首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Nervion River estuary surface samples were taken from March to September 2003 at six sites covering most of the salinity range with the aim to know the biomass and taxonomic composition of phytoplankton assemblages in the different segments. Nine groups of algae including cyanobacteria, diatoms, dinoflagellates, chlorophytes, prasinophytes, euglenophytes, chrysophytes, haptophytes, raphidophytes and cryptophytes were identified by means of a combination of pigment analysis by high-performance liquid chromatography (HPLC) and microscopic observations of live and preserved cells. Diatoms, chlorophytes and cryptophytes were the most abundant algae in terms of cells number, whereas fucoxanthin, peridinin, chlorophyll b (Chl b) and alloxanthin were the most abundant auxiliary pigments. Based on multiple regression analysis, in the outer estuary (stations 0, 1, 2 and 3) about 93% of the chlorophyll a (Chl a) could be explained by algae containing fucoxanthin and by algae containing Chl b, whereas in the rest of the estuary most of the Chl a (about 98%) was accounted for by fucoxanthin, Chl b and alloxanthin containing algae. The study period coincided with that of most active phytoplankton growth in the estuary and fucoxanthin was by far the dominant among those signature pigments. Several diatoms, chrysophytes, haptophytes and raphydophytes were responsible for fucoxanthin among identified species. Besides, dinoflagellates with a pigment pattern corresponding to chrysophytes and type 4 haptophytes were identified among fucoxanthin-bearing algae. Cryptophytes were the most abundant species among those containing alloxanthin. The maximum of Chl b registered at the seaward end in April coincided with a bloom of the prasinophytes Cymbomonas tetramitiformis, whereas the Chl b maxima in late spring and summer were accounted for by prasinophytes in the middle and outer estuary and by several species of chlorophytes in the middle and inner estuary. Other Chl b containing algae were euglenophytes and the dinoflagellate Peridinium chlorophorum. Dinoflagellates constituted generally a minor component of the phytoplankton.  相似文献   

2.
1. Longitudinal gradients in the epilimnetic waters of stratified reservoirs provide a useful database to study changing environmental conditions. The spatial distribution, assemblage structure and specific adaptations of phytoplankton assemblages can be analysed along these gradients over short time scales. 2. Four reservoirs with a similar typology, located along an altitudinal gradient in the same eco‐region, were sampled along their longitudinal axes. In total, 19 sampling stations provided a trophic spectrum, ranging from oligo‐mesotrophy to hypertrophy, which was quantified by calculating the trophic state index of each sampling station in the four reservoirs. 3. Several patterns in phytoplankton assemblage structure were detected. Total chlorophyll‐a (Chl‐a), biovolume, abundance and the relative biomass contribution of the main algal groups (chlorophytes, cyanobacteria, cryptophytes and diatoms) were highly correlated with their location along the trophic gradient. 4. We also adopted the functional classification of Reynolds et al. (2002) : this effectively summarized differences among phytoplankton assemblages under varying resource‐limiting combinations, especially nutrients and underwater light climate. 5. In terms of relationships with the trophic gradient, diatoms and cyanobacteria exhibited significant opposing trends in both their relative chlorophyll contribution to total Chl‐a and biovolume. Chlorophytes were more abundant at an intermediate position along the trophic spectrum. 6. The identified patterns are consistent with models of self‐organization of phytoplankton assemblages. In particular, light availability was a strong determinant of size and shape diversity, especially in hypertrophic conditions, where ‘R‐strategist’, needle shaped species, dominated the system. In contrast, under decreased availability of nutrients and higher light extinction coefficients (Kd), the system was co‐dominated by C‐ and S‐strategist species, having shapes with a higher surface/volume ratio.  相似文献   

3.
The utility of absorbance and fluorescence-emission spectra for discriminating among microalgal phylogenetic groups, selected species, and phycobilin- and non-phycobilin-containing algae was examined using laboratory cultures. A similarity index algorithm, in conjunction with fourth-derivative transformation of absorbance spectra, provided discrimination among the chlorophyll [Chl] a/phycobilin (cyanobacteria), Chl a/Chl c/phycobilin (cryptophytes), Chl a/Chl b (chlorophytes, euglenophytes, prasinophytes), Chl a/Chl c/fucoxanthin (diatoms, chrysophytes, raphidophytes) and Chl a/Chl c/peridinin (dinoflagellates) spectral classes, and often between}among closely related phylogenetic groups within a class. Spectra for phylogenetic groups within the Chl a/Chl c/fucoxanthin, Chl a/Chl c/peridinin, Chl a/phycobilins and Chl a/Chl c/phycobilin classes were most distinguishable from spectra for groups within the Chl a/Chl b spectral class. Chrysophytes/diatoms/raphidophytes and dinoflagellates (groups within the comparable spectral classes, Chl a/Chl c/fucoxanthin and Chl a/Chl c/peridinin, respectively) displayed the greatest similarity between/among groups. Spectra for phylogenetic groups within the Chl a/Chl c classes displayed limited similarity with spectra for groups within the Chl/phycobilin classes. Among the cyanobacteria and chlorophytes surveyed, absorbance spectra of species possessing dissimilar cell morphologies were discriminated, with the greatest range of differentiation occurring among cyanobacteria. Among the cyanobacteria, spectra for selected problematic species were easily discriminated from spectra from each other and from other cyanobacteria. Fluorescence-emission spectra were distinct among spectral classes and the similarity comparisons involving fourth-derivative transformation of spectra discriminated the increasing contribution of distinct cyanobacterial species and between phycobilin- and non-phycobilin-containing species within a hypothetical mixed assemblage. These results were used to elucidate the application for in situ moored instrumentation incorporating such approaches in water quality monitoring programmes, particularly those targeting problematic cyanobacterial blooms.  相似文献   

4.
The phytoplankton and ice algal assemblages in the SiberianLaptev Sea during the autumnal freeze-up period of 1995 aredescribed. The spatial distribution of algal taxa (diatoms,dinoflagellates, chrysophytes, chlorophytes) in the newly formedice and waters at the surface and at 5 m depth differed considerablybetween regions. This was also true for algal biomass measuredby in situ fluorescence, chlorophyll (Chl) a and taxon-specificcarbon content. Highest in situ fluorescence and Chl a concentrations(ranging from 0.1 to 3.2 µg l–1) occurred in surfacewaters with maxima in Buor Khaya Bay east of Lena Delta. Thealgal standing stock on the shelf consisted mainly of diatoms,dinoflagellates, chrysophytes and chlorophytes with a totalabundance (excluding unidentified flagellates <10 µm)in surface waters of 351–33 660 cells l–1. Highestalgal abundance occurred close to the Lena Delta. Phytoplanktonbiomass (phytoplankton carbon; PPC) ranged from 0.1 to 5.3 µgC l–1 in surface waters and from 0.3 to 2.1 µg Cl–1 at 5 m depth, and followed the distribution patternof abundances. However, the distribution of Chl a differed considerablyfrom the distribution pattern shown by PPC. The algal assemblagein the sea ice, which could not be quantified due to high sedimentload, was dominated by diatom species, accompanied by dinoflagellates.Thus, already during the early stage of autumnal freeze-up,incorporation processes, selective enrichment and subsequentgrowth lead to differences between surface water and sea icealgal assemblages.  相似文献   

5.
We present data from a long time-series study to describe the factors that control phytoplankton population densities and biomass in the coastal waters of Oman. Surface temperature, salinity, nutrients, dissolved oxygen, chlorophyll a (Chl a), and phytoplankton and zooplankton abundance of sea water were measured as far as possible from February 2004 through February 2006, at two stations along the southern coast of the Gulf of Oman. The highest concentrations of Chl a (3 mg m−3) were recorded during the southwest monsoon (SWM) when upwelling is active along the coast of Oman. However, results from our study reveal that the timing and the amplitude of the seasonal peak of Chl a exhibited interannual variability, which might be attributed to interannual differences in the seasonal cycles of nutrients caused either by coastal upwelling or by cyclonic eddy activity. Monthly variability of SST and concentrations of dissolved nitrate, nitrite, phosphate, and silicate together explained about 90% of the seasonal changes of Chl a in the coastal ecosystem of the Gulf of Oman. Phytoplankton communities of the coastal waters of Oman were dominated by diatoms for most part of the year, but for a short period in summer, dinoflagellates were dominant.  相似文献   

6.
SYNOPSIS. Tracer technic has proved to be an excellent tool in the study of predator-prey relationships among the foraminifera. More than fifty axenic species of protists including diatoms, dinoflagellates, chlorophytes, chrysophytes, cyanophytes, bacteria and yeasts were tested as potential food for Allogromia sp (NF), A. laticollaris, Am. monia beccarii, Quinqueloculina spp, Rosalina floridana, Anomalina sp, Elphidium sp, Spiroloculina hyalina, Globigerina bulloides, and Globorotalia truncatulinoides. Although many types of potential food are present in the environment, foraminifera select only certain organisms. The yeasts, cyanophytes, dinoflagellates, chrysophytes and most bacteria tested were not eaten. Selected species of diatoms, chlorophytes and bacteria were eaten in large quantity. Three additional factors affect feeding: the “age” of the food organism, the “age” of the foraminifer or its position in the life cycle, and the concentration of the food. Feeding by foraminifera on most food is erratic below a concentration of 103 organisms and is approximately directly proportional to concentration within a range of 103-106 organisms per 10 ml experimental tube. A natural bloom of Protelphidium tisburyensis was analyzed. A high concentration of 6 species of diatoms characterized the community. A “bloom”-feeder hypothesis for foraminiferal nutrition is presented.  相似文献   

7.
The seasonal variability of phytoplankton assemblages in themiddle Adriatic sub-basin is described. The investigated areacrossed the middle Adriatic from the Italian to the Croatiancoasts. Hydrographic data, chlorophyll (Chl) a and phytoplanktonwere collected on a seasonal basis from May 1995 to February1996. Highest phytoplankton densities (up to 6 x 106 cells dm–3)were observed in spring and autumn in the western side, withinthe diluted waters. The vertical distribution of Chl a exhibiteda pronounced subsurface maximum associated, in coastal waters,with micro-planktonic diatoms. Phytoplankton assemblages weredominated by phytoflagellates in all the periods investigated.Diatom maxima were observed in spring and autumn: their verticaldistribution generally reflected the Chl a pattern and in thewestern coastal area peaks are due to large diatom species (Pseudo-nitzschiaspp.). In offshore waters, dinoflagellates strongly prevailover diatoms and provide a relevant contribution to the totalbiomass, especially in highly stratified conditions. Coccolithophoridswere mostly encountered in surface layers and their highestcontribution to the total biomass was observed in the LevantineIntermediate Water.  相似文献   

8.
The maximum quantum yield of photosystem II was estimated from variable chlorophyll a fluorescence in samples of phytoplankton collected from the Taihu Lake in China to determine the responses of different phytoplankters to irradiance and vertical mixing. Meteorological and environmental variables were also monitored synchronously. The maximum quantum yield of three phytoplankton groups: cyanobacteria, chlorophytes, and diatoms/dinoflagellates, showed a similar diurnal change pattern. F v/F m decreased with a significant depth-dependent variation as irradiance increased during the morning and increased as irradiance declined in the afternoon. Furthermore, the rates of F v/F m depression were dependent upon the photon flux density, whereas the rates of recovery of F v/F m were dependent upon the historical photon density. Moreover, photoinhibition affected the instantaneous growth rates of phytoplankton. Although at noon cyanobacteria had a higher photoinhibition value (up to 41%) than chlorophytes (32%) and diatoms/dinoflagellates (34%) at the surface, no significant difference in diurnal growth rates among the three phytoplankton groups were observed indicating that cyanobacteria could photoacclimate better than chlorophytes and diatoms/dinoflagellates. In addition, cyanobacteria had a higher nonphotochemical quenching value than chlorophytes and diatoms/dinoflagellates at the surface at noon, which indicated that cyanobacteria were better at dissipating excess energy. The ratios of enclosed bottle samples F v/F m to free lake samples F v/F m showed different responses for the three phytoplankton groups to irradiance and vertical mixing when wind speed was approximately constant at about 3.0 m s−1. When wind speed was lower than 3.0 m s−1, cyanobacteria accumulated mainly at the surface and 0.3 m, because of their positive buoyancy, where diurnal growth rates of phytoplankton were relatively higher than those at 0.6 m and 0.9 m. Chlorophytes were homogenized completely by vertical mixing, while diatoms/dinoflagellates avoided active high irradiance by moving downward at noon, and then upward again when irradiance decreased. These results explain the dominance of cyanobacteria in Taihu Lake. Handling editor: L. Naselli-Flores  相似文献   

9.
Negro  Ana I.  De Hoyos  Caridad  Vega  Jose C. 《Hydrobiologia》2000,424(1-3):25-37
The aim of this work is to compare the composition and seasonality of the phytoplankton population in a natural oligotrophic lake (Lake Sanabria) and a mesotrophic reservoir (Valparaíso). Both ecosystems are located on the Tera river course (NW Spain), which runs along an area of ancient metamorphic and plutonic rocks. Some physical and chemical parameters, chlorophyll a and phytoplankton biovolume were studied from monthly samples collected at different depths during the periods 1987–1989 (Lake Sanabria) and 1991–1992 (Valparaíso). Phytoplankton biovolume and chlorophyll a concentration were about five times higher in Valparaíso than in Lake Sanabria. Species composition (and main phytoplankton groups) were different. Valparaíso was highly dominated by diatoms and Lake Sanabria by cryptophytes and small chlorophytes. In spite of the fact that both sites were nitrogen limited, heterocystous cyanophytes (Anabaena sp.) were detected only in Valparaíso. The relationships between phytoplankton structure and trophic level, hydrological conditions and nitrate content are discussed.  相似文献   

10.
The decrease of biodiversity related to the phenomena of global climate change is stimulating the scientific community towards a better understanding of the relationships between biodiversity and ecosystem functioning. In ecosystems where marked biodiversity changes occur at seasonal time scales, it is easier to relate them with ecosystem functioning. The objective of this work is to analyse the relationship between phytoplankton diversity and primary production in St. André coastal lagoon – SW Portugal. This lagoon is artificially opened to the sea every year in early spring, exhibiting a shift from a marine dominated to a low salinity ecosystem in winter. Data on salinity, temperature, nutrients, phytoplankton species composition, chlorophyll a (Chl a) concentration and primary production were analysed over a year. Modelling studies based on production-irradiance curves were also conducted. A total of 19 taxa were identified among diatoms, dinoflagellates and euglenophyceans, the less abundant group. Lowest diversities (Shannon–Wiener index) were observed just before the opening to the sea. Results show a negative correlation (p<0.05) between diversity and chlorophyll a (Chl a) concentration (0.2–40.3 mg Chl a m−3). Higher Chl a values corresponded to periods when the community was dominated by the dinoflagellate Prorocentrum minimum (>90% of cell abundance) and production was maximal (up to 234.8 mg C m−3 h−1). Maximal photosynthetic rates (Pmax) (2.0–22.5 mg C mg Chl a−1 h−1) were higher under lower Chl a concentrations. The results of this work suggest that decreases in diversity are associated with increases in biomass and production, whereas increases correspond to opposite trends. It is suggested that these trends, contrary to those observed in terrestrial and in some benthic ecosystems, may be a result of low habitat diversity in the water column and resulting competitive pressure. The occurrence of the highest photosynthetic rates when Chl a is low, under some of the highest diversities, suggests a more efficient use of irradiance under low biomass–high diversity conditions. Results suggest that this increased efficiency is not explained by potential reductions in nutrient limitation and intraspecific competition under lower biomasses and may be a result of niche complementarity.  相似文献   

11.
The microphytobenthos colonizing the intertidal flats forms an important component of the Wadden Sea. Ten sampling points along a 1-km transect were studied in a fringe area of the Solthörn tidal flat, southern North Sea, in order to determine seasonal differences in the microphytobenthos. An accompanying paper deals with the major component of the flora, the diatoms; here we, focus on the minor taxonomic groups. From May 2008 to May 2009 surface sediments were collected during low tide. Variation of environmental factors as well as microphytobenthic density (abundance and chlorophyll a) were monitored. The area investigated was a mixed-sediment mudflat, with a gradient from coarse to fine. Highest biomass was obtained in summer 2008 with 215.9?±?12.6?mg chlorophyll a m–2. In late autumn the chlorophyll a concentration decreased continuously at all investigated stations. Lowest values were detected in December 2008. Species abundances varied considerably both along the transect and seasonally, depending on species-specific requirements as well as hydrodynamic conditions (tidal currents). Higher densities of benthic pro- and eukaryotic microalgae were observed in sites characterized by fine sediments. Apart from the diatoms, the most abundant microphytobenthic group was the cyanophytes. Coccoid cyanophytes, mainly Merismopedia sp., were most abundant during summer, with cell numbers up to 5.72?×?106 cells cm?2, while diatoms dominated in winter, spring and autumn. Filamentous cyanophytes, particularly Microcoleus chthonoplastes, were most abundant during autumn, while coccoid chlorophytes (spring: Chlorococcum submarinum, Crucigenia tetrapedia, Tetraselmis suecica), euglenophytes (summer: Euglena obtusa), dinophytes (autumn: Amphidinium operculatum, A. herdmanii) and cryptophytes (autumn: Hillea marina, Hemiselmis virescens) contributed to the microphytobenthos during warmer seasons. The statistical analysis confirmed that the composition of the microphytobenthos was related to sediment features and to characteristics of particular seasons.  相似文献   

12.
Food selection by the marine cladoceran Penilia avirostris was studied in the field by HPLC analysis of phytoplankton marker pigments and in the laboratory by microscopic measurement of cell removal. Comparison between pigment composition in natural phytoplankton and in P. avirostris showed that P. avirostris preferred diatoms, cryptophytes and chlorophytes, and ignored prymnesiophytes and dinoflagellates. Peridinin, the marker pigment for dinoflagellates was found in P. avirostris only when the dinoflagellate populations were dominated by Prorocentrum. Pigment degradation rates ranged from 13.73% for alloxanthin to 36.62% for chlorophyll a. Clearance rates measured in the laboratory provided further evidence of strong preference for diatoms and cryptophytes, and avoidance of dinoflagellates. Microscopic counts suggested that P. avirostris was feeding on prymnesiophytes, although ingestion of prymnesiophytes could not be confirmed by pigment analysis.  相似文献   

13.
The species composition and phytoplankton biomass, concentrations of chlorophyll “a” (Chl) and nutrients, concurrent hydrophysical conditions were studied in the south part of the White Sea in July 10–15, 2012 during chlorophyll “a” decrease after summer peak. The water column stability varied, the concentration of dissolved silicon in upper mixed layer was closed to the range favorable for diatoms with exception of areas of intensive tide mixing and areas influenced by waters of Severnaya Dvina River. In surface layer the dinoflagellates dominated excepting of areas with intensive tide mixing where diatoms prevailed. Diatoms provided major contribution to biomass in different stations above, in and under pycnocline and in deep waters out of photic zone. Structural analysis has revealed three phytoplankton communities that corresponded to different depths: communities of photic zone, intermediate and deep layers. Extension of layers inhabited by different communities depended on water column stability and on genesis of water masses. Integrated values of phytoplankton biomass and Chl varied from 250 to 1188 mg С/m2, and from 22 to 51 mg/m2, correspondently.  相似文献   

14.
SUMMARY 1. An examination is made of the relative seasonal timing of the postwinter increase of phytoplankton and zooplankton populations in four English lake basins. It centres upon weekly sampling over 20 years and rough counts of larger Crustacea, as copepods and cladocerans, from filtered samples that were used for chlorophyll a (Chl) estimation. 2. Typically, a spring maximum of phytoplankton, dominated by diatoms and earlier in the shallower lakes, is accompanied or followed by a maximum of copepods and then one of cladocerans dominated by the Daphnia hyalina–galeata complex. Regarding timing, the maximum of copepods has no apparent relation with phytoplankton abundance (Chl). The maximum of cladocerans appears to be largely independent of variation in the phytoplankton maximum, but is generally associated with a minimum in Chl. Evidence for some direct causality in this inverse correlation after the spring phytoplankton maximum is best displayed by the shallow Esthwaite Water in which the peaks of Chl and cladocerans are separated further than in the deep Windermere basins where phytoplankton growth is delayed. In Esthwaite Water, and possibly often in Windermere, a principal minimum in Chl is ascribable to grazing by Daphnia. 3. The typical inverse relationship of Chl and cladocerans is lost in some years when relatively inedible large phytoplankters (e.g. colonial chrysomonads, filamentous cyanophytes) are abundant and Chl minima are less pronounced, although maxima of cladocerans still occur. Conversely, available edible phytoplankters include various small forms grouped as μ‐algae and Cryptomonas spp.; their probable depletions by Daphnia appear to be sequential and may limit the latter's maxima, whose inception is temperature‐dependent. 4. The spring–summer maxima of cladocerans and minima of Chl are generally coincident with a main seasonal maximum of Secchi disc transparency and light penetration – to which removal of non‐phytoplankton particles by filtering cladocerans may contribute.  相似文献   

15.
Samples of the phytoplankton in a freshwater lake, Lake Liddell, New South Wales (Lat: 32° 22 S, Long. 150° 1 E) were collected every 4 weeks between October 1987 and November 1988. Chlorophyll a concentrations ranged from 1.8 g 1–1 to 9.1 g 1–1 and were positively correlated with the following nutrient parameters: total and nett mass additions of nitrate/nitrite-N and total-N, total additions of Kjeldahl-N, and nett mass addition N-P ratios. There was no correlation between lake nutrient concentrations and chlorophyll a. Factors other than nutrient concentrations appeared to be effecting chlorophyll a concentrations as summer levels were low despite nutrient concentrations being at a maximum. In spring and summer the phytoplankton was dominated by chlorophytes, with dinoflagellates and diatoms most abundant in autumn. During winter cyanobacteria were the most abundant. The relative abundance of chlorophytes was positively correlated with in lake nitrate/nitrite-N concentrations whereas the relative abundance of cyanobacteria was negatively correlated with this parameter. Based on chlorophyll a concentrations and the phytoplankton flora Lake Liddell can be classified as mesotrophic.  相似文献   

16.
The lipophilic photosynthetic pigments in Limnothrix redekei, Planktothrix agardhii (cyanobacteria), Stephanodiscus minutulus, Synedra acus (diatoms), Scenedesmus acuminatus, and Scenedesmus armatus (chlorophycean) all isolated from an eutrophic lake were quantitatively determined by HPLC. The algae were grown semi-continuously under nutrient sufficient conditions at 20°C at a 12/12 h light/dark cycle with constant irradiance or with simulated natural light fluctuations as well as at a 6/18 h light/dark cycle with constant irradiance, all at the same daily light exposure. The zeaxanthin and the myxoxanthophyll contents of cyanobacteria were not influenced by fluctuating light, a short photoperiod or a different sampling time. The chlorophyll b/a ratio, the lutein/chlorophyll a ratio, and the neoxanthin content of chlorophycean as well as the chlorophyll c/a and the fucoxanthin/chlorophyll a ratio of diatoms were only slightly influenced by these factors. Therefore in some cases marker pigment contents and in other cases marker pigment/chlorophyll a ratios may be more useful for quantifying the relative importance of different taxonomic groups in natural phytoplankton. Simulated natural light fluctuations or the length of the photoperiod only slightly influenced the pigment content or the marker pigment/chlorophyll a ratio.  相似文献   

17.
Photosynthetic rates, growth rates, cell carbon, cell protein, and chlorophyll a content of two diatom and two dinoflagellate species were measured. The microalgae were chosen to have one small and one large species from each phylogenetic group; the two size categories differed from each other by 1.5 orders of magnitude in terms of cell carbon or cell protein. The cultures for the experiments were grown under continuous light at an irradiance high enough for the light-saturation of growth for all four species. The four species were found to have similar maximum photosynthetic rates per unit chlorophyll a. The diatom species showed lower carbon/chlorophyll a ratios and higher photosynthetic rates per unit carbon than the dinoflagellates. The higher growth rates of the diatoms were shown to be related to their higher photosynthetic rates per unit carbon. The ecological significance of the physiological difference between these two groups of microalgae is discussed.  相似文献   

18.
The potential interactions between the bloom-forming dinoflagellates and other phytoplankton during the algal bloom cycle are interesting, while the causes for the phytoplankton community changes were not fully understood. We hypothesized that phytoplankton community structure and photosynthetic activities of total phytoplankton have their special characteristics in different phases of the algal blooms. To test this hypothesis, a survey covering the process of a Prorocentrum donghaiense bloom in coastal waters between Dongtou and Nanji Islands was carried out from 9 to 20 May 2016, and the changes in the phytoplankton community and photosynthetic activities of total phytoplankton were determined. Surface seawater was sampled for microscopic analysis of phytoplankton composition and pulse amplitude modulated (PAM) chlorophyll fluorescence analysis of photosynthetic activities of the total phytoplankton species. A total of 25, 31, and 19 phytoplankton species were identified in its growth (9–12 May), maintenance (13–18 May) and dissipation phases (19–20 May), respectively. Diatoms were dominant in terms of species number while dinoflagellates were predominant at cell abundance. Dinoflagellates were the major dominant species during three phases of the bloom based on the dominance (Y) value, whereas the dominant species extended to dinoflagellates and diatoms including P. donghaiense, Coscinodiscus argus, Gonyaulax spinifera, Cyclotella sp. and Scrippsiella trochoidea in the dissipation phase. In the maintenance phase, the average cell abundances of the total phytoplankton and P. donghaiense were consistent with the chlorophyll a (Chla) concentration in the seawater; for the diversity indices of total phytoplankton species, Simpson index (C) was the highest while Shannon index (H′) and Pielou evenness index (J′) were the lowest. Furthermore, photosynthetic activities of the total phytoplankton species represented by the effective quantum yield (Fq'/Fm') and the maximum relative electron transport rate (rETRmax) in the maintenance phase were higher than those in the growth and dissipation phases. The results indicated that the characteristics of phytoplankton community structure and photosynthetic activities could be regarded as criteria in predicting the phases of algal blooms.  相似文献   

19.
Dinoflagellates have substantially lower growth rates than other taxa of similar size. These low growth rates have been suggested to reflect the lower chlorophyll a to carbon ratio (Chl a:C) in dinoflagellates, but that speculation has never been widely tested. This study tests if the variations in growth rates among taxa are related to differences in Chl a:C using published data. I collected 92 data entries from the literature representing 31 species, mostly from two divisions (Chrysophyta and Pyrrophyta), and found a significant relation (r2= 0.39) between growth and Chl a:C. Since Chl a:C is almost independent of C content, I also developed a growth model using both C and Chl a:C. Together, the two variables explain 68% of variation in algal growth. However, a further 6.4% of the variance in growth can still be attributed to phyletic differences. Low Chl a:C is only a partial explanation for the low growth rates of the dinoflagellates.  相似文献   

20.
Spatial variability of the central Gulf of California (CGC) phytoplankton biomass and photosynthetic parameters in relation to physical forcing was studied. Sampling was carried out in November, and the surface TC range was 20-27.5°C. Strong tidal mixing in the midrift islands regions injects relatively cool, nutrient-rich waters to the euphotic zone. Some of this water is transported via jets and cool filaments throughout the Gulf. In general, chlorophyll a (Chl) of small phytoplankton (<8 m) (up to >2.5 mg m-3) was higher than that of large phytoplankton. Highest values of phytoplankton assimilation numbers (PBm) [3.17 mg C (mg Chla)-1 h-1], and photosynthetic efficiency B) [0.23 mg C (mg Chl a)-1 h-1 (W m-2)-1] were determined for the large phytoplankton cells (>8 m). Our hypothesis that PBm values increase from cooler to warmer waters is not supported by the data. We found a 27-fold spatial difference of Chl, compared with a 10-fold difference of PBm and a 6-fold difference of B. Thus, in our study area, the major source of variability for primary productivity (PP) comes from Chl, and not from PBm and B. Therefore, we propose that it is possible to estimate late-fall PP for the CGC using average photosynthetic parameters. Average values for PBm and B of total phytoplankton were 0.72 mg c (mg Chl a)-1 h-1 and 0.12 mg C (mg Chl a-1 h-1, (W m-2)-1, with standard errors of 0.07 and 0.03, respectively.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号