parkin gene was excluded. A genomewide homozygosity screen was performed in the family. Linkage analysis and haplotype construction allowed identification of a single region of homozygosity shared by all the affected members, spanning 12.5 cM on the short arm of chromosome 1. This region contains a novel locus for autosomal recessive early-onset parkinsonism, PARK6. A maximum LOD score 4.01 at recombination fraction .00 was obtained for marker D1S199.  相似文献   

18.
Charcot-Marie-Tooth disease (CMT) is the most common inherited motor and sensory neuropathy. The neuronal form of this disorder is referred to as Charcot-Marie-Tooth type II disease (CMT2). CMT2 is usually inherited as an autosomal dominant trait with a variable age at onset of symptoms associated with progressive axonal neuropathy. In some families, the locus that predisposes to CMT2 has been demonstrated to map to the distal portion of the short arm of chromosome 1. Other families with CMT2 do not show linkage with 1p markers, suggesting genetic heterogeneity in CMT2. We investigated linkage in a single large kindred with autosomal dominant CMT2. The gene responsible for CMT2 in this kindred (CMT2B) was mapped to the interval between the microsatellite markers D3S1769 and D3S1744 in the 3q13-22 region. Study of additional CMT2 kindreds should serve to further refine the disease gene region and may ultimately lead to the identification of a gene defect that underlies the CMT2 phenotype.  相似文献   

19.
Autosomal dominant cerebellar ataxia type III (ADCA III) is a relatively benign, late-onset, slowly progressive neurological disorder characterized by an uncomplicated cerebellar syndrome. Three loci have been identified: a moderately expanded CAG trinucleotide repeat in the SCA 6 gene, the SCA 5 locus on chromosome 11, and a third locus on chromosome 22 (SCA 10). We have identified two British families in which affected individuals do not have the SCA 6 expansion and in which the disease is not linked to SCA 5 or SCA 10. Both families exhibit the typical phenotype of ADCA III. Using a genomewide searching strategy in one of these families, we have linked the disease phenotype to marker D15S1039. Construction of haplotypes has defined a 7.6-cM interval between the flanking markers D15S146 and D15S1016, thereby assigning another ADCA III locus to the proximal long-arm of chromosome 15 (SCA 11). We excluded linkage of the disease phenotype to this region in the second family. These results indicate the presence of two additional ADCA III loci and more clearly define the genetic heterogeneity of ADCA III.  相似文献   

20.
The purpose of this paper is to report the linkage of a genetic locus (designated "HBM") in the human genome to a phenotype of very high spinal bone density, using a single extended pedigree. We measured spinal bone-mineral density, spinal Z(BMD), and collected blood from 22 members of this kindred. DNA was genotyped on an Applied Biosystems model 377 (ABI PRISM Linkage Mapping Sets; Perkin Elmer Applied Biosystems), by use of fluorescence-based marker sets that included 345 markers. Both two-point and multipoint linkage analyses were performed, by use of affected/unaffected and quantitative-trait models. Spinal Z(BMD) for affected individuals (N = 12) of the kindred was 5.54 +/- 1.40; and for unaffected individuals (N = 16) it was 0.41 +/- 0.81. The trait was present in affected individuals 18-86 years of age, suggesting that HBM influences peak bone mass. The only region of linkage was to a series of markers on chromosome 11 (11q12-13). The highest LOD score (5.21) obtained in two-point analysis, when a quantitative-trait model was used, was at D11S987. Multipoint analysis using a quantitative-trait model confirmed the linkage, with a LOD score of 5.74 near marker D11S987. HBM demonstrates the utility of spinal Z(BMD) as a quantitative bone phenotype that can be used for linkage analysis. Osteoporosis pseudoglioma syndrome also has been mapped to this region of chromosome 11. Identification of the causal gene for both traits will be required for determination of whether a single gene with different alleles that determine a wide range of peak bone densities exists in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号