首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterotrimeric G proteins are ubiquitous signaling partners of seven transmembrane-domain G-protein-coupled receptors (GPCRs), the largest (and most important pharmacologically) receptor family in mammals. A number of scaffolding proteins have been identified that regulate various facets of GPCR signaling. In this review, we summarize current knowledge concerning those scaffolding proteins that are known to directly bind heterotrimeric G proteins, and discuss the composition of the protein complexes they assemble and their effects on signal transduction. Emerging evidence about possible ways of regulation of activity of these scaffolding proteins is also discussed.  相似文献   

2.
Chen Y  Ji F  Xie H  Liang J  Zhang J 《Plant physiology》2006,140(1):302-310
The regulator of G-protein signaling (RGS) proteins, recently identified in Arabidopsis (Arabidopsis thaliana; named as AtRGS1), has a predicted seven-transmembrane structure as well as an RGS box with GTPase-accelerating activity and thus desensitizes the G-protein-mediated signaling. The roles of AtRGS1 proteins in Arabidopsis seed germination and their possible interactions with sugars and abscisic acid (ABA) were investigated in this study. Using seeds that carry a null mutation in the genes encoding RGS protein (AtRGS1) and the alpha-subunit (AtGPA1) of the G protein in Arabidopsis (named rgs1-2 and gpa1-3, respectively), our genetic evidence proved the involvement of the AtRGS1 protein in the modulation of seed germination. In contrast to wild-type Columbia-0 and gpa1-3, stratification was found not to be required and the after-ripening process had no effect on the rgs1-2 seed germination. In addition, rgs1-2 seed germination was insensitive to glucose (Glc) and sucrose. The insensitivities of rgs1-2 to Glc and sucrose were not due to a possible osmotic stress because the germination of rgs1-2 mutant seeds showed the same response as those of gpa1-3 mutants and wild type when treated with the same concentrations of mannitol and sorbitol. The gpa1-3 seed germination was hypersensitive while rgs1-2 was less sensitive to exogenous ABA. The different responses to ABA largely diminished and the inhibitory effects on seed germination by exogenous ABA and Glc were markedly alleviated when endogenous ABA biosynthesis was inhibited. Hypersensitive responses of seed germination to both Glc and ABA were also observed in the overexpressor of AtRGS1. Analysis of the active endogenous ABA levels and the expression of NCED3 and ABA2 genes showed that Glc significantly stimulated the ABA biosynthesis and increased the expression of NCED3 and ABA2 genes in germinating Columbia seeds, but not in rgs1-2 mutant seeds. These data suggest that AtRGS1 proteins are involved in the regulation of seed germination. The hyposensitivity of rgs1-2 mutant seed germination to Glc might be the result of the impairment of ABA biosynthesis during seed germination.  相似文献   

3.
RGS2: a multifunctional regulator of G-protein signaling   总被引:5,自引:0,他引:5  
Regulators of G-protein signaling (RGS) proteins enhance the intrinsic rate at which certain heterotrimeric G-protein alpha-subunits hydrolyze GTP to GDP, thereby limiting the duration that alpha-subunits activate downstream effectors. This activity defines them as GTPase activating proteins (GAPs). As do other RGS proteins RGS2 possesses a 120 amino acid RGS domain, which mediates its GAP activity. In addition, RGS2 shares an N-terminal membrane targeting domain with RGS4 and RGS16. Found in many cell types, RGS2 expression is highly regulated. Functionally, RGS2 blocks Gq alpha-mediated signaling, a finding consistent with its potent Gq alpha GAP activity. Surprisingly, RGS2 inhibits Gs signaling to certain adenylyl cyclases. Like other RGS proteins, RGS2 lacks Gs alpha GAP activity, however it directly inhibits the activity of several adenylyl cyclase isoforms. Targeted mutation of RGS2 in mice impairs anti-viral immunity, increases anxiety levels, and alters synaptic development in hippocampal CA1 neurons. RGS2 has emerged as a multifunctional RGS protein that regulates multiple G-protein linked signaling pathways.  相似文献   

4.
AG490 is a tyrosine kinase inhibitor with activity against Jak2 and apoptotic activity in specific leukemias. Due to its weak kinase inhibitory activity and poor pharmacology, we conducted a cell-based screen for derivatives with improved Jak2 inhibition and activity in animals. Two hits emerged from an initial small chemical library screen, and more detailed structure–activity relationship studies led to the development of WP1130 with 50-fold greater activity in suppressing Jak2-dependent cytokine signaling than AG490. However, WP1130 did not directly suppress Jak2 kinase activity, but mediated Jak2 ubiquitination resulting in its trafficking through HDAC6 to perinuclear aggresomes without cytokine stimulation or SOCS-1 induction. Jak2 primarily contained K63-linked ubiquitin polymers, and mutation of this lysine blocked Jak2 ubiquitination and mobilization in WP1130-treated cells. Further analysis demonstrated that WP1130, but not AG490, acts as a deubiquitinating enzyme (DUB) inhibitor, possibly through a Michael addition reaction. We conclude that chemical modification of AG490 resulted in development of a DUB inhibitor with activity against a DUB capable of modulating Jak2 ubiquitination, trafficking and signal transduction.  相似文献   

5.
Lin YR  Kim K  Yang Y  Ivessa A  Sadoshima J  Park Y 《Aging cell》2011,10(3):438-447
Regulator of G-protein signaling (RGS) proteins contribute to G-protein signaling pathways as activators or repressors with GTPase-activating protein (GAP) activity. To characterize whether regulation of RGS proteins influences longevity in several species, we measured stress responses and lifespan of RGS-overexpressing and RGS-lacking mutants. Reduced expression of Loco, a RGS protein of Drosophila melanogaster, resulted in a longer lifespan for both male and female flies, also exhibiting stronger resistance to three different stressors (starvation, oxidation, and heat) and higher manganese-containing superoxide dismutase (MnSOD) activity. In addition, this reduction in Loco expression increased fat content and diminished cAMP levels. In contrast, overexpression of both genomic and cDNA loco gene significantly shortened the lifespan with weaker stress resistance and lower fat content. Deletion analysis of the Loco demonstrated that its RGS domain is required for the regulation of longevity. Consistently, when expression of RGS14, mammalian homologue of Loco, was reduced in rat fibroblast cells, the resistance to oxidative stress increased with higher MnSOD expression. The changes of yeast Rgs2 expression, which shares a conserved RGS domain with the fly Loco protein, also altered lifespan and stress resistance in Saccharomyces cerevisiae. Here, we provide the first evidence that RGS proteins with GAP activity affect both stress resistance and longevity in several species.  相似文献   

6.
Regulators of G-protein signaling (RGS) proteins are GTPase-activating proteins (GAP) for various Gα subunits of heterotrimeric G proteins. Through this mechanism, RGS proteins regulate the magnitude and duration of G-protein-coupled receptor signaling and are often referred to as fine tuners of G-protein signaling. Increasing evidence suggests that RGS proteins themselves are regulated through multiple mechanisms, which may provide an even finer tuning of G-protein signaling and crosstalk between G-protein-coupled receptors and other signaling pathways. This review summarizes the current data on the control of RGS function through regulated expression, intracellular localization, and covalent modification of RGS proteins, as related to cell function and the pathogenesis of diseases.  相似文献   

7.
Tonoplast intrinsic proteins (TIPs) facilitate the membrane transport of water and other small molecules across the plant vacuolar membrane, and members of this family are expressed in specific developmental stages and tissue types. Delivery of TIP proteins to the tonoplast is thought to occur by vesicle-mediated traffic from the endoplasmic reticulum to the vacuole, and at least two pathways have been proposed, one that is Golgi-dependent and another that is Golgi-independent. However, the mechanisms for trafficking of vacuolar membrane proteins to the tonoplast remain poorly understood. Here we describe a chemical genetic approach to unravel the mechanisms of TIP protein targeting to the vacuole in Arabidopsis seedlings. We show that members of the TIP family are targeted to the vacuole via at least two distinct pathways, and we characterize the bioactivity of a novel inhibitor that can differentiate between them. We demonstrate that, unlike for TIP1;1, trafficking of markers for TIP3;1 and TIP2;1 is insensitive to Brefeldin A in Arabidopsis hypocotyls. Using a chemical inhibitor that may target this BFA-insensitive pathway for membrane proteins, we show that inhibition of this pathway results in impaired root hair growth and enhanced vacuolar targeting of the auxin efflux carrier PIN2 in the dark. Our results indicate that the vacuolar targeting of PIN2 and the BFA-insensitive pathway for tonoplast proteins may be mediated in part by common mechanisms.  相似文献   

8.
Recently, the heterocyclic compound 8-oxo-3-thiomorpholino-8H-acenaphtho[1,2-b]pyrrole-9-carboni-trile (S1) was synthesized and shown to induce apoptosis in both (H22) hematoma and (MCF-7) ade-nocarcinoma cells. The IC50 values of S1 against the two cell lines were 0.17 and 0.09 μmol/L, respec-tively. Furthermore, the apoptosis-inducing activity of this compound was highlighted both in vivo and in vitro. Subsequent experiments identified Bcl-2 as the primary target of S1, as a significant reduc-tion in Bcl-2 protein levels was observed in H22 cells following a two-hour treatment with 10 μmol/L S1. While rapid depolarization of mitochondrial membranes led immediately to caspase 9 activation, no changes were identified in either caspase 8 levels or levels in Bcl-2 mRNA. These data were consistent with the results of circular dichroism (CD) spectra analysis, revealing that S1 inactivated the Bcl-2 protein by destroying its critical alpha helices. Taken together, these results suggest the potential of S1 in the development of new therapeutic agents.  相似文献   

9.
Recently, the heterocyclic compound 8-oxo-3-thiomorpholino-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile (S1) was synthesized and shown to induce apoptosis in both (H22) hematoma and (MCF-7) adenocarcinoma cells. The IC50 values of S1 against the two cell lines were 0.17 and 0.09 μmol/L, respectively. Furthermore, the apoptosis-inducing activity of this compound was highlighted both in vivo and in vitro. Subsequent experiments identified Bcl-2 as the primary target of S1, as a significant reduction in Bcl-2 protein levels was observed in H22 cells following a two-hour treatment with 10 μmol/L S1. While rapid depolarization of mitochondrial membranes led immediately to caspase 9 activation, no changes were identified in either caspase 8 levels or levels in Bcl-2 mRNA. These data were consistent with the results of circular dichroism (CD) spectra analysis, revealing that S1 inactivated the Bcl-2 protein by destroying its critical alpha helices. Taken together, these results suggest the potential of S1 in the development of new therapeutic agents.  相似文献   

10.
Wang J  Xie Y  Wolff DW  Abel PW  Tu Y 《FEBS letters》2010,584(22):4570-4574
Regulator of G-protein signaling 4 (RGS4), an intracellular modulator of G-protein coupled receptor (GPCR)-mediated signaling, is regulated by multiple processes including palmitoylation and proteasome degradation. We found that co-expression of DHHC acyltransferases (DHHC3 or DHHC7), but not their acyltransferase-inactive mutants, increased expression levels of RGS4 but not its Cys2 to Ser mutant (RGS4C2S). DHHC3 interacts with and palmitoylates RGS4 but not RGS4C2S in vivo. Palmitoylation prolongs the half-life of RGS4 by over 8-fold and palmitoylated RGS4 blocked α1A-adrenergic receptor-stimulated intracellular Ca2+ mobilization. Together, our findings revealed that DHHC proteins could regulate GPCR-mediated signaling by increasing RGS4 stability.

Structured summary

MINT-8049215: Rgs4 (uniprotkb:P49799) physically interacts (MI:0915) with DHHC3 (uniprotkb:Q8R173) by anti-tag coimmunoprecipitation (MI:0007)  相似文献   

11.
The histone acetyltransferase Rtt109 is the sole enzyme responsible for acetylation of histone H3 lysine 56 (H3K56) in fungal organisms. Loss of Rtt109 renders fungal cells extremely sensitive to genotoxic agents, and prevents pathogenesis in several clinically important species. Here, via a high throughput chemical screen of >300,000 compounds, we discovered a chemical inhibitor of Rtt109 that does not inhibit other acetyltransferase enzymes. This compound inhibits Rtt109 regardless of which histone chaperone cofactor protein (Asf1 or Vps75) is present, and appears to inhibit Rtt109 via a tight-binding, uncompetitive mechanism.  相似文献   

12.
A small molecule inhibitor of alpha4 integrin-dependent cell migration was identified through a cell-based screen of small molecule libraries. Biochemical and cellular experiments suggest that this molecule functions by interacting with gamma-parvin. This molecule should serve as a useful tool to study alpha4 integrin signaling and may lead to new therapeutics for the treatment of autoimmune diseases.  相似文献   

13.
G-protein coupled receptor (GPCR) signaling represents one of the most conserved and ubiquitous means in mammalian cells for transferring information across the plasma membrane to the intracellular environment. Heterotrimeric G-protein subunits play key roles in transducing these signals, and intracellular regulators influencing the activation state and interaction of these subunits regulate the extent and duration of GPCR signaling. One class of intracellular regulator, the non-receptor activators of G-protein signaling (or AGS proteins), are the major focus of this review. AGS proteins provide a basis for understanding the function of heterotrimeric G-proteins in both GPCR-driven and GPCR independent cellular signaling pathways.  相似文献   

14.
Heterotrimeric G-proteins and the regulator of G-protein signaling (RGS) proteins, which accelerate the inherent GTPase activity of Gα proteins, are common in animals and encoded by large gene families; however, in plants G-protein signaling is thought to be more limited in scope. For example, Arabidopsis thaliana contains one Gα, one Gβ, three Gγ, and one RGS protein. Recent examination of the Glycine max (soybean) genome reveals a larger set of G-protein-related genes and raises the possibility of more intricate G-protein networks than previously observed in plants. Stopped-flow analysis of GTP-binding and GDP/GTP exchange for the four soybean Gα proteins (GmGα1-4) reveals differences in their kinetic properties. The soybean genome encodes two chimeric RGS proteins with an N-terminal seven transmembrane domain and a C-terminal RGS box. Both GmRGS interact with each of the four GmGα and regulate their GTPase activity. The GTPase-accelerating activities of GmRGS1 and -2 differ for each GmGα, suggesting more than one possible rate of the G-protein cycle initiated by each of the Gα proteins. The differential effects of GmRGS1 and GmRGS2 on GmGα1-4 result from a single valine versus alanine difference. The emerging picture suggests complex regulation of the G-protein cycle in soybean and in other plants with expanded G-protein networks.  相似文献   

15.
Physiological actions of regulators of G-protein signaling (RGS) proteins   总被引:5,自引:0,他引:5  
Ishii M  Kurachi Y 《Life sciences》2003,74(2-3):163-171
Regulators of G-protein signaling (RGS) proteins are a family of proteins, which accelerate GTPase-activity intrinsic to the alpha subunits of heterotrimeric G-proteins and play crucial roles in the physiological control of G-protein signaling. If RGS proteins were active unrestrictedly, they would completely suppress various G-protein-mediated cell signaling as has been shown in the over-expression experiments of various RGS proteins. Thus, physiologically the modes of RGS-action should be under some regulation. The regulation can be achieved through the control of either the protein function and/or the subcellular localization. Examples for the former are as follows: (i) Phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) inhibits RGS-action, which can be recovered by Ca(2+)/calmodulin. This underlies a voltage-dependent "relaxation" behavior of G-protein-gated K(+) channels. (ii) A modulatory protein, 14-3-3, binds to the RGS proteins phosphorylated by PKA and inhibits their actions. For the latter mechanism, additional regulatory modules, such as PDZ, PX, and G-protein gamma subunit-like (GGL) domains, identified in several RGS proteins may be responsible: (i) PDZ domain of RGS12 interacts with a G-protein-coupled chemokine receptor, CXCR2, and thus facilitates its GAP action on CXCR2-mediated G-protein signals. (ii) RGS9 forms a complex with a type of G-protein beta-subunit (Gbeta5) via its GGL domain, which facilitates the GAP function of RGS9. Both types of regulations synergistically control the mode of action of RGS proteins in the physiological conditions, which contributes to fine tunings of G-protein signalings.  相似文献   

16.
17.
An assay based on a solvent-sensitive fluorogenic dye molecule, badan, is used to test the binding affinity of a library of tetrapeptide molecules for the BIR3 (baculovirus IAP repeat) domain of XIAP (X-linked inhibitor of apoptosis protein). The fluorophore is attached to a tetrapeptide, Ala-Val-Pro-Cys-NH(2), through a thiol linkage and, upon binding to XIAP, undergoes a solvatochromic shift in fluorescence emission. When a molecule (e.g., a natural protein known to bind to XIAP or a tetrapeptide mimic) displaces the dye, the emission shifts back to the spectrum observed in water. As emission intensity is related to the binding of the tetrapeptide, the intensity can be used to determine the equilibrium constant, K, for the displacement of the dye by the tetrapeptide. The results permit residue-specific analysis of the interaction. Furthermore, we show that hydrophobic effects in the fourth position are general and can effectively increase overall affinity.  相似文献   

18.
Several tumor immunotherapy approaches result in a low percentage of durable responses in selected cancers. We hypothesized that the insensitivity of cancer cells to immunotherapy may be related to an anti-apoptotic cancer cell milieu, which could be pharmacologically reverted through the inhibition of antiapoptotic Bcl-2 family proteins in cancer cells. ABT-737, a small molecule inhibitor of the antiapoptotic proteins Bcl-2, Bcl-w and Bcl-xL, was tested for the ability to increase antitumor immune responses in two tumor immunotherapy animal models. The addition of systemic therapy with ABT-737 to the immunization of BALB/c mice with tumor antigen peptide-pulsed dendritic cells (DC) resulted in a significant delay in CT26 murine colon carcinoma tumor growth and improvement in survival. However, the addition of ABT-737 to either a vaccine strategy involving priming with TRP-2 melanoma antigen peptide-pulsed DC and boosting with recombinant Listeria monocytogenes expressing the same melanoma antigen, or the adoptive transfer of TCR transgenic cells, did not result in superior antitumor activity against B16 murine melanoma. In vitro studies failed to demonstrate increased cytotoxic lytic activity when testing the combination of ABT-737 with lymphokine activated killer (LAK) cells, or the death receptor agonists Fas, TRAIL-ligand or TNF-alpha against the CT26 and B16 cell lines. In conclusion, the Bcl-2 inhibitor ABT-737 sensitized cancer cells to the antitumor effect of antigen-specific immunotherapy in a vaccine model for the CT26 colon carcinoma in vivo but not in two immunotherapy strategies against B16 melanoma.  相似文献   

19.
BACKGROUND: Pluripotent embryonic stem (ES) cells, which have the capacity to give rise to all tissue types in the body, show great promise as a versatile source of cells for regenerative therapy. However, the basic mechanisms of lineage specification of pluripotent stem cells are largely unknown, and generating sufficient quantities of desired cell types remains a formidable challenge. Small molecules, particularly those that modulate key developmental pathways like the bone morphogenetic protein (BMP) signaling cascade, hold promise as tools to study in vitro lineage specification and to direct differentiation of stem cells toward particular cell types. METHODOLOGY/ PRINCIPAL FINDINGS: We describe the use of dorsomorphin, a selective small molecule inhibitor of BMP signaling, to induce myocardial differentiation in mouse ES cells. Cardiac induction is very robust, increasing the yield of spontaneously beating cardiomyocytes by at least 20 fold. Dorsomorphin, unlike the endogenous BMP antagonist Noggin, robustly induces cardiomyogenesis when treatment is limited to the initial 24-hours of ES cell differentiation. Quantitative-PCR analyses of differentiating ES cells indicate that pharmacological inhibition of BMP signaling during the early critical stage promotes the development of the cardiomyocyte lineage, but reduces the differentiation of endothelial, smooth muscle, and hematopoietic cells. CONCLUSIONS/ SIGNIFICANCE: Administration of a selective small molecule BMP inhibitor during the initial stages of ES cell differentiation substantially promotes the differentiation of primitive pluripotent cells toward the cardiomyocytic lineage, apparently at the expense of other mesodermal lineages. Small molecule modulators of developmental pathways like dorsomorphin could become versatile pharmacological tools for stem cell research and regenerative medicine.  相似文献   

20.
The genome of Caenorhabditis elegans harbors two genes for G-protein beta-subunits. Here, we describe the characterization of the second G-protein beta-subunit gene gpb-2. In contrast to gpb-1, gpb-2 is not an essential gene even though, like gpb-1, gpb-2 is expressed during development, in the nervous system, and in muscle cells. A loss-of-function mutation in gpb-2 produces a variety of behavioral defects, including delayed egg laying and reduced pharyngeal pumping. Genetic analysis shows that GPB-2 interacts with the GOA-1 (homologue of mammalian G(o)alpha) and EGL-30 (homologue of mammalian G(q)alpha) signaling pathways. GPB-2 is most similar to the divergent mammalian Gbeta5 subunit, which has been shown to mediate a specific interaction with a Ggamma-subunit-like (GGL) domain of RGS proteins. We show here that GPB-2 physically and genetically interacts with the GGL-containing RGS proteins EGL-10 and EAT-16. Taken together, our results suggest that GPB-2 works in concert with the RGS proteins EGL-10 and EAT-16 to regulate GOA-1 (G(o)alpha) and EGL-30 (G(q)alpha) signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号