首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Schizosaccharomyces pombe mutant ehs1-1 mutant was isolated on the basis of its hypersensitivity to Echinocandin and Calcofluor White, which inhibit cell wall synthesis. The mutant shows a thermosensitive growth phenotype that is suppressed in the presence of an osmotic stabiliser. The mutant also showed other cell wall-associated phenotypes, such as enhanced sensitivity to enzymatic cell wall degradation and an imbalance in polysaccharide synthesis. The ehs1 + gene encodes a predicted integral membrane protein that is 30% identical to Saccharomyces cerevisiae Mid1p, a protein that has been proposed to form part of a calcium channel. As expected for such a function, we found that ehs1+ is involved in intracellular Ca2+ accumulation. High external Ca2+ concentrations suppressed all phenotypes associated with the ehs1 null mutation, suggesting that the cell integrity defects of ehs1 mutants result from inadequate levels of calcium in the cell. We observed a genetic relationship between ehs1+ and the protein kinase C homologue pck2+. pck2+ suppressed all phenotypes of ehs1-1 mutant cells. Overproduction of pck2p is deleterious to wild-type cells, increasing 1,3-beta-D-glucan synthase activity and promoting accumulation of extremely high levels of Ca2+. The lethality associated with pck2p, the increase in 1,3-beta-D-glucan synthase production and the strong Ca2+ accumulation are all dependent on the presence of ehs1p. Our results suggest that in fission yeast ehs1p forms part of a calcium channel that is involved in the cell wall integrity pathway that includes the kinase pck2p.  相似文献   

2.
Schizosaccharomyces pombe rho1(+) and rho2(+) genes are involved in the control of cell morphogenesis, cell integrity, and polarization of the actin cytoskeleton. Although both GTPases interact with each of the two S. pombe protein kinase C homologues, Pck1p and Pck2p, their functions are distinct from each other. It is known that Rho1p regulates (1,3)beta-D-glucan synthesis both directly and through Pck2p. In this paper, we have investigated Rho2p signaling and show that pck2 delta and rho2 delta strains display similar defects with regard to cell wall integrity, indicating that they might be in the same signaling pathway. We also show that Rho2 GTPase regulates the synthesis of alpha-D-glucan, the other main structural polymer of the S. pombe cell wall, primarily through Pck2p. Although overexpression of rho2(+) in wild-type or pck1 delta cells is lethal and causes morphological alterations, actin depolarization, and an increase in alpha-D-glucan biosynthesis, all of these effects are suppressed in a pck2 delta strain. In addition, genetic interactions suggest that Rho2p and Pck2p are important for the regulation of Mok1p, the major (1-3)alpha-D-glucan synthase. Thus, a rho2 delta mutation, like pck2 delta, is synthetically lethal with mok1-664, and the mutant partially fails to localize Mok1p to the growing areas. Moreover, overexpression of mok1(+) in rho2 delta cells causes a lethal phenotype that is completely different from that of mok1(+) overexpression in wild-type cells, and the increase in alpha-glucan is considerably lower. Taken together, all of these results indicate the presence of a signaling pathway regulating alpha-glucan biosynthesis in which the Rho2p GTPase activates Pck2p, and this kinase in turn controls Mok1p.  相似文献   

3.
The Schizosaccharomyces pombe sts1+ gene, identified by supersensitive mutations to a protein kinase inhibitor, staurosporine, was isolated by complementation by the use of a fission yeast genomic library. Nucleotide sequencing shows that the sts1+ gene encodes a 453 amino acid putative membrane-associated protein that is significantly similar (26% identity) to the chicken lamin B receptor. It is also highly related (53% identity) to a budding yeast ORF, YGL022. These three proteins contain a similar hydrophobicity pattern consisting of eight or nine putative transmembrane domains. By gene disruption we demonstrate that the sts1+ gene is not essential for viability. These disruptants exhibit pleiotropic defects, such as cold-sensitivity for growth and at the permissive temperature, a supersensitivity to divalent cations and several unrelated drugs including staurosporine, caffeine, chloramphenicol, sorbitol, and SDS. Disruption of the sts1+ gene does not lead to a sensitivity to thiabendazole or hydroxyurea.  相似文献   

4.
In fission yeast protein kinase C homologues (Pck1 and Pck2) are essential for cell morphogenesis. We have isolated mok1(+) in a genetic screen to identify downstream effectors for Pck1/2. mok1(+) is essential for viability and encodes a protein that has several membrane-spanning domains and regions homologous to glucan metabolic enzymes. mok1 mutant shows abnormal cell shape, randomization of F-actin and weak cell wall. Biochemical analysis shows that Mok1 appears to have alpha-glucan synthase activity. Mok1 localization undergoes dramatic alteration during the cell cycle. It localizes to the growing tips in interphase, the medial ring upon mitosis, a double ring before and dense dot during cytokinesis. Double immunofluorescence staining shows that Mok1 exists in close proximity to actin. The subcellular localization of Mok1 is dependent upon the integrity of the F-actin cytoskeleton. Conversely, overexpression of mok1(+) blocks the translocation of cortical actin from one end of the cell to the other. pck2 mutant is synthetically lethal with mok1 mutant, delocalizes Mok1 and shows a lower level of alpha-glucan. These results indicate that Mok1 plays a crucial role in cell morphogenesis interdependently of the actin cytoskeleton and works as one of downstream effectors for Pck1/2.  相似文献   

5.
Rkp1/Cpc2, a fission yeast RACK1 homolog, interacts with Pck2, a PKC homolog, and is involved in the regulation of pck2-mediated signaling process. The N-terminal region of split pleckstrin homology domain (nPH) in human PLC-gamma1 bound to Rkp1/Cpc2 concomitantly with Pck2. nPH inhibited kinase activity of GST-Pck2 purified from Schizosaccharomyces pombe in vitro. The lethality induced by pck2(+) overexpression was suppressed by coexpression of either rkp1(+) or nPH domain. This result suggests that Rkp1/Cpc2 interacts with PH domain-containing protein and regulates the Pck2-mediated signaling process in S. pombe.  相似文献   

6.
In the fission yeast Schizosaccharomyces pombe, Wee1-dependent inhibitory phosphorylation of the highly conserved Cdc2/Cdk1 kinase determines the mitotic onset when cells have reached a defined size. The receptor of activated C kinase (RACK1) is a scaffolding protein strongly conserved among eukaryotes which binds to other proteins to regulate multiple processes in mammalian cells, including the modulation of cell cycle progression during G(1)/S transition. We have recently described that Cpc2, the fission yeast ortholog to RACK1, controls from the ribosome the activation of MAPK cascades and the cellular defense against oxidative stress by positively regulating the translation of specific genes whose products participate in the above processes. Intriguingly, mutants lacking Cpc2 display an increased cell size at division, suggesting the existence of a specific cell cycle defect at the G(2)/M transition. In this work we show that protein levels of Wee1 mitotic inhibitor are increased in cells devoid of Cpc2, whereas the levels of Cdr2, a Wee1 inhibitor, are down-regulated in the above mutant. On the contrary, the kinetics of G(1)/S transition was virtually identical both in control and Cpc2-less strains. Thus, our results suggest that in fission yeast Cpc2/RACK1 positively regulates from the ribosome the mitotic onset by modulating both the protein levels and the activity of Wee1. This novel mechanism of translational control of cell cycle progression might be conserved in higher eukaryotes.  相似文献   

7.
P Russell  P Nurse 《Cell》1987,49(4):569-576
The newly discovered fission yeast mitotic control element nim1+ (new inducer of mitosis) is the first dose-dependent mitotic inducer identified as a protein kinase homolog. Increased nim1+ expression rescues mutants lacking the mitotic inducer cdc25+ and advances cells into mitosis at a reduced cell size; loss of nim1+ delays mitosis until cells have grown to a larger size. The nim1+ gene potentially encodes a 50 kd protein that contains the consensus sequences of protein kinases. Genetic evidence indicates that nim1+ is a negative regulator of the wee1+ mitotic inhibitor, another protein kinase homolog. The combined mitotic induction activities of nim1+ and cdc25+ counteract the wee1+ mitotic inhibitor in a regulatory network that appears also to involve the cdc2+ protein kinase, which is required for mitosis.  相似文献   

8.
Fission yeast cells expressing the human gene encoding the cyclin-dependent kinase inhibitor protein p21Cip1 were severely compromised for cell cycle progress. The degree of cell cycle inhibition was related to the level of p21Cip1 expression. Inhibited cells had a 2C DNA content and were judged by cytology and pulsed field gel electrophoresis to be in the G2 phase of the cell cycle. p21Cip1 accumulated in the nucleus and was associated with p34cdc2 and PCNA. Thus, p21Cip1 interacts with the same targets in fission yeast as in mammalian cells. Elimination of p34cdc2 binding by mutation within the cyclin-dependent kinase binding domain of p21Cip1 exaggerated the cell cycle delay phenotype. By contrast, elimination of PCNA binding by mutation within the PCNA-binding domain completely abolished the cell cycle inhibitory effects. Yeast cells expressing wild-type p21Cip1 and the mutant form that is unable to bind p34cdc2 showed enhanced sensitivity to UV. Cell cycle inhibition by p21Cip1 was largely abolished by deletion of the chk1+ gene that monitors radiation damage and was considerably enhanced in cells deleted for the rad3+ gene that monitors both DNA damage and the completion of DNA synthesis. Overexpression of PCNA also resulted in cell cycle arrest in G2 and this phenotype was also abolished by deletion of chk1+ and enhanced in cells deleted for rad3+. These results formally establish a link between PCNA and the products of the rad3+ and chk1+ checkpoint genes.  相似文献   

9.
10.
Muñoz MJ  Bejarano ER  Daga RR  Jimenez J 《Genetics》1999,153(4):1561-1572
The Wee1 kinase inhibits entry into mitosis by phosphorylation of the Cdc2 kinase. Searching for multicopy suppressors that abolish this inhibition in the fission yeast, we have identified a novel gene, here named wos2, encoding a protein with significant homology to human p23, an Hsp90-associated cochaperone. The deletion mutant has a modest phenotype, being heat-shock sensitive. Using antibodies raised against bacterially produced protein, we determined that Wos2 is very abundant, ubiquitously distributed in the yeast cell, and its expression dropped drastically as cells entered into early stationary phase, indicating that its function is associated with cell proliferation. In proliferating cells, the amount of Wos2 protein was not subjected to cell cycle regulation. However, in vitro assays demonstrated that this Hsp90 cochaperone is potentially regulated by phosphorylation. In addition to suppressing Wee1 activity, overproduction of Wos2 displayed synthetic lethality with Cdc2 mutant proteins, indicating that this Hsp90 cochaperone functionally interacts with Cdc2. The level of Cdc2 protein and its associated H1 kinase activity under synthetic lethal conditions suggested a regulatory role for this Wos2-Cdc2 interaction. Hsp90 complexes are required for CDK regulation; the synergy found between the excess of Wos2 and a deficiency in Hsp90 activity suggests that Wos2 could specifically interfere with the Hsp90-dependent regulation of Cdc2. In vitro analysis indicated that the above genetic interactions could take place by physical association of Wos2 with the single CDK complex of the fission yeast. Expression of the budding yeast p23 protein (encoded by the SBA1 gene) in the fission yeast indicated that Wos2 and Sba1 are functionally exchangeable and therefore that properties described here for Wos2 could be of wide significance in understanding the biological function of cochaperone p23 in eukaryotic cells.  相似文献   

11.
Staurosporine, a microbial-derived protein kinase inhibitor, reversibly blocked non-synchronized, replicating cultures of the human lung epithelial cell line EKVX in the G1 phase of cell cycle and inhibited DNA synthesis and cell replication. The mechanism of this cell-cycle arrest in EKVX cells by staurosporine was likely due to inhibition of protein kinase C (PKC) because: 1) dose-dependent inhibition of DNA synthesis occurred at levels of staurosporine that inhibit phosphorylation of PKC substrate, 2) inhibition of DNA synthesis was also seen after treatment with another PKC inhibitor H7, but not by the chemically similar HA1004, which has a relative inhibitory specificity for cAMP-dependent protein kinase, and 3) the DNA synthesis was not inhibited by specific tyrosine kinase inhibitors Genistein and Lavendustin A at concentrations that inhibit tyrosine kinase activity. Removal of staurosporine from cell culture media resulted in a rebound in PKC activity and synchronized DNA synthesis in EKVX cultures. The reversibility of the inhibition was noted even after 5 days of treatment with staurosporine, and DNA synthesis remained synchronized for at least two rounds of cell replication after removal of staurosporine. Flow cytometric analysis confirmed that more than 90% of the cell population was blocked in the G1 phase after cells were treated with staurosporine for 24 h. Agents such as staurosporine may be useful for synchronizing cell populations to study cell-cycle specific biochemical events important for the regulation of cell replication in the EKVX cell line.  相似文献   

12.
With the goal of discovering the cellular functions of type 2C protein phosphatases, we have cloned and analyzed two ptc (phosphatase two C) genes, ptc2+ and ptc3+, from the fission yeast Schizosaccharomyces pombe. Together with the previously identified ptc1+ gene, the enzymes encoded by these genes account for approximately 90% of the measurable PP2C activity in fission yeast cells. No obvious growth defects result from individual disruptions of ptc genes, but a delta ptc1 delta ptc3 double mutant displays aberrant cell morphology and temperature-sensitive cell lysis that is further accentuated in a delta ptc1 delta ptc2 delta ptc3 triple mutant. These phenotypes are almost completely suppressed by the presence of osmotic stabilizers, strongly indicating that PP2C has an important role in osmoregulation. Genetic suppression of delta ptc1 delta ptc3 lethality identified two loci, mutations of which render cells hypersensitive to high-osmolarity media. One locus is identical to wis1+, encoding a MAP kinase kinase (MEK) homolog. The Wis1 sequence is most closely related to the Saccharomyces cerevisiae MEK encoded by PBS2, which is required for osmoregulation. These data indicate that divergent yeasts have functionally conserved MAP kinase pathways, which are required to increase intracellular osmotic concentrations in response to osmotic stress. Moreover, our observations implicate PP2C enzymes as also having an important role in signal transduction processes involved in osmoregulation, probably acting to negatively regulate the osmosensing signal that is transmitted through Wis1 MAP kinase kinase.  相似文献   

13.
L Brizuela  G Draetta    D Beach 《The EMBO journal》1987,6(11):3507-3514
cdc2+ encodes a protein kinase that is required during both G1 and G2 phases of the cell division cycle in fission yeast. suc1+ is an essential gene that was originally identified as a plasmid-borne sequence that could rescue certain temperature-sensitive cdc2 mutants. To investigate the role of the suc1+ gene product in the cell cycle p13suc1 has been expressed in Escherichia coli and purified. An immunoaffinity purified anti-p13suc1 polyclonal serum has been prepared and used to identify p13suc1 in fission yeast. The abundance of this protein did not alter either during the cell cycle or during entry into stationary phase. p13suc1 was found in yeast lysates in a complex with the cdc2+ gene product. Approximately 5% of cellular p34cdc2 was associated with p13suc1, and this fraction of p34cdc2 was active as a protein kinase. The stability of the complex was disrupted in yeast strains carrying temperature-sensitive alleles of cdc2 that are suppressible by overexpression of suc1+. The level of association between p13suc1 and p34cdc2 was not affected by cell cycle arrest in adverse nutritional conditions. p13suc1 is not a substrate of the p34cdc2 protein kinase. We propose instead that it acts as a regulatory component of p34cdc2 that facilitates interaction with other proteins.  相似文献   

14.
Rapid CD4+ lymphocyte depletion due to cell death caused by HIV infection is one of the hallmarks of acquired immunodeficiency syndrome. HIV-1 viral protein R (Vpr) induces apoptosis and is believed to contribute to CD4+ lymphocyte depletion. Thus, identification of cellular factors that potentially counteract this detrimental viral effect will not only help us to understand the molecular action of Vpr but also to design future antiviral therapies. In this report, we describe identification of elongation factor 2 (EF2) as such a cellular factor. Specifically, EF2 protein level is responsive to vpr gene expression; it is able to suppress Vpr-induced apoptosis when it is overproduced beyond its physiological level. EF2 was initially identified through a genome-wide multicopy suppressor search for Vpr-induced apoptosis in a fission yeast model system. Overproduction of fission yeast Ef2 completely abolishes Vpr-induced cell killing in fission yeast. Similarly, overexpression of the human homologue of yeast Ef2 in a neuroblastoma SKN-SH cell line and two CD4+ H9 and CEM-SS T-cell lines also blocked Vpr-induced apoptosis. The anti-apoptotic property of EF2 is demonstrated by its ability to suppress caspase 9 and caspase 3-mediated apoptosis induced by Vpr. In addition, it also reduces cytochrome c release induced by Vpr, staurosporine and TNFα. The fact that overproduction of EF2 blocks Vpr-induced cell death both in fission yeast and human cells, suggested that EF2 posses a highly conserved anti-apoptotic activity. Moreover, the responsive elevation of EF2 to Vpr suggests a possible host innate antiviral response.  相似文献   

15.
J B Millar  P Russell  J E Dixon    K L Guan 《The EMBO journal》1992,11(13):4943-4952
We have identified a third protein tyrosine phosphatase (PTPase) gene in fission yeast, pyp2, encoding an 85 kDa protein. Disruption of pyp2 has no impact on cell viability, but pyp2 is essential in strains lacking the 60 kDa pyp1 PTPase. The two pyp PTPases are approximately 42% identical in their C-terminal catalytic domains and share weak homology in their N-terminal regions. Both genes play a role in inhibiting the onset of mitosis. Disruption of either gene rescues the G2 arrest caused by mutation of the cdc25 mitotic inducer, though the effect of pyp1-disruption is more pronounced. Disruption of pyp1 advances mitosis, suppresses overexpression of the tyrosine kinase encoded by the wee1 mitotic inhibitor, and causes lethal mitotic catastrophe in cdc25 overproducer cells. Cells bearing inactive wee1 are unresponsive to disruption of pyp1. Overexpression of pyp1 or pyp2 delays the onset of mitosis by a wee1-dependent mechanism. These data reveal an unexpected second role for protein tyrosine phosphorylation in the mitotic control that acts by promoting the inhibitory wee1 pathway.  相似文献   

16.
Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog   总被引:120,自引:0,他引:120  
P Russell  P Nurse 《Cell》1987,49(4):559-567
Fission yeast wee1- mutants initiate mitosis at half the cell size of wild type. The wee1+ activity is required to prevent lethal premature mitosis in cells that overproduce the mitotic inducer cdc25+. This lethal phenotype was used to clone wee1+ by complementation. When wee1+ expression is increased, mitosis is delayed until cells grow to a larger size. Thus wee1+ functions as a dose-dependent inhibitor of mitosis, the first such element to be specifically identified and cloned. The carboxy-terminal region of the predicted 112 kd wee1+ protein contains protein kinase consensus sequences, suggesting that negative regulation of mitosis involves protein phosphorylation. Genetic evidence indicates that wee1+ and cdc25+ compete in a control system regulating the cdc2+ protein kinase, which is required for mitotic initiation.  相似文献   

17.
In fission yeast, the M-phase inducing kinase, a complex of p34cdc2 and cyclin B, is maintained in an inhibited state during interphase due to the phosphorylation of Cdc2 at Tyr15. This phosphorylation is believed to be carried out primarily by the Wee1 kinase. In human cells the negative regulation of p34cdc2/cyclin B is more complex, in that Cdc2 is phosphorylated at two inhibitory sites, Thr14 and Tyr15. The identities of the kinases that phosphorylate these sites are unknown. Since fission yeast Wee1 kinase behaves as a dual-specificity kinase in vitro, a popular hypothesis is that a human Wee1 homolog might phosphorylate p34cdc2 at both sites. We report here that a human gene, identified as a possible Wee1 homologue, blocks cell division when overexpressed in HeLa cells. This demonstrates functional conservation of the Wee1 mitotic inhibitor. Contrary to the dual-specificity kinase hypothesis, purified human Wee1 phosphorylates p34cdc2 exclusively on Tyr15 in vitro; no Thr14 phosphorylation was detected. Human and fission yeast Wee1 also specifically phosphorylate synthetic peptides at sites equivalent to Tyr15. Mutation of a critical lysine codon (Lys114) believed to be essential for kinase activity abolished both the in vivo mitotic inhibitor function and in vitro kinase activities of human Wee1. These results conclusively prove that Wee1 kinases inhibit mitosis by directly phosphorylating p34cdc2 on Tyr15, and strongly indicate that human cells have independent kinase pathways directing the two inhibitor phosphorylations of p34cdc2.  相似文献   

18.
Premature chromatin condensation upon accumulation of NIMA.   总被引:13,自引:7,他引:6       下载免费PDF全文
M J O''Connell  C Norbury    P Nurse 《The EMBO journal》1994,13(20):4926-4937
The NIMA protein kinase of Aspergillus nidulans is required for the G2/M transition of the cell cycle. Mutants lacking NIMA arrest without morphological characteristics of mitosis, but they do contain an activated p37nimX kinase (the Aspergillus homologue of p34cdc2). To gain a better understanding of NIMA function we have investigated the effects of expressing various NIMA constructs in Aspergillus, fission yeast and human cells. Our experiments have shown that the instability of the NIMA protein requires sequences in the non-catalytic C-terminus of the protein. Removal of this domain results in a stable protein that, once accumulated, promotes a lethal premature condensation of chromatin without any other aspects of mitosis. Similar effects were also observed in fission yeast and human cells accumulating Aspergillus NIMA. This phenotype is independent of cell cycle progression and does not require p34cdc2 kinase activity. As gain of NIMA function by accumulation results in premature chromatin condensation, and loss of NIMA function results in an inability to enter mitosis, we propose that NIMA functions in G2 to promote the condensation of chromatin normally associated with entry into mitosis.  相似文献   

19.
Membranes from the human hepatoma cell line HepG2 mediate the phosphorylation on tyrosine of the asialoglycoprotein receptor. Manganese was the preferred divalent for phosphorylation although magnesium was effective at an 8-fold higher concentration. Calcium was ineffective at promoting phosphorylation and zinc was inhibitory. The protein kinase inhibitor staurosporine blocked asialoglycoprotein receptor phosphorylation on tyrosine in nanomolar concentrations (IC50 = 70 nM). In contrast another protein kinase C inhibitor, H7, was not inhibitory, suggesting that the effect of staurosporine was not mediated by protein kinase C inhibition. Concentrations of staurosporine that inhibit receptor phosphorylation by greater than 90% did not inhibit the phosphorylation of other protein substrates identified on SDS-polyacrylamide gels. These data suggest that staurosporine selectively and directly inhibits a membrane-associated tyrosine protein kinase.  相似文献   

20.
V Simanis  P Nurse 《Cell》1986,45(2):261-268
The cdc2+ gene function has an important role in controlling the commitment of the fission yeast cell to the mitotic cycle and the timing of mitosis. We have raised antibodies against the cdc2+ protein using synthetic peptides and have demonstrated that it is a 34 kd phosphoprotein with protein kinase activity. The protein level and phosphorylation state remain unchanged during the mitotic cycle of rapidly growing cells. When cells cease to proliferate and arrest in G1 the protein becomes dephosphorylated and loses protein kinase activity. Exit from the mitotic cycle and entry into stationary phase may be controlled in part by modulation of the cdc2 protein kinase activity by changes in its phosphorylation state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号