首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moon HI  Chung JH 《FEBS letters》2006,580(3):769-774
UV-induced matrix metalloproteinases (MMPs) cause connective tissue damage and the skin to become wrinkled and aged. Here, we investigated the effect of 2',4',7-trihydroxyisoflavone (THF) on UV-induced MMP-1 expression in human skin fibroblasts (HSFs). We found that UV irradiation increases MMP-1 expression and that this is mediated by ERK and JNK activation, but not by p38 activation. Pretreatment of HSFs with 2',4',7-THF inhibited UV-induced MMP-1 expression in a dose-dependent manner, and also inhibited the UV-induced activations of ERK and JNK by inhibiting MEK1 and SEK1 activation, respectively. Moreover, inhibitions of ERK and JNK by 2',4',7-THF resulted in the decrease of c-Fos expression and c-Jun phosphorylation/expression induced by UV, respectively, which led to the inhibition of UV-induced AP-1 DNA binding activity. This inhibitory effect of 2',4',7-THF on MMP-1 was not mediated by an antioxidant effect. In conclusion, our results demonstrate that 2',4',7-THF can inhibit UV-induced MMP-1 expression by inhibiting the MEK1/ERK/c-Fos and SEK1/JNK/c-Jun pathways. Therefore, 2',4',7-THF is a potential agent for the prevention and treatment of skin aging.  相似文献   

2.
3.
4.
Ultraviolet (UV) irradiation regulates UV-responsive genes, including matrix metalloproteinases (MMPs). Moreover, UV-induced MMPs cause connective tissue damage and the skin to become wrinkled and aged. Here, we investigated the effect of eicosapentaenoic acid (EPA), a dietary omega-3 fatty acid, on UV-induced MMP-1 expression in human dermal fibroblasts (HDFs). We found that UV radiation increases MMP-1 expression and that this is mediated by p44 and p42 MAP kinase (ERK) and Jun-N-terminal kinase (JNK) activation but not by p38 activation. Pretreatment of HDFs with EPA inhibited UV-induced MMP-1 expression in a dose-dependent manner and also inhibited the UV-induced activation of ERK and JNK by inhibiting ERK kinase (MEK1) and SAPK/ERK kinase 1 (SEK1) activation, respectively. Moreover, inhibition of ERK and JNK by EPA resulted in the decrease of c-Fos expression and c-Jun phosphorylation/expression induced by UV, respectively, which led to the inhibition of UV-induced activator protein-1 DNA binding activity. This inhibitory effect of EPA on MMP-1 was not mediated by an antioxidant effect. We also found that EPA inhibited 12-O-tetradecanoylphorbol-13-acetate- or tumor necrosis factor-alpha-induced MMP-1 expression in HDFs and UV-induced MMP-1 expression in HaCaT cells. In conclusion, our results demonstrate that EPA can inhibit UV-induced MMP-1 expression by inhibiting the MEK1/ERK/c-Fos and SEK1/JNK/c-Jun pathways. Therefore, EPA is a potential agent for the prevention and treatment of skin aging.  相似文献   

5.
6.
Summary Hyperbaric oxygen (HBO) is increasingly used in a number of areas of medical practice, such as selected problem infections and wounds. The beneficial effects of HBO in treating ischemia-related wounds may be mediated by stimulating angiogenesis. We sought to investigate VEGF, the main angiogenic regulator, regulated by HBO in human umbilical vein endothelial cells (HUVECs). In this study, we found that VEGF was up regulated both at mRNA and protein levels in HUVECs treated with HBO dose- and time-dependently. Since there are several AP-1 sites in the VEGF promoter, and the c-Jun/AP-1 is activated through stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) and extracellular signal regulated kinase (ERK), we further examined the c-Jun, JNK and ERK that might be involved in the VEGF induced by HBO. The VEGF mRNA induced by HBO was blocked by both PD98059 and SP600125, the ERK and JNK inhibitors respectively. HBO induced phospho-ERK and phospho-JNK expressions within 15 min. We further demonstrated that c-Jun phosphorylation was induced within 60 min of HBO treatment. HBO also induced the nuclear AP-1 binding ability within 30–60 min, but the AP-1 induction was blocked by treatment with either the ERK or JNK inhibitor. To verify that the VEGF expression induced by HBO is through the AP-1 trans-activation and VEGF promoter, both the VEGF promoter and AP-1 driving luciferase activity were found increased by the cells treated with HBO. The c-Jun mRNA, which is also driven by AP-1, was also induced by HBO, and the induction of c-Jun was blocked by ERK and JNK inhibitors. We suggest that VEGF induced by HBO is through c-Jun/AP-1 activation, and through simultaneous activation of ERK and JNK pathways.  相似文献   

7.
8.
9.
The prevention of injury from reactive oxygen species is critical for cellular resistance to many death stimuli. Resistance to death from the superoxide generator menadione in the hepatocyte cell line RALA255-10G is dependent on down-regulation of the c-Jun N-terminal kinase (JNK)/AP-1 signaling pathway by extracellular signal-regulated kinase 1/2 (ERK1/2). Because protein kinase C (PKC) regulates both oxidant stress and JNK signaling, the ability of PKC to modulate hepatocyte death from menadione through effects on AP-1 was examined. PKC inhibition with Ro-31-8425 or bisindolylmaleimide I sensitized this cell line to death from menadione. Menadione treatment led to activation of PKCmicro, or protein kinase D (PKD), but not PKCalpha/beta, PKCzeta/lambda, or PKCdelta/. Menadione induced phosphorylation of PKD at Ser-744/748, but not Ser-916, and translocation of PKD to the nucleus. PKC inhibition blocked menadione-induced phosphorylation of PKD, and expression of a constitutively active PKD prevented death from Ro-31-8425/menadione. PKC inhibition led to a sustained overactivation of JNK and c-Jun in response to menadione as determined by in vitro kinase assay and immunoblotting for the phosphorylated forms of both proteins. Cell death from PKC inhibition and menadione treatment resulted from c-Jun activation, since death was blocked by adenoviral expression of the c-Jun dominant negative TAM67. PKC and ERK1/2 independently down-regulated JNK/c-Jun, since inhibition of either kinase failed to affect activation of the other kinase, and simultaneous inhibition of both pathways caused additive JNK/c-Jun activation and cell death. Resistance to death from superoxide therefore requires both PKC/PKD and ERK1/2 activation in order to down-regulate proapoptotic JNK/c-Jun signaling.  相似文献   

10.
11.
12.
Untransformed CD4(+) Th1 cells stimulated with Ag and APC demonstrated a dependence on B7- and CD28-mediated costimulatory signals for the expression and function of AP-1 proteins. The induction of transactivation by the c-fos gene regulator Elk-1 mirrored this requirement for TCR and CD28 signal integration. c-Jun N-terminal kinase (JNK) (but not extracellular signal-regulated kinase or p38) protein kinase activity was similarly inhibited by neutralizing anti-B7 mAbs. Blockade of JNK protein kinase activity with SB 202190 prevented both Elk-1 transactivation and c-Fos induction. These results identify a unique role for B7 costimulatory molecules and CD28 in the activation of JNK during Ag stimulation in Th1 cells, and suggest that JNK regulates Elk-1 transactivation at the c-fos gene to promote the formation of AP-1 complexes important to IL-2 gene expression.  相似文献   

13.
14.
15.
Ultraviolet (UV) irradiation stimulates stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), which is a member of the mitogen-activated protein kinase (MAPK) superfamily and implicated in stress-induced apoptosis. UV also induces the activation of another MAPK member, extracellular signal-regulated kinase (ERK), which is typically involved in a growth-signaling cascade. However, the UV-induced signaling pathway leading to ERK activation, together with the physiological role, has remained unknown. Here we examined the molecular mechanism and physiological function of UV-induced ERK activation in human epidermoid carcinoma A431 cells that retain a high number of epidermal growth factor (EGF) receptors. UV-induced ERK activation was accompanied with the Tyr phosphorylation of EGF receptors, and both responses were completely abolished in the presence of a selective EGF receptor inhibitor (AG1478) or the Src inhibitor PP2 and by the expression of a kinase-dead Src mutant. On the other hand, SAPK/JNK activation by UV was partially inhibited by these inhibitors. UV stimulated Src activity in a manner similar to the ERK activation, but the Src activation was insensitive to AG1478. UV-induced cell apoptosis measured by DNA fragmentation and caspase 3 activation was enhanced by AG1478 and an ERK kinase inhibitor (U0126) but inhibited by EGF receptor stimulation by the agonist. These results indicate that UV-induced ERK activation, which provides a survival signal against stress-induced apoptosis, is mediated through Src-dependent Tyr phosphorylation of EGF receptors.  相似文献   

16.
Although the 100-kDa Ras GTPase-activating protein (p100 RasGAP) has been reported to exist specifically in human placental trophoblasts, the molecular mechanisms responsible for regulating its expression remain unclear. In this study we used okadaic acid, an inhibitor of serine/threonine phosphatase 1 and 2 A, as a probe to explore the signaling pathway regulating the expression of p100 RasGAP in JEG-3 human placental choriocarcinoma cells. Treatment of JEG-3 cells with okadaic acid provoked dose- and time-dependent stimulation of p100 RasGAP expression without marked modification of expression of p120 RasGAP, another isoform of RasGAP. Co-treatment of cells with okadaic acid and the protein kinase C activator, phorbol 12-myristate 13-acetate, exerted an additive effect on p100 RasGAP induction. Moreover, the response of the p100 RasGAP de novo synthesis to okadaic acid was not affected by the selective inhibitor of protein kinase C, GF 109203X. Thus this study identified a novel signaling pathway regulating p100 RasGAP expression, which is independent of protein kinase C. In addition, okadaic acid treatment resulted in the activation of ERK2 (p42 MAP kinase) and the induction of both c-Jun and c-Fos proteins without activating JNK (c-Jun NH2-terminal kinase). Significantly, blockade of c-Jun expression with antisense c-jun oligonucleotides suppressed p100 RasGAP expression. Taken together, it is concluded that okadaic acid induces the expression of p100 RasGAP protein in JEG-3 cells preceded by activation of ERK and AP-1 cascade, and that this okadaic acid-induced p100 RasGAP expression is independent of protein kinase C-mediated pathway but requires c-Jun/AP-1 function.  相似文献   

17.
5-Methylchrysene has been found to be a complete carcinogen in laboratory animals. However, the tumor promotion effects of (+/-)-anti-5-methylchrysene-1,2-diol-3,4-epoxide (5-MCDE) remain unclear. In the present work, we found that 5-MCDE induced marked activator protein-1 (AP-1) activation in Cl41 cells. 5-MCDE also induced a marked activation of phosphatidylinositol 3-kinase (PI-3K). Inhibition of PI-3K impaired 5-MCDE-induced AP-1 transactivation, suggesting that PI-3K is an upstream kinase involved in AP-1 activation by 5-MCDE. Furthermore, we found that Akt is a PI-3K downstream mediator for 5-MCDE-induced AP-1 transactivation, whereas another PI-3K downstream kinase, p70(S6K), was not involved in AP-1 activation by 5-MCDE. Moreover, inhibition of Akt activation blocked 5-MCDE-induced activation of extracellular signal-regulated protein kinases (ERKs) and c-Jun NH(2)-terminal kinases (JNKs), whereas it did not affect p38K activation. Consistently, overexpression of a dominant-negative mutant of ERK2 or JNK1 blocked the AP-1 activation by 5-MCDE. These results demonstrate that 5-MCDE is able to induce AP-1 activation, and the AP-1 induction is specifically through a PI-3K/Akt-dependent and p70(S6K)-independent pathway.  相似文献   

18.
19.
20.
The importance of transforming growth factor-beta1 (TGF-beta1) in plasminogen activator inhibitor-1 (PAI-1) gene expression has been established, but the precise intracellular mechanisms are not fully understood. Our hypothesis is that the actin cytoskeleton is involved in TGF-beta1/MAPK-mediated PAI-1 expression in human mesangial cells. Examination of the distributions of actin filaments (F-actin), alpha-actinin, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by immunofluorescence and immunoprecipitation revealed that ERK and JNK associate with alpha-actinin along F-actin and that TGF-beta1 stimulation promote the dissociation of ERK and JNK with F-actin. Disassembly of the actin cytoskeleton inhibited phosphorylation of ERK and JNK and modulated PAI-1 expression and promoter activity under both basal and TGF-beta1-stimulated conditions. Stabilizing actin prevented dephosphorylation of ERK and JNK. ERK and JNK inhibitors and overexpressed dominant negative mutants antagonized the ability of TGF-beta1 to increase PAI-1 expression and promoter activity. Disassembly of F-actin also inhibited AP-1 DNA binding activity as determined by electrophoretic mobility shift assay using AP-1 consensus oligonucleotides derived from human PAI-1 promoter. F-actin stabilization prevented loss of AP-1 DNA binding activity. Therefore, changes in actin cytoskeleton modulate the ability of TGF-beta1 to stimulate PAI-1 expression through a mechanism dependent on the activation of MAPK/AP-1 pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号