首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Nef protein of the primate lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) is essential for high-titer viral replication and acquired immune deficiency syndrome (AIDS) progression. Nef binds to the macrophage-specific Src family member Hck through its SH3 domain, resulting in constitutive kinase activation capable of transforming rodent fibroblasts. Nef-Hck interaction may be essential for M-tropic HIV replication and AIDS pathogenesis, identifying this virus-host protein complex as a rational target for anti-HIV drug discovery. Here, we investigated whether interaction with Hck is a common feature of Nef alleles from different strains of HIV-1. We compared the ability of four different laboratory HIV-1 Nef alleles (SF2, LAI, ELI, and Consensus) to induce Hck activation and transformation in our Rat-2 fibroblast model. While SF2, LAI, and Consensus Nef all bound and activated Hck, ELI Nef failed to bind to the Hck SH3 domain in vitro and did not cooperate with Hck in fibroblast transformation. Molecular modeling identified three residues in the core region of SF2 Nef (Ala83, His116, and Tyr120) which are substituted in ELI with Glu, Asn, and Ile, respectively. Two of these residues (Ala83 and Tyr120) form part of the hydrophobic pocket that contacts Ile 96 in the RT loop of the Hck SH3 domain in the Nef-SH3 crystal structure. Substitution of SF2 Nef Tyr120 with Ile completely abolished Hck recruitment and activation. In a complementary experiment, substitution of ELI Ile120 with Tyr partly restored ELI Nef-induced Hck activation and transformation in Rat-2 cells. Hck activation increased further by substitution of ELI Glu83 with Ala and Asn116 with His, suggestive of a supportive role for these residues in Hck binding. This study provides the first biological evidence that the HIV-1 Nef hydrophobic pocket is critical to Hck recruitment and activation in vivo. Targeting the Nef hydrophobic pocket with a small molecule may be sufficient to disrupt Nef signaling through Hck in HIV-infected macrophages, slowing disease progression.  相似文献   

2.
The human immunodeficiency virus 1 (HIV-1) Nef protein is a pathogenicity factor required for effective progression to AIDS, which modulates host cell signaling pathways and T-cell receptor internalization. We have determined the crystal structure of Nef, allele SF2, in complex with an engineered SH3 domain of human Hck showing unnaturally tight binding and inhibitory potential toward Nef. This complex provides the most complete Nef structure described today, and explains the structural basis of the high affinity of this interaction. Intriguingly, the 33-residue C-terminal flexible loop is resolved in the structure by its interactions with a highly conserved hydrophobic groove on the core domain of an adjacent Nef molecule. The loop mediates the interaction of Nef with the cellular adaptor protein machinery for the stimulated internalization of surface receptors. The endocytic dileucine-based sorting motif is exposed at the tip of the acidic loop, giving the myristoylated Nef protein a distinctly dipolar character. The intermolecular domain assembly of Nef provides insights into a possible regulation mechanism for cargo trafficking.  相似文献   

3.
4.
5.
Nef of HIV-1 interacts directly with calcium-bound calmodulin   总被引:5,自引:0,他引:5  
It was recently found that the myristoyl group of CAP-23/NAP-22, a neuron-specific protein kinase C substrate, is essential for the interaction between the protein and Ca(2+)-bound calmodulin (Ca(2+)/CaM). Based on the N-terminal amino acid sequence alignment of CAP-23/NAP-22 and other myristoylated proteins, including the Nef protein from human immunodeficiency virus (HIV), we proposed a new hypothesis that the protein myristoylation plays important roles in protein-calmodulin interactions. To investigate the possibility of direct interaction between Nef and calmodulin, we performed structural studies of Ca(2+)/CaM in the presence of a myristoylated peptide corresponding to the N-terminal region of Nef. The dissociation constant between Ca(2+)/CaM and the myristoylated Nef peptide was determined to be 13.7 nM by fluorescence spectroscopy analyses. The NMR experiments indicated that the chemical shifts of some residues on and around the hydrophobic clefts of Ca(2+)/CaM changed markedly in the Ca(2+)/CaM-Nef peptide complex with the molar ratio of 1:2. Correspondingly, the radius of gyration determined by the small angle X-ray scattering measurements is 2-3 A smaller that of Ca(2+)/CaM alone. These results demonstrate clearly that Nef interacts directly with Ca(2+)/CaM.  相似文献   

6.
The HIV-1 Nef protein perturbs the trafficking of membrane proteins such as CD4 by interacting with clathrin-adaptor complexes. We previously reported that Nef alters early/recycling endosomes, but its role at the plasma membrane is poorly documented. Here, we used total internal reflection fluorescence microscopy, which restricts the analysis to a approximately 100 nm region of the adherent surface of the cells, to focus on the dynamic of Nef at the plasma membrane relative to that of clathrin. Nef colocalized both with clathrin spots (CS) that remained static at the cell surface, corresponding to clathrin-coated pits (CCPs), and with approximately 50% of CS that disappeared from the cell surface, corresponding to forming clathrin-coated vesicles (CCVs). The colocalization of Nef with clathrin required the di-leucine motif essential for Nef binding to AP complexes and was independent of CD4 expression. Furthermore, analysis of Nef mutants showed that the capacity of Nef to induce internalization and downregulation of CD4 in T lymphocytes correlated with its localization into CCPs. In conclusion, this analysis shows that Nef is recruited into CCPs and into forming CCVs at the plasma membrane, in agreement with a model in which Nef uses the clathrin-mediated endocytic pathway to induce internalization of some membrane proteins from the surface of HIV-1-infected T cells.  相似文献   

7.
The Nef protein from the human immunodeficiency virus (HIV) induces down-regulation of the CD4 and major histocompatibility complex class I molecules from the cell surface by interfering with the endocytic machinery. This work focuses on the interaction of HIV-1 Nef with the mu 1 chain of adaptor protein type 1 (AP1) complex and its contribution to the Nef-induced alterations of membrane trafficking. Two independent regions surrounding a disordered loop located in the C-terminal part of Nef are involved in mu 1 binding. Each region can separately interact with mu 1, and simultaneous point mutations within both regions are needed to abolish binding. We used CD8 chimeras in which the cytoplasmic tail was replaced by Nef mutants to show that these mu 1-binding sites contain determinants required to induce CD4 down-regulation and to target the chimera to the endocytic pathway by promoting AP1 complex recruitment. Ultrastructural analysis revealed that the CD8-Nef chimera provokes morphological alterations of the endosomal compartments and co-localizes with AP1 complexes. These data indicate that the recruitment by Nef of AP1 via binding to mu 1 participates in the connection of Nef with the endocytic pathway.  相似文献   

8.
To gain a better understanding of the intracellular sites of antigen processing we have looked at the localization of human immunodeficiency virus (HIV)-1 Nef protein by confocal microscopic and biochemical means. We found that ubiquitin (Ub)-Nef fusion proteins were localized to the centrosome in transfected COS-7 cells, and that the colocalization was inhibited by the microtubule-disrupting agent, nocodazole. Interestingly, we found that Ub-Nef trafficking to the centrosome was not dependent upon the metabolic stability of Ub-Nef nor on the inhibition of proteasome activity. We also analyzed the MHC class I antigen processing of a reporter epitope linked to the Ub-Nef fusion proteins and found that Ub-Nef was processed in COS-7 cells. In addition, we show that this processing was inhibited by nocodazole. We suggest that the centrosome may serve as a site of antigen processing in vivo.  相似文献   

9.
Viruses often exploit autophagy, a common cellular process of degradation of damaged proteins, organelles, and pathogens, to avoid destruction. HIV-1 dysregulates this process in several cell types by means of Nef protein. Nef is a small HIV-1 protein which is expressed abundantly in astrocytes of HIV-1-infected brains and has been suggested to have a role in the pathogenesis of HIV-Associated Neurocognitive Disorders (HAND). In order to explore its effect in the CNS with respect to autophagy, HIV-1 Nef was expressed in primary human fetal astrocytes (PHFA) using an adenovirus vector (Ad-Nef). We observed that Nef expression triggered the accumulation of autophagy markers, ATG8/LC3 and p62 (SQSMT1). Similar results were obtained with Bafilomycin A1, an autophagy inhibitor which blocks the fusion of autophagosome to lysosome. Furthermore co-expression of tandem LC3 vector (mRFP-EGFP-LC3) and Ad-Nef in these cells produced mainly yellow puncta (mRFP+, EGFP+) strongly suggesting that autophagosome fusion to lysosome is blocked in PHFA cells in the presence of Nef. Together these data indicate that HIV-1 Nef mimics Bafilomycin A1 and blocks the last step of autophagy thereby helping HIV-1 virus to avoid autophagic degradation in human astrocytes.  相似文献   

10.
The Nef protein of human immunodeficiency virus type I (HIV-1) is an important determinant for the onset of AIDS disease. The self-association properties of HIV-1 Nef are analyzed by chemical cross-linking, dynamic light scattering, equilibrium analytical ultracentrifugation, and NMR spectroscopy. The experimental data show that the HIV-1 Nef core domain forms stable homo-dimers and trimers in solution, but not higher oligomers. These Nef homomers are not covalently linked by disulfide bridges, and the equilibrium between these forms is dependent on the Nef concentration. We further provide the molecular basis for the Nef core dimers and trimers obtained by analysis of crystallographic models. Oligomerization of biological polypeptides is a common tool used to trigger events in cellular signaling and endocytosis, both of which are targeted by Nef. The quaternary structure of Nef may be of physiological importance and may help to connect its cellular targets or to increase affinity of the viral molecule for its ligands. The herein described models for Nef dimers and trimers will allow further mutational studies to elucidate their role in vivo. These results provide novel insight into the structural and functional relationships of this important viral protein. Moreover, the oligomer interface may represent a novel target for the design of antiviral agents.  相似文献   

11.
CD4(+) CD25(+) regulatory T cells (Tregs) represent a unique T-cell lineage that is endowed with the ability to actively suppress immune responses in order to inhibit pathogenic damage resulting from over activation of the immune system. In human immunodeficiency virus-1 (HIV-1) infection, suppression of the immune response by Tregs appears to play an opposing role that promotes chronic viral infection. Treg expansion is known as a marker of the severity of HIV infection and as a potential prognostic marker of disease progression. HIV-1 Nef is one of the earliest expressed viral regulatory genes whose expression may play an important role in regulating Treg cells. We established a THP-1 cell line stably expressing HIV-1 Nef and showed that Nef protein was a potent factor for increasing Treg numbers in vitro. We further found that TLR2 plays a critical role in the increase in Treg cells induced by Nef using TLR2-specific siRNA. Our results suggest new strategies for therapeutic and preventive interventions of HIV infection.  相似文献   

12.
Human immunodeficiency virus Nef protein accelerates virulent progression of AIDS by its interaction with specific cellular proteins involved in cellular activation and signal transduction. Here we report the purification and crystallization of the conserved core of HIV-1LAI Nef protein in the unliganded form and in complex with the wild-type SH3 domain of the P59fyn protein-tyrosine kinase. One-dimensional NMR experiments show that full-length protein and truncated fragment corresponding to the product of HIV-1 protease cleavage have a well-folded compact tertiary structure. The ligand-free HIV-1 Nefcore protein forms cubic crystals belonging to space group P23 with unit cell dimensions of a = b = c = 86.4 A. The Nef-Fyn SH3 cocrystals belong to the space group P6(1)22 or its enantiomorph, P6(5)22, with unit cell dimensions of a = b = 108.2 A and c = 223.7 A. Both crystal forms diffract to a resolution limit of 3.0 A resolution using synchrotron radiation, and are thus suitable for X-ray structure determination.  相似文献   

13.
HIV-1 Nef is an accessory protein responsible for inactivation of a number of host cell proteins essential for anti-viral immune responses. In most cases, Nef binds to the target protein and directs it to a degradation pathway. Our previous studies demonstrated that Nef impairs activity of the cellular cholesterol transporter, ABCA1, and that Nef interacts with ABCA1. Mutation of the 2226DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 disrupted interaction with Nef. Here, we tested Nef interaction with the ABCA1 C-terminal cytoplasmic fragment using yeast 2-hybrid system assay and co-immunoprecipitation analysis in human cells. Surprisingly, analysis in a yeast 2-hybrid system did not reveal any interaction between Nef and the C-terminal cytoplasmic fragment of ABCA1. Using co-immunoprecipitation from HEK 293T cells expressing these polypeptides, only a very weak interaction could be detected. The 2226DDDHLK motif in the C-terminal cytoplasmic tail of ABCA1 found previously to be essential for interaction between ABCA1 and Nef is insufficient to bestow strong binding to Nef. Molecular modeling suggested that interaction with Nef may be mediated by a conformational epitope composed of the sequences within the cytoplasmic loop of ABCA1 and the C-terminal cytoplasmic domain. Studies are now underway to characterize this epitope.  相似文献   

14.
Altered neutrophil function may contribute to the development of AIDS during the course of HIV infection. It has been described that Nef, a regulatory protein from HIV, can modulate superoxide production in other cells, therefore altered superoxide production in neutrophils from HIV infected patients, could be secondary to a direct effect of Nef on components of the NADPH oxidase complex. In this work, we describe that Nef, was capable of increasing superoxide production in human neutrophils. Furthermore, a specific association between Nef and p22-phox, a membrane component of the NADPH oxidase complex, was found. We propose that this association may reflect a capability of Nef to modulate by direct association, the enzymatic complex responsible for one of the most efficient innate defense mechanisms in phagocytes, contributing to the pathogenesis of the disease.  相似文献   

15.
Macrophages (MΦ) are functionally classified into two types, anti-inflammatory M2 and pro-inflammatory M1. Importantly, we recently revealed that soluble HIV-1 proteins, particularly the pathogenetic protein Nef, preferentially activate M2-MΦ and drive them towards an M1-like MΦ, which might explain the sustained immune activation seen in HIV-1-infected patients. Here, we show that the preferential effect of Nef on M2-MΦ is mediated by TAK1 (TGF-β-activated kinase 1) and macropinocytosis. As with MAP kinases and NF-κB pathway, Nef markedly activated TAK1 in M-CSF-derived M2-MΦ but not in GM-CSF-derived M1-MΦ. Two Nef mutants, which were unable to activate MAP kinases and NF-κB pathway, failed to activate TAK1. Indeed, the TAK1 inhibitor 5Z-7-oxozeaenol as well as the ectopic expression of a dominant-negative mutant of TAK1 or TRAF2, an upstream molecule of TAK1, inhibited Nef-induced signaling activation and M1-like phenotypic differentiation of M2-MΦ. Meanwhile, the preferential effect of Nef on M2-MΦ correlated with the fact the Nef entered M2-MΦ more efficiently than M1-MΦ. Importantly, the macropinosome formation inhibitor EIPA completely blocked the internalization of Nef into M2-MΦ. Because the macropinocytosis activity of M2-MΦ was higher than that of M1-MΦ, our findings indicate that Nef enters M2-MΦ efficiently by exploiting their higher macropinocytosis activity and drives them towards M1-like MΦ by activating TAK1.  相似文献   

16.
HIV-1 has at its disposal numerous proteins encoded by its genome which provide the required arsenal to establish and maintain infection in its host for a considerable number of years. One of the most important and enigmatic of these proteins is Nef. The Nef protein of HIV-1 plays a fundamental role in the virus life cycle. This small protein of approximately 27 kDa is required for maximal virus replication and disease progression. The mechanisms by which it is able to act as a positive factor during virus replication is an area of intense research and although some controversy surrounds Nef much has been gauged as to how it functions. Its ability to modulate the expression of key cellular receptors important for cell activation and control signal transduction elements and events by interacting with numerous cellular kinases and signalling molecules, including members of the Src family kinases, leading to an effect on host cell function is likely to explain at least in part its role during infection and represents a finely tuned mechanism where this protein assists HIV-1 to control its host.  相似文献   

17.
Vpu is an 81-residue accessory protein of HIV-1. Because it is a membrane protein, it presents substantial technical challenges for the characterization of its structure and function, which are of considerable interest because the protein enhances the release of new virus particles from cells infected with HIV-1 and induces the intracellular degradation of the CD4 receptor protein. The Vpu-mediated enhancement of the virus release rate from HIV-1-infected cells is correlated with the expression of an ion channel activity associated with the transmembrane hydrophobic helical domain. Vpu-induced CD4 degradation and, to a lesser extent, enhancement of particle release are both dependent on the phosphorylation of two highly conserved serine residues in the cytoplasmic domain of Vpu. To define the minimal folding units of Vpu and to identify their activities, we prepared three truncated forms of Vpu and compared their structural and functional properties to those of full-length Vpu (residues 2-81). Vpu(2-37) encompasses the N-terminal transmembrane alpha-helix; Vpu(2-51) spans the N-terminal transmembrane helix and the first cytoplasmic alpha-helix; Vpu(28-81) includes the entire cytoplasmic domain containing the two C-terminal amphipathic alpha-helices without the transmembrane helix. Uniformly isotopically labeled samples of the polypeptides derived from Vpu were prepared by expression of fusion proteins in E. coli and were studied in the model membrane environments of lipid micelles by solution NMR spectroscopy and oriented lipid bilayers by solid-state NMR spectroscopy. The assignment of backbone resonances enabled the secondary structure of the constructs corresponding to the transmembrane and the cytoplasmic domains of Vpu to be defined in micelle samples by solution NMR spectroscopy. Solid-state NMR spectra of the polypeptides in oriented lipid bilayers demonstrated that the topology of the domains is retained in the truncated polypeptides. The biological activities of the constructs of Vpu were evaluated. The ion channel activity is confined to the transmembrane alpha-helix. The C-terminal alpha-helices modulate or promote the oligomerization of Vpu in the membrane and stabilize the conductive state of the channel, in addition to their involvement in CD4 degradation.  相似文献   

18.
We studied the interaction of the artificial 12-aa proline-rich peptide PD1 with the SH3 domain of the hematopoietic cell kinase Hck and the peptide's potency in competitively displacing HIV-1 Nef from the Hck SH3 domain. PD1 was obtained from a phage display screen and exhibits exceptional affinity for the Hck SH3 domain (K(d)=0.23 microM). Competition experiments using NMR spectroscopy demonstrate that the peptide even displaces Nef from Hck SH3 and allow for estimation of the Nef-Hck SH3 dissociation constant (K(d)=0.44 microM), the strongest SH3 ligand interaction known so far. Consequences of this study for novel antiviral concepts are discussed.  相似文献   

19.
目的:通过原核细胞表达人免疫缺陷病毒(HIV)Nef抗原,制备特异抗血清,为Nef抗原检测提供技术方法。方法:以HIVBotswana毒株基因组为模板,用PCR法获得Nef蛋白编码基因,将其克隆到pET30a载体中,在大肠杆菌中表达Nef融合蛋白;用纯化的融合蛋白免疫BALB/c小鼠获得抗血清,用真核表达的Nef抗原对其特异性进行分析。结果:构建的Nef融合基因在大肠杆菌中获得表达,相对分子质量约为36x103,免疫BALB/c小鼠获得针对融合蛋白的高效价抗血清,ELISA抗体滴度为1:6400;免疫荧光和Westemblot检测表明,该抗血清能特异地与重组痘苗病毒表达的Nef抗原反应。结论:在大肠杆菌中表达了HIVNef融合蛋白,制备了Nef融合蛋白的高效价小鼠免疫血清,该血清能特异性识别HIVNef抗原,为HlVNef抗原检测提供了技术方法。  相似文献   

20.
Nef is an HIV-1 virulence factor that promotes viral pathogenicity by altering host cell signaling pathways. Nef binds several members of the Src kinase family, and these interactions have been implicated in the pathogenesis of HIV/AIDS. However, the direct effect of Nef interaction on Src family kinase (SFK) regulation and activity has not been systematically addressed. We explored this issue using Saccharomyces cerevisiae, a well defined model system for the study of SFK regulation. Previous studies have shown that ectopic expression of c-Src arrests yeast cell growth in a kinase-dependent manner. We expressed Fgr, Fyn, Hck, Lck, Lyn, and Yes as well as c-Src in yeast and found that each kinase was active and induced growth suppression. Co-expression of the negative regulatory kinase Csk suppressed SFK activity and reversed the growth-inhibitory effect. We then co-expressed each SFK with HIV-1 Nef in the presence of Csk. Nef strongly activated Hck, Lyn, and c-Src but did not detectably affect Fgr, Fyn, Lck, or Yes. Mutagenesis of the Nef PXXP motif essential for SH3 domain binding greatly reduced the effect of Nef on Hck, Lyn, and c-Src, suggesting that Nef activates these Src family members through allosteric displacement of intramolecular SH3-linker interactions. These data show that Nef selectively activates Hck, Lyn, and c-Src among SFKs, identifying these kinases as proximal effectors of Nef signaling and potential targets for anti-HIV drug discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号