首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sugarcane mosaic disease is widespread in many countries and has been identified to be caused by Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV) and Sugarcane streak mosaic virus (SCSMV). Viral surveys of SCMV, SrMV and SCSMV were performed from 104 leaf samples of Saccharum spp. hybrid growing in China and two leaf samples in Myanmar. Sorghum mosaic virus was a major causal agent for sugarcane mosaic disease in China whereby 72.1% (75/104) of samples had SrMV infection alone, 6.7% (7/104) were mixed with SCMV and 17.3% (18/104) were mixed with SCSMV. Sugarcane streak mosaic virus infection alone occurred in 3.8% (4/104) of samples, but no single infections were observed for SCMV. Two viruses (SrMV and SCSMV) were detected in sugarcane mosaic samples in Myanmar. Phylogenetic analysis revealed that all of the SrMV isolates were clustered into three major lineages encompassing six phylogroups/genotypes based on the CP sequences (825 nucleotides) of 113 Chinese and 2 Burmese isolates from this study and 73 isolates reported worldwide. Six clearly distinct SrMV phylogroups (G1–G6) were formed and shared 74.3–94.1% nucleotide identity and 84.7–98.1% amino acid identity of CP sequences. SrMV‐G5 was identified to be new distinct phylogroup that was restricted to the Fujian and Guangxi provinces. The unique SrMV‐G6 phylogroup only occurred in Yunnan province. Insertion/deletion mutations, negative selection and frequent gene flow are factors driving the genetic evolution and population structure of SrMV in China.  相似文献   

2.
Procedures were developed for the in vitro elimination of Sugarcane mosaic virus (SCMV), Sorghum mosaic virus (SrMV), Sugarcane streak mosaic virus (SCSMV), Sugarcane yellow leaf virus (SCYLV) and Fiji disease virus (FDV) from infected sugarcane. In vitro shoot regeneration, elongation and virus elimination through meristem tissue culture originating from both apical and axillary shoots were compared. The average rates of regeneration and elongation from apical meristem tissues were 91 and 66%, respectively, with the virus-free rate among elongated shoots ranging from 61–92%. Mature axillary buds were cultivated in vitro to produce axillary shoots, from which meristem tissues were excised and cultured. These meristem tissues regenerated (77–100%) and elongated (55–88%) in culture medium at approximately the same rate as the apical meristems. The average virus elimination rate was 90% among elongated shoots derived from mature axillary buds. All five viruses can be eliminated by meristem tissue culture from both apical and axillary shoots using a standardized procedure. The overall average efficiency of virus-free plant production was 45 and 58% from apical and axillary shoots, respectively. There were no significant differences for shoot induction or virus elimination when the meristems were harvested from either the apical or the axillary shoots. This is the first report of SrMV or SCSMV elimination from sugarcane, as well as elimination of any mixed virus infections. This new method of harvesting meristems from axillary buds greatly expands the amount of material available for therapeutic treatments and thereby increases the probability of eliminating viruses from infected sugarcane.  相似文献   

3.
Degenerate Potyviridae primers were used to amplify and sequence the 3′‐terminal regions of viruses from traditional and modern cultivars of sugarcane with mosaic disease growing in different areas of Yunnan province, China. Seven samples contained Sugarcane mosaic virus (SCMV), 11 contained Sorghum mosaic virus (SrMV) and two contained both viruses. SCMV was only isolated from traditional cultivars. In a phylogenetic analysis of the partial NIb and complete coat protein coding regions, most SCMV isolates formed a distinctive phylogenetic cluster (named SO) that otherwise contained only three Vietnamese isolates. SCMV variation seems mostly related to host genotype. In the same analysis, the SrMV isolates formed three major groups, one of which is reported for the first time, but the significance of the grouping is unclear.  相似文献   

4.
An attempt was made to detect various viruses of Piper betle grown at Mahoba and Banthara in India. DAC-ELISA and RT-PCR tests were performed in leaf sap samples of betelvine for detection of a cucumovirus (Cucumber mosaic virus) and potyvirus (Bean yellow mosaic virus) using specific antibodies and universal primers of respective viruses. DAC-ELISA could detect only CMV. However, RT-PCR detected both cucumovirus and potyvirus infection in betelvine samples. Association of CMV with betelvine was observed for the first time in the present study.  相似文献   

5.
甘蔗花叶病的基因工程研究   总被引:1,自引:0,他引:1  
甘蔗花叶病(Sugarcane mosaic disease)是世界上重要的病毒病害之一,严重的影响了世界甘蔗的产量。对甘蔗花叶病病原菌分类、病原系统侵染的过程、相关致病机理、病原菌检测手段以及抗甘蔗花叶病基因工程的研究现状与前景进行了综述。  相似文献   

6.
7.
Maize lethal necrosis disease (MLND) is a devastating viral disease of maize caused by double infection with Maize chlorotic mottle virus (MCMV) and any one of the Potyviridae family members. Management of MLND requires effective resistance screening and surveillance tools. In this study, we report the use of small RNA (sRNA) profiling to detect MLND causal viruses and further the development of alternative detection markers for use in routine surveillance of the disease-causing viruses. Small RNAs (sRNAs) originating from five viruses namely MCMV, Sugarcane mosaic virus (SCMV), Maize streak virus (MSV), Maize-associated totivirus (MATV) and Maize yellow mosaic virus (MYMV) were assembled from infected maize samples collected from MLND hot spots in Kenya. The expression of the identified viral domains was further validated using quantitative real-time PCR. New markers for the detection of some of the MLND causal viruses were also developed from the highly expressed domains and used to detect the MLND-causative viruses in maize and alternative hosts. These findings further demonstrate the potential of using sRNAs especially from highly expressed viral motifs in the detection of MLND causal viruses. We report the validation of new sets of primers for use in detection of the most common MLND causal viruses MCMV and SCMV in East Africa.  相似文献   

8.
该研究以甘蔗条纹花叶病毒(Sugarcane streak mosaic virus,SCSMV)的P3蛋白(SCSMV-P3)为诱饵,采用酵母双杂交技术(yeast two-hybrid system,Y2HS)从甘蔗酵母文库中筛选到1个编码核酮糖-1,5-二磷酸羧化酶/加氧酶(ribulose-1,5-bisphosphate carboxylase/oxygenase,Rubisco)大亚基的基因,命名为ScRbcL。序列分析表明,该基因开放读码框(open reading frame,ORF)长度为1 337bp,编码478个氨基酸残基。Y2HS和双分子荧光互补(bimolecular flourescence complementation,BiFC)实验表明,ScRbcL与SCSMV-P3存在互作关系。研究认为SCSMV-P3与ScRbcL的互作可能是SCSMV侵染甘蔗导致花叶症状发生的分子基础。  相似文献   

9.
10.
Akbar  Sehrish  Yao  Wei  Yu  Kai  Qin  Lifang  Ruan  Miaohong  Powell  Charles A.  Chen  Baoshan  Zhang  Muqing 《Photosynthesis research》2021,150(1-3):279-294
Photosynthesis Research - Sugarcane mosaic virus (SCMV), belonging to genus Potyvirus, family Potyviridae, is a severe pathogen of several agricultural important crops, mainly sugarcane. Due to...  相似文献   

11.
12.
云南蔗区甘蔗线条花叶病毒分离物NIa基因形成新簇   总被引:1,自引:0,他引:1  
贺振  李文凤  李世访 《微生物学报》2016,56(11):1802-1810
【目的】利用NIa基因,阐明甘蔗线条花叶病毒(Sugarcane streak mosaic virus,SCSMV)的种系发生关系,为预测SCSMV流行变异趋势及科学防控提供理论依据。【方法】从云南蔗区和国家甘蔗种质资源圃采集感病样品,RT-PCR扩增获得SCSMV NIa基因序列后,使用Splits Tree、RDP、Phy ML、Dna SP等软件分析SCSMV中国分离物的系统发生、选择压力及基因流动等特征。【结果】共获得23条SCSMV NIa基因序列。这些序列间未发生重组,云南蔗区的部分序列形成1个新簇,且云南蔗区与国家甘蔗种质资源圃之间的基因交流不显著。此外,选择压力分析表明,NIa基因受很强的负选择压力作用。【结论】与P1、HC-Pro和CP等基因类似,SCSMV在NIa基因上也包含5个簇;SCSMV云南分离物具有较高的遗传多样性和清晰的地理相关性。  相似文献   

13.

Background

Sugarcane mosaic virus (SCMV) is responsible for large-scale economic losses in the global production of sugarcane, maize, sorghum, and some other graminaceous species. To understand the evolutionary mechanism of SCMV populations, this virus was studied in Shanxi, China. A total of 86 maize leaf samples (41 samples in 2012 and 45 samples in 2013) were collected from 4 regions of Shanxi.

Results

Double-antibody sandwich (DAS)-ELISA and RT-PCR showed 59 samples (30 samples in 2012 and 29 samples in 2013) to be positive for SCMV, from which 10 new isolates of SCMV were isolated and sequenced. The complete genomes of these isolates are 9610 nt long, including the 5′ and 3′ non-coding regions, and encode a 3063-amino acid polyprotein. Phylogenetic analyses revealed that 24 SCMV isolates could be divided on the basis of the whole genome into 2 divergent evolutionary groups, which were associated with the host species. Among the populations, 15 potential recombination events were identified. The selection pressure on the genes of these SCMV isolates was also calculated. The results confirmed that all the genes were under negative selection.

Conclusions

Negative selection and recombination appear to be important evolutionary factors shaping the genetic structure of these SCMV isolates. SCMV is distributed widely in China and exists as numerous strains with distinct genetic diversity. Our findings will provide a foundation for evaluating the epidemiological characteristics of SCMV in China and will be useful in designing long-term, sustainable management strategies for SCMV.  相似文献   

14.
Analyses of published host-range data for certain viruses reveal correlations with taxonomic groupings of grasses. Barley yellow dwarf virus (BYDV), cocksfoot mottle and phleum mottle viruses are found to have infected greater proportions of the festucoid grasses than of the non-festucoids to which they were inoculated. By contrast, all strains of sugarcane mosaic virus (SCMV) and of the closely related maize dwarf mosaic virus (MDMV) infected more non-festucoids than festucoids. In addition, infected plants from grass groups containing higher concentrations of genera susceptible to BYDV, SCMV and MDMV usually show clear symptoms, whereas infected plants from less susceptible groups are frequently symptomless. Some viruses, such as barley stripe mosaic, brome mosaic, cocksfoot streak and ryegrass mosaic, show no apparent preferences for particular grass groups. Samples of grasses employed in host-range studies are usually strongly biased towards festucoids. It is suggested that viruses ought to be adequately tested against genera from all the major groups, and a classified list of grass genera suitable for host-range studies is provided.  相似文献   

15.
Somaclonal variants resistant to sugarcane mosaic virus (SCMV) were obtained from susceptible sugarcane cv PR62258 through somatic embryogenesis by increasing the number of subcultures of the embryogenic callus tissue in MS medium with 3 mg/L 2,4-dichlorophenoxyacetic acid. Transfers were made at 30-day intervals for 1, 2 or 3 subcultures. Two somaclones, namely AT626 and BT627, were selected by their resistance to SCMV. These subclones have maintained the resistance trait over seven years of testing in the field. In this report we identified the somaclonal SCMV resistant variants from the maternal line and the nonresistant somaclones, using the RAPD technique.  相似文献   

16.
Sugarcane mosaic virus in plantlets regenerated from diseased leaf tissue   总被引:6,自引:0,他引:6  
Plantlets produced from sugarcane leaf tissue were examined to determine the effect of propagation on the frequency of occurrence of sugarcane mosaic virus (SCMV).Explants from immature leaf tissues of the sugarcane variety CP 72-356 (Saccharum interspecific hybrid), healthy or SCMV-infected, were cultured on Murashige-Skoog medium to which a combination of cytokinin and auxin had been added. Plantlets developed on healthy and infected leaf tissue within 6 weeks. The juice from plantlets was assayed for SCMV on Rio sorghum (Sorghum bicolor (L.) Moench, var. Rio) seedlings and on sugarcane varieties CP 31-294 and CO 31-588 for SCMV-strain identification. Results indicated that SCMV strain H was transmitted from the donor tissue to the regenerated plantlets. Observation on plantlets reared in the greenhouse showed that 23% had symptoms of SCMV. In a second replicated experiment, the leaf tissue from plants of POJ 234 free of mosaic or infected with SCMV strain A, B, D, H, or I was cultured. Each of the five strains was transmitted from donor to plantlet as indicated by assays on sorghum and sugarcane varieties. From 11 to 88% of the plantlets had mosaic symptoms, depending on the strain infecting the donor plant. In this experiment, SCMV-strain M was transmitted from an unidentified donor variety to 23% of the regenerated plantlets.Portions of this paper have been presented to the American Society of Sugar Cane Technologists, at the meeting in Clearwater, Florida in June, 1984.  相似文献   

17.
滇蔗茅杂交F_1双抗SCSMV和SrMV鉴定与评价   总被引:1,自引:0,他引:1  
以我国蔗区甘蔗花叶病的2种主要病原甘蔗条纹花叶病毒分离物(SCSMV-JP1,Gen Bank登录号JF488064)和高粱花叶病毒分离物(Sr MV-HH,Gen Bank登录号DQ530434)为接种毒源,采用人工切茎接种和RT-PCR检测相结合的方法,于2015-2016年2次对由热带种路打士与滇蔗茅云滇95-19杂交获得的41份滇蔗茅杂交F_1及亲本进行了双抗SCSMV和Sr MV鉴定与评价。结果表明,41份滇蔗茅杂交F_1及亲本中,对SCSMV表现1级高抗到3级中抗的有23份,占53.49%,4级感病到5级高感的有20份,占46.51%;对Sr MV表现1级高抗到3级中抗的有31份,占72.09%,4级感病到5级高感的有12份,占27.91%。综合分析结果显示,10份滇蔗茅杂交F_1对SCSMV和Sr MV均表现1~2级抗病,占23.26%,其中云09-604、云09-607、云09-619、云09-633、云09-656、云滇95-19等6份滇蔗茅杂交F_1对2种病毒均表现为1级高抗,占13.95%。研究结果明确了41份滇蔗茅杂交F_1及亲本对甘蔗花叶病2种主要致病病原的抗性,筛选出10份双抗SCSMV和Sr MV的滇蔗茅杂交F_1,为深入开展抗甘蔗花叶病育种提供了优良抗源种质和参考依据。  相似文献   

18.
由甘蔗花叶病毒引起的玉米矮花叶病是我国黄淮海地区玉米生产的重要病害,开发抗矮花叶病基因分子标记是开展抗病分子标记辅助育种的基础。本文基于玉米6.00-6.01区域的“一致性抗甘蔗花叶病毒QTL区间”寻找抗病基因的功能保守域,依据序列多态性开发出抗病分子标记InDel-130和InDel-110,在已知抗性的102份玉米自交系中进行验证。通过分析标记抗病带型和感病带型中的抗病和感病自交系数目,卡平方测验表明标记InDel-130在供试自交系中与抗病性的表现独立无关.而标记InDel-110与甘蔗花叶病毒抗性高度相关,为共显性标记,可用于玉米抗甘蔗花叶病毒种质筛选和分子标记辅助育种。  相似文献   

19.
The gene action of 2 sugarcane mosaic virus (SCMV) resistance loci in maize, Scmv1 and Scmv2, was evaluated for potyvirus resistance in an isogenic background. All 4 homozygous and 5 heterozygous isogenic genotypes were produced for introgressions of the resistant donor (FAP1360A) alleles at both loci into the susceptible parent (F7) genetic background using simple sequence repeat markers. For SCMV and maize dwarf mosaic virus (MDMV), virus symptoms appeared rapidly in the 3 homozygous genotypes, with susceptibility alleles fixed at 1 or both loci. Although the 9 isogenic genotypes revealed a high level of resistance to Zea mosaic virus (ZeMV), the same 3 homozygous genotypes were only partially resistant. This indicates that 1 resistance gene alone is not sufficient for complete resistance against SCMV, MDMV, and ZeMV. Scmv1 showed strong early and complete dominant gene action to SCMV, but it gradually became partially dominant. Scmv2 was not detected at the beginning, showing dominant gene action initially and additive gene action at later stages. Both genes interacted epistatically (for a high level of resistance, at least 1 resistance allele at each of both loci is required). This implies that double heterozygotes at the 2 loci are promising for producing SCMVresistant hybrids. Results are discussed with respect to prospects for isolation of SCMV and MDMV resistance genes.  相似文献   

20.

Background  

The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance candidate genes and resistance gene analogs were utilised to investigate and validate gene expression and expression patterns of isogenic lines under pathogen infection in order to obtain information about the molecular mechanisms involved in maize-potyvirus interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号