首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Cells in tissues and organs are continuously subjected to oxidative stress and free radicals on a daily basis. This free radical attack has exogenous or endogenous (intracellular) origin. The cells withstand and counteract this occurrence by the use of several and different defense mechanisms ranging from free radical scavengers like glutathione (GSH), vitamins C and E and antioxidant enzymes like catalase, superoxide dismutase and various peroxidases to sophisticated and elaborate DNA repair mechanisms. The outcome of this dynamic equilibrium is usually the induction of oxidatively induced DNA damage and a variety of lesions of small to high importance and dangerous for the cell i.e. isolated base lesions or single strand breaks (SSBs) to complex lesions like double strand breaks (DSBs) and other non-DSB oxidatively generated clustered DNA lesions (OCDLs). The accumulation of DNA damage through misrepair or incomplete repair may lead to mutagenesis and consequently transformation particularly if combined with a deficient apoptotic pathway. In this review, we present the current status of knowledge and evidence on the mechanisms and involvement of intracellular oxidative stress and DNA damage in human malignancy evolution and possible use of these parameters as cancer biomarkers. At the same time, we discuss controversies related to potential artifacts inherent to specific methodologies used for the measurement of oxidatively induced DNA lesions in human cells or tissues.  相似文献   

2.
During the last three decades there was an increasing interest for developing biomarkers of oxidative stress. Therefore, efforts have been made to develop sensitive methods aimed at measuring cellular levels of oxidatively generated DNA lesions. Initially, most attention had focused on 8-oxo-7,8-dihydro-2'- deoxyguanosine (8-oxodGuo) probably because reliable analytical methods (mostly HPLC coupled to electrochemical detection) were available since mid-eighties to detect that lesion at the cellular level. With the recent development of more versatile analytical (using mass spectrometric detection) and biochemical assays (such as the comet assay) efforts are currently made to measure simultaneously several DNA lesions. The main degradation pathways of the four main pyrimidine (thymine, cytosine) and purine (adenine, guanine) bases mediated by hydroxyl radical (?OH), one-electron oxidants and singlet oxygen (1O2) have been also studied in detail and results indicate that other DNA modification than 8-oxodGuo could represent suitable biomarkers of oxidative stress. In this review article, the main oxidative degradation products of DNA will be presented together with their mechanisms of formation. Then the developed methods aimed at measuring cellular levels of oxidatively generated DNA lesions will be critically reviewed based on their specificity, versatility and sensitivity. Illustration of the powerfulness of the described methods will be demonstrated using quantification of DNA lesions in cells exposed to ionizing radiations. In addition, recent work highlighting the possible formation of complex DNA lesions will be reported and commented regarding the possibility of using such complex damage as potential biomarkers of oxidative stress.  相似文献   

3.
The search for DNA biomarkers of oxidative stress has been hampered for several decades by the lack of relevant information on base oxidation products and the challenging issue of measuring low amounts of lesions, typically a few modifications within the range 106?C108 normal bases. In addition and this was ignored for a long time, there is a risk of artifactual oxidation of overwhelming nucleobases during DNA extraction and subsequent workup that has led to overestimation of some base damage up to 2?C3 orders of magnitude. The main aim of the survey is to critically review the available methods that have been developed for measuring oxidatively generated base damage in nuclear and mitochondrial DNA. Among the chromatographic methods, high-performance liquid chromatography associated with tandem mass spectrometry (HPLC?CMS/MS) is the most accurate and versatile approach whereas HPLC?Celectrochemical detection (ECD) is restricted to electrochemically active modifications. These methods allow measuring several single oxidized pyrimidine and purine bases, tandem base lesions and interstrand DNA cross-links in nuclear DNA. As complementary analytical tools, enzymatic methods that associate DNA repair enzymes with either the alkaline comet assay or the alkaline elution technique are suitable for assessing low variations in the level of different classes of oxidatively generated DNA lesions. Most of the immunoassays suffer from a lack of specificity due to the occurrence of cross-reactivity with overwhelming normal bases. One major exception concerns the immunodetection of 5-hydroxymethylcytosine, produced in a relatively high yield as an epigenetic DNA modification. HPLC?CMS/MS is now recognized as the gold standard for measuring oxidized bases and nucleosides in human fluids such as urine, saliva, and plasma.  相似文献   

4.
A broad scientific community is involved in investigations aimed at delineating the mechanisms of formation and cellular processing of oxidatively generated damage to nucleic acids. Perhaps as a consequence of this breadth of research expertise, there are nomenclature problems for several of the oxidized bases including 8-oxo-7,8-dihydroguanine (8-oxoGua), a ubiquitous marker of almost every type of oxidative stress in cells. Efforts to standardize the nomenclature and abbreviations of the main DNA degradation products that arise from oxidative pathways are reported. Information is also provided on the main oxidative radicals, non-radical oxygen species, one-electron agents and enzymes involved in DNA degradation pathways as well in their targets and reactivity. A brief classification of oxidatively generated damage to DNA that may involve single modifications, tandem base modifications, intrastrand and interstrand cross-links together with DNA-protein cross-links and base adducts arising from the addition of lipid peroxides breakdown products is also included.  相似文献   

5.
Oxidative damage to DNA caused by free radicals and other oxidants generate base and sugar damage, strand breaks, clustered sites, tandem lesions and DNA-protein cross-links. Oxidative DNA damage is mainly repaired by base-excision repair in living cells with the involvement of DNA glycosylases in the first step and other enzymes in subsequent steps. DNA glycosylases remove modified bases from DNA, generating an apurinic/apyrimidinic (AP) site. Some of these enzymes that remove oxidatively modified DNA bases also possess AP-lyase activity to cleave DNA at AP sites. DNA glycosylases possess varying substrate specificities, and some of them exhibit cross-activity for removal of both pyrimidine- and purine-derived lesions. Most studies on substrate specificities and excision kinetics of DNA glycosylases were performed using oligonucleotides with a single modified base incorporated at a specific position. Other studies used high-molecular weight DNA containing multiple pyrimidine- and purine-derived lesions. In this case, substrate specificities and excision kinetics were found to be different from those observed with oligonucleotides. This paper reviews substrate specificities and excision kinetics of DNA glycosylases for removal of pyrimidine- and purine-derived lesions in high-molecular weight DNA.  相似文献   

6.
Eukaryotic cells exposed to DNA damaging agents activate important defensive pathways by inducing multiple proteins involved in DNA repair, cell cycle checkpoint control and potentially apoptosis. After the acceptance of the hypothesis that oxidatively generated clustered DNA lesions (OCDL: closely spaced DNA lesions) can be induced even by low doses of ionizing radiation or even endogenously, and significant advances have been made in the understanding of the biochemistry underlying the repair of closely spaced DNA lesions, many questions still remain unanswered. The major questions that have to be answered in the near future are: 1) how human cells process these types of DNA damage if they repair them at all, 2) under what conditions a double strand break (DSB) may be created during the processing of two closely spaced DNA lesions and 3) what type of repair protein interactions govern the processing of complex DNA damage? The data existing so far on human cells and tissues are very limited and in some cases contradicting. All of them though agree however on the major importance of gaining mechanistic insights on the pathways used by the cell to confront and process complex DNA damage located in a small DNA volume and the need of more in depth analytical studies. We selectively review recently-obtained data on the processing of non-DSB DNA damage clusters in human cells and tissues and discuss the current status of knowledge in the field.  相似文献   

7.
《Free radical research》2013,47(5):525-548
Abstract

Oxidatively induced damage caused by free radicals and other DNA-damaging agents generate a plethora of products in the DNA of living organisms. There is mounting evidence for the involvement of this type of damage in the etiology of numerous diseases including carcinogenesis. For a thorough understanding of the mechanisms, cellular repair, and biological consequences of DNA damage, accurate measurement of resulting products must be achieved. There are various analytical techniques, with their own advantages and drawbacks, which can be used for this purpose. Mass spectrometric techniques with isotope dilution, which include gas chromatography (GC) and liquid chromatography (LC), provide structural elucidation of products and ascertain accurate quantification, which are absolutely necessary for reliable measurement. Both gas chromatography-mass spectrometry (GC-MS) or liquid chromatography-mass spectrometry (LC-MS), in single or tandem versions, have been used for the measurement of numerous DNA products such as sugar and base lesions, 8,5’-cyclopurine-2’-deoxynucleosides, base-base tandem lesions, and DNA-protein crosslinks, in vitro and in vivo. This article reviews these techniques and their applications in the measurement of oxidatively induced DNA damage and its repair.  相似文献   

8.
Oxidatively induced damage to DNA results in a plethora of lesions comprising modified bases and sugars, DNA–protein cross-links, tandem lesions, strand breaks, and clustered lesions. Formamidopyrimidines, 4,6-diamino-5-formamidopyrimidine (FapyAde) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyGua), are among the major lesions generated in DNA by hydroxyl radical attack, UV radiation, or photosensitization under numerous in vitro and in vivo conditions. They are formed by one-electron reduction of C8–OH-adduct radicals of purines and thus have a common precursor with 8-hydroxypurines generated upon one-electron oxidation. Methodologies using mass spectrometry exist to accurately measure FapyAde and FapyGua in vitro and in vivo. Formamidopyrimidines are repaired by base excision repair. Numerous prokaryotic and eukaryotic DNA glycosylases are highly specific for removal of these lesions from DNA in the first step of this repair pathway, indicating their biological importance. FapyAde and FapyGua are bypassed by DNA polymerases with the insertion of the wrong intact base opposite them, leading to mutagenesis. In mammalian cells, the mutagenicity of FapyGua exceeds that of 8-hydroxyguanine, which is thought to be the most mutagenic of the oxidatively induced lesions in DNA. The background and formation levels of the former in vitro and in vivo equal or exceed those of the latter under various conditions. FapyAde and FapyGua exist in living cells at significant background levels and are abundantly generated upon exposure to oxidative stress. Mice lacking the genes that encode specific DNA glycosylases accumulate these lesions in different organs and, in some cases, exhibit a series of pathological conditions including metabolic syndrome and cancer. Animals exposed to environmental toxins accumulate formamidopyrimidines in their organs. Here, we extensively review the mechanisms of formation, measurement, repair, and biological effects of formamidopyrimidines that have been investigated in the past 50 years. Our goal is to emphasize the importance of these neglected lesions in many biological and disease processes.  相似文献   

9.
Mitochondrial and nuclear DNA were isolated from the livers of young (6-7 month) and old (23-24 month) Wistar rats and the levels of 10 different oxidatively induced lesions were analyzed by gas chromatography/mass spectrometry. This is the first study to measure several different oxidatively induced base lesions in both mitochondrial and nuclear DNA as a function of age. No significant age effects were observed for any lesion. Furthermore, contrary to expectations, we did not observe elevated levels of oxidatively induced base lesions in mitochondrial DNA. This contrasts with 50-fold differences reported for several lesions between mitochondrial and nuclear DNA from porcine liver (Zastawny et al., Free Radic. Biol. Med. 24:722-725, 1998). The fact that different lesion levels are observed even when similar techniques are employed emphasizes that the role of oxidative mitochondrial DNA damage and its repair in aging must continue to be the subject of intense investigation. Questions concerning endogenous levels of damage should be revisited as existing methods are improved and new methods become available.  相似文献   

10.
Posttranslational modification of PCNA by ubiquitin plays an important role in coordinating the processes of DNA damage tolerance during DNA replication. The monoubiquitination of PCNA was shown to facilitate the switch between the replicative DNA polymerase with the low-fidelity polymerase eta (η) to bypass UV-induced DNA lesions during replication. Here, we show that in response to oxidative stress, PCNA becomes transiently monoubiquitinated in an?S phase- and USP1-independent manner. Moreover, Polη interacts with mUb-PCNA at sites of oxidative DNA damage via its PCNA-binding and ubiquitin-binding motifs. Strikingly, while functional base excision repair is not required for this modification of PCNA or Polη recruitment to chromatin, the?presence of hMsh2-hMsh6 is indispensable. Our findings highlight an alternative pathway in response to oxidative DNA damage that may coordinate the removal of oxidatively induced clustered DNA lesions and could explain the high levels of oxidized DNA lesions in MSH2-deficient cells.  相似文献   

11.
Humans are daily exposed to background radiation and various sources of oxidative stress. My research has focused in the last 12 years on the effects of ionizing radiation on DNA, which is considered as the key target of radiation in the cell. Ionizing radiation and endogenous cellular oxidative stress can also induce closely spaced oxidatively induced DNA lesions called "clusters" of DNA damage or locally multiply damage sites, as first introduced by John Ward. I am now interested in the repair mechanisms of clustered DNA damage, which is considered as the most difficult for the cell to repair. A main part of my research is devoted to evaluating the role of clustered DNA damage in the promotion of carcinogenesis in vitro and in vivo . Currently in my laboratory, there are two main ongoing projects. (1) Study of the role of BRCA1 and DNA-dependent protein kinase catalytic subunit repair proteins in the processing of clustered DNA damage in human cancer cells. For this project, we use several tumor cell lines, such as breast cancer cell lines MCF-7 and HCC1937 (BRCA1 deficient) and human glioblastoma cells MO59J/K; and (2) Possible use of DNA damage clusters as novel cancer biomarkers for prognostic and therapeutic applications related to modulation of oxidative stress. In this project human tumor and mice tissues are being used.  相似文献   

12.
Levels of oxidatively damaged cellular DNA and urinary excretion of damaged 2'-deoxyribonuclosides are widely measured in biomonitoring studies examining the role of oxidative stress induced by environmental exposures, lifestyle factors and development of disease. This has promoted efforts to harmonise measurements of oxidised guanine nucleobases by the variety of analytical approaches for DNA and urinary levels of damage, in multi-laboratory trials that are centred in Europe. The large inter-laboratory variation reported of values of oxidatively damaged DNA is reduced by harmonising assay protocols. Recent attention on optimal conditions for the comet assay may lead to better understanding of the most critical steps in procedure, which generate variation in DNA damage levels between laboratories. Measurements of urinary excretion of oxidatively generated 8-oxo-7,8-dihydro-2'-deoxyguanosine also show large differences between different methods, where chromatographic techniques generally show more reliable results than antibody-based methods. In this case, standardising calibrants is aimed at improving within technique agreement.  相似文献   

13.
Oxidatively induced stress and DNA damage have been associated with various human pathophysiological conditions, including cancer and aging. Complex DNA damage such as double-strand breaks (DSBs) and non-DSB bistranded oxidatively induced clustered DNA lesions (OCDL) (two or more DNA lesions within a short DNA fragment of 1-10 bp on opposing DNA strands) are hypothesized to be repair-resistant lesions challenging the repair mechanisms of the cell. To evaluate the induction and processing of complex DNA damage in breast cancer cells exposed to radiotherapy-relevant gamma-ray doses, we measured single-strand breaks (SSBs), DSBs, and OCDL in MCF-7 and HCC1937 malignant cells as well as MCF-10A nonmalignant human breast cells. For the detection and measurement of SSBs, DSBs, and OCDL, we used the alkaline single-cell gel electrophoresis, gamma-H2AX assay, and an adaptation of pulsed-field gel electrophoresis with E. coli repair enzymes as DNA damage probes. Increased levels for most types of DNA damage were detected in MCF-7 cells while the processing of DSBs and OCDL was deficient in these cells compared to MCF-10A cells. Furthermore, the total antioxidant capacity of MCF-7 cells was lower compared to their nonmalignant counterparts. These findings point to the important role of complex DNA damage in breast cancer and its potential association with breast cancer development especially in the case of deficient BRCA1 expression.  相似文献   

14.
Many biomonitoring studies have investigated the role of antioxidants in reducing oxidatively generated DNA damage in urine and white blood cells. A collective interpretation is difficult because many studies lack sufficient control and have unreasonably high baseline levels of oxidatively damaged DNA. In a survey of this antioxidant hypothesis, we identified 139 cross-sectional and intervention studies. Restricted selection criteria with exclusion of studies having suboptimal design or unreasonably high baseline damage level provided 85 eligible studies for analysis. Ten of the 27 cross-sectional studies reported negative correlations between antioxidants and oxidatively damaged DNA, albeit with correlation coefficients explaining less than 20% of the variance. Sixty-two intervention studies reported mixed results, which did not depend on sample size or duration of the intervention. Reduced levels of oxidatively damaged DNA in white blood cells and urine were reported in far more studies than expected by chance alone. Supplementation with antioxidant-rich foods was more effective than that with single antioxidants in lowering urinary excretion of oxidatively damage DNA. In conclusion, this survey indicates that ingestion of antioxidants may be associated with reduced level of DNA damage in white blood cells and urine of humans, albeit the effect is lower than previously expected.  相似文献   

15.
The potential for genetic change arising from specific single types of DNA lesion has been thoroughly explored, but much less is known about the mutagenic effects of DNA lesions present in clustered damage sites. Localized clustering of damage is a hallmark of certain DNA-damaging agents, particularly ionizing radiation. We have investigated the potential of a non-mutagenic DNA base lesion, 5,6-dihydrothymine (DHT), to influence the mutagenicity of 8-oxo-7,8-dihydroguanine (8-oxoG) when the two lesions are closely opposed. Using a bacterial plasmid-based assay we present the first report of a significantly higher mutation frequency for the clustered DHT and 8-oxoG lesions than for single 8-oxoG in wild-type and in glycosylase-deficient strains. We propose that endonuclease III has an important role in the initial stages of processing DHT/8-oxoG clusters, removing DHT to give an intermediate with an abasic site or single-strand break opposing 8-oxoG. We suggest that this mutagenic intermediate is common to several different combinations of base lesions forming clustered DNA damage sites. The MutY glycosylase, acting post-replication, is most important for reducing mutation formation. Recovered plasmids commonly gave rise to both wild-type and mutant progeny, suggesting that there is differential replication of the two DNA strands carrying specific forms of base damage.  相似文献   

16.
《Free radical research》2013,47(4):541-553
Abstract

Levels of oxidatively damaged cellular DNA and urinary excretion of damaged 2′-deoxyribonuclosides are widely measured in biomonitoring studies examining the role of oxidative stress induced by environmental exposures, lifestyle factors and development of disease. This has promoted efforts to harmonise measurements of oxidised guanine nucleobases by the variety of analytical approaches for DNA and urinary levels of damage, in multi-laboratory trials that are centred in Europe. The large inter-laboratory variation reported of values of oxidatively damaged DNA is reduced by harmonising assay protocols. Recent attention on optimal conditions for the comet assay may lead to better understanding of the most critical steps in procedure, which generate variation in DNA damage levels between laboratories. Measurements of urinary excretion of oxidatively generated 8-oxo-7,8-dihydro-2′-deoxyguanosine also show large differences between different methods, where chromatographic techniques generally show more reliable results than antibody-based methods. In this case, standardising calibrants is aimed at improving within technique agreement.  相似文献   

17.
In the tide of science nouveau after the completion of genome projects of various species, there appeared a movement to understand an organism as a system rather than the sum of cells directed for certain functions. With the advent and spread of microarray techniques, systematic and comprehensive genome-wide approaches have become reasonably possible and more required on the investigation of DNA damage and the subsequent repair. The immunoprecipitation-based technique combined with high-density microarrays or next-generation sequencing is one of the promising methods to provide access to such novel research strategies. Oxygen is necessary for most of the life on earth for electron transport. However, reactive oxygen species are inevitably generated, giving rise to steady-state levels of DNA damage in the genome, that may cause mutations leading to cancer, ageing and degenerative diseases. Previously, we showed that there are many factors involved in the genomic distribution of oxidatively generated DNA damage including chromosome territory, and proposed this sort of research area as oxygenomics. Recently, RNA is also recognized as a target of this kind of modification.  相似文献   

18.
Assessing DNA damage induction, repair and consequences of such damages requires measurement of specific DNA lesions by methods that are independent of biological responses to such lesions. Lesions affecting one DNA strand (altered bases, abasic sites, single strand breaks (SSB)) as well as damages affecting both strands (clustered damages, double strand breaks) can be quantified by direct measurement of DNA using gel electrophoresis, gel imaging and number average length analysis. Damage frequencies as low as a few sites per gigabase pair (10(9)bp) can be quantified by this approach in about 50ng of non-radioactive DNA, and single molecule methods may allow such measurements in DNA from single cells. This review presents the theoretical basis, biochemical requirements and practical aspects of this approach, and shows examples of their applications in identification and quantitation of complex clustered damages.  相似文献   

19.
Carcinogenesis may involve overproduction of oxygen-derived species including free radicals, which are capable of damaging DNA and other biomolecules in vivo. Increased DNA damage contributes to genetic instability and promote the development of malignancy. We hypothesized that the repair of oxidatively induced DNA base damage may be modulated in colorectal malignant tumors, resulting in lower levels of DNA base lesions than in surrounding pathologically normal tissues. To test this hypothesis, we investigated oxidatively induced DNA damage in cancerous tissues and their surrounding normal tissues of patients with colorectal cancer. The levels of oxidatively induced DNA lesions such as 4,6-diamino-5-formamidopyrimidine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 8-hydroxyguanine and (5'S)-8,5'-cyclo-2'-deoxyadenosine were measured by gas chromatography/isotope-dilution mass spectrometry and liquid chromatography/isotope-dilution tandem mass spectrometry. We found that the levels of these DNA lesions were significantly lower in cancerous colorectal tissues than those in surrounding non-cancerous tissues. In addition, the level of DNA lesions varied between colon and rectum tissues, being lower in the former than in the latter. The results strongly suggest upregulation of DNA repair in malignant colorectal tumors that may contribute to the resistance to therapeutic agents affecting the disease outcome and patient survival. The type of DNA base lesions identified in this work suggests the upregulation of both base excision and nucleotide excision pathways. Development of DNA repair inhibitors targeting both repair pathways may be considered for selective killing of malignant tumors in colorectal cancer.  相似文献   

20.
The formation of clustered DNA damage sites is a unique feature of ionizing radiation. Recent studies have shown that the repair of lesions within clusters may be compromised, but little is understood about the mutagenic consequences of such damage sites. Using a plasmid-based method, damaged DNA containing uracil positioned at 1–5 bp separations from 8-oxo-7,8-dihydroguanine on the complementary strand was transfected into wild-type Escherichia coli or into strains lacking the DNA glycosylases Fpg and MutY. Mutation frequencies were found to be significantly higher for clustered damage sites than for single lesions. The loss of MutY gave a large relative increase in mutation frequency and a strain lacking both Fpg and MutY showed even higher mutation frequencies, up to nearly 40% of rescued plasmid. In these strains, the mutation frequency decreases with increasing spacing of the uracil from the 8-oxo-7,8-dihydroguanine site. Sequencing of plasmid DNA carrying clustered damage, following rescue from bacteria, showed that almost all of the mutations are GC→TA transversions. The data suggest that at clustered damage sites, depending on lesion spacing, the action of Fpg is compromised and post-replication processing of lesions by MutY is the most important mechanism for protection against mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号