首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Heterocapsa circularisquama is a harmful dinoflagellate whose first bloom in Hiroshima Bay, Japan, appeared in 1992. As suggested by the authors’ group, in the Seto Inland Sea including Hiroshima Bay, oligotrophication particularly the reduction of phosphate starting 1980 is severe. The bloom caused serious damage to the bay's extensive oyster culture. In the present study, the uptake kinetics of nitrate, ammonia, and phosphate by this species were experimentally investigated. The maximum uptake rate (ρmax) and the half‐saturation constant (Ks) were 0.41 pmol cell?1 h?1 and 4.45 μM, respectively, for nitrate, 2.02 pmol cell?1 h?1 and 11.1 μM for ammonium, and 0.079 pmol cell?1 h?1 and 1.79 μM for phosphate. The maximum specific uptake rates (Vmax) for nitrate, ammonia, and phosphate were estimated to be 8.95, 44.1, and 21.3 day?1, respectively. A comparison of Vmax/Ks, which is also an index of affinity to nutrients, between this species and others suggested that H. circularisquama can utilize nitrate and ammonia efficiently, but not phosphate. Considering both reports describing that H. circularisquama has the ability to utilize dissolved organic phosphorus (DOP) and the DOP concentration is higher than phosphate in Hiroshima Bay, it was concluded that H. circularisquama became dominant due to the phosphate reduction measure.  相似文献   

2.
In the present study, we experimentally investigated the phosphate uptake kinetics of benthic microalga Nitzschia sp. isolated from Hiroshima Bay, Japan. The maximum uptake rate (ρmax) obtained by short‐term experiments was 6.84 pmol cell?1 h?1 for phosphate. The half‐saturation constant for uptake (KS) was 61.2 µmol cell?1 h?1. Both the ρmax and Ks of this species were extremely high, suggesting that Nitzschia sp. is adapted to benthic environments, where nutrient concentrations are much higher than in the water column. The specific maximum growth rate (µ'max) and minimum cell quota (Q0) for the P‐limited condition, obtained by a semi‐continuous growth experiment, were 0.48 day?1 and 0.045 pmol cell?1, respectively. It is concluded that Nitzschia sp. could be a ‘storage strategist’ species, meaning it adapts so as to minimize the influence of fluctuations in phosphate conditions resulting from the change in redox conditions of sediment due to bioturbation.  相似文献   

3.
Emiliania huxleyi (strain L) expressed an exceptional P assimilation capability. Under P limitation, the minimum cell P content was 2.6 fmol P·cell?1, and cell N remained constant at all growth rates at 100 fmol N·cell?1. Both, calcification of cells and the induction of the phosphate uptake system were inversely correlated with growth rate. The highest (cellular P based) maximum phosphate uptake rate (VmaxP) was 1400 times (i.e. 8.9 h?1) higher than the actual uptake rate. The affinity of the P‐uptake system (dV/dS) was 19.8 L·μmol?1·h?1 at μ = 0.14 d?1. This is the highest value ever reported for a phytoplankton species. Vmax and dV/dS for phosphate uptake were 48% and 15% lower in the dark than in the light at the lowest growth rates. The half‐saturation constant for growth was 1.1 nM. The coefficient for luxury phosphate uptake (Qmaxt/Qmin) was 31. Under P limitation, E. huxleyi expressed two different types of alkaline phosphatase (APase) enzyme kinetics. One type was synthesized constitutively and possessed a Vmax and half‐saturation constant of 43 fmol MFP·cell?1·h?1 and 1.9 μM, respectively. The other, inducible type of APase expressed its highest activity at the lowest growth rates, with a Vmax and half‐saturation constant of 190 fmol MFP·cell?1·h?1 and 12.2 μM, respectively. Both APase systems were located in a lipid membrane close to the cell wall. Under N‐limiting growth conditions, the minimum N quotum was 43 fmol N·cell?1. The highest value for the cell N‐specific maximum nitrate uptake rate (VmaxN) was 0.075 h?1; for the affinity of nitrate uptake, 0.37 L·μmol?1·h?1. The uptake rate of nitrate in the dark was 70% lower than in the light. N‐limited cells were smaller than P‐limited cells and contained 50% less organic and inorganic carbon. In comparison with other algae, E. huxleyi is a poor competitor for nitrate under N limitation. As a consequence of its high affinity for inorganic phosphate, and the presence of two different types of APase in terms of kinetics, E. huxleyi is expected to perform well in P‐controlled ecosystems.  相似文献   

4.
The growth and toxin content of the dinoflagellate Alexandrium tamarense ATHK was markedly affected by culture methods. In early growth phase at lower cell density static or mild agitation methods were beneficial to growth, but continuous agitation or aeration, to some extent, had an adverse effect on cell growth. Static culture in 2 L Erlenmeyer flasks had the highest growth rate (0.38 d−1) but smaller cell size compared with other culture conditions. Cells grown under aerated conditions possessed low nitrogen and phosphorus cell yields, namely high N and P cell-quota. At day 18, cells grown in continuous agitated and 1 h aerated culture entered the late stationary phase and their cellular toxin contents were higher (0.67 and 0.54 pg cell−1) compared with cells grown by other culture methods (0.27–0.49 pg cell−1). The highest cell density and cellular toxin content were 17190 cells mL−1 and 1.26 pg cell−1 respectively in an airlift photobioreactor with two-step culture. The results indicate that A. tamarense could be grown successfully in airlift photobioreactor by a two-step culture method, which involved cultivating the cells statically for 4 days and then aerating the medium. This provides an efficient way to enhance cell and toxin yield of A. tamarense.  相似文献   

5.
The growth and photosynthesis of Alexandrium tamarense (Lebour) Balech in different nutrient conditions were investigated. Low nitrate level (0.0882 mmol/L) resulted in the highest average growth rate from day 0 to day 10 (4.58 × 102 cells mL?1 d?1), but the lowest cell yield (5420 cells mL?1) in three nitrate level cultures. High nitrate‐grown cells showed lower levels of chlorophyll a‐specific and cell‐specific light‐saturated photosynthetic rate (Pmchl a and Pmcell), dark respiration rate (Rdchla and Rdcell) and chlorophyll a‐specific apparent photosynthetic efficiency (αchla) than was seen for low nitrate‐grown cells; whereas the cells became light saturated at higher irradiance at low nitrate condition. When cultures at low nitrate were supplemented with nitrate at 0.7938 mmol/L in late exponential growth phase, or with nitrate at 0.7938 mmol/L and phosphate at 0.072 mmol/L in stationary growth phase, the cell yield was drastically enhanced, a 7–9 times increase compared with non‐supplemented control culture, achieving 43 540 cells mL?1 and 52 300 cells mL?1, respectively; however, supplementation with nitrate in the stationary growth phase or with nitrate and phosphate in the late exponential growth phase increased the cell yield by no more than 2 times. The results suggested that continuous low level of nitrate with sufficient supply of phosphate may facilitate the growth of A. tamarense.  相似文献   

6.
The relationship between growth rate versus phosphorus concentration and cellular toxin content was determined for Alexandrium minutum AL1V, Alexandrium tamarense MDQ1096, A. tamarense EF04 and Alexandrium andersoni EF12 under different nitrogen and phosphorus supplies. The aim was to determine whether those species with a lower phosphorus uptake affinity, and hence potentially of lower competitive ability at low phosphorus concentrations, were more toxic. The range and mean of toxic content per cell (as fmol per cell) of the species were 13.5–256.5 and 140.2±50.8 for A. tamarense MDQ1096, 0.5–16.5 and 2.9±2.6 for A. minutum, 0–2.0 and 0.2±0.3 for A. tamarense EF04 and, 0–3.3 and 0.06±0.4 for A. andersoni. Ks for culture cell growth (per day),representing the phosphate concentration at which the specific culture cell growth rate is one half the maximum rate, and Kmin (per day), the phosphate concentration at which the specific culture cell growth rate is zero, were used as indicators of species’ potential competitive ability at low phosphorus concentrations. Low values for both Ks and Kmin indicate a high relative ability of the species to use low levels of phosphate and, hence, expected to outcompete higher Ks and Kmin species under phosphorus limitation. Ks and Kmin were 1.68 and 0.48 for A. tamarense MDQ1096, 1.16 and 0.39 for A. minutum, 1.0 and 0.38 for A. tamarense EF04 and, 0.74 and 0.34 for A. andersoni, respectively. There was a significant positive relationship between toxin content per cell with both Ks and Kmin, indicating that those species with lower ability to compete under phosphorus limitation were more toxic. The findings support the hypothesis that toxin production by dinoflagellates species could be an adaptation evolved to offset the ecological disadvantage of having low nutrient affinity.  相似文献   

7.
Phytoplankton size structure is key for the ecology and biogeochemistry of pelagic ecosystems, but the relationship between cell size and maximum growth rate (μmax) is not yet well understood. We used cultures of 22 species of marine phytoplankton from five phyla, ranging from 0.1 to 106 μm3 in cell volume (Vcell), to determine experimentally the size dependence of growth, metabolic rate, elemental stoichiometry and nutrient uptake. We show that both μmax and carbon‐specific photosynthesis peak at intermediate cell sizes. Maximum nitrogen uptake rate (VmaxN) scales isometrically with Vcell, whereas nitrogen minimum quota scales as Vcell0.84. Large cells thus possess high ability to take up nitrogen, relative to their requirements, and large storage capacity, but their growth is limited by the conversion of nutrients into biomass. Small species show similar volume‐specific VmaxN compared to their larger counterparts, but have higher nitrogen requirements. We suggest that the unimodal size scaling of phytoplankton growth arises from taxon‐independent, size‐related constraints in nutrient uptake, requirement and assimilation.  相似文献   

8.
Effects of winds, tides and river water runoff on the formation and disappearance of Alexandrium tamarense blooms in Hiroshima Bay, Japan were investigated using data from March to June of 1992–1998. The north wind at the initial growth phase of A. tamarense appeared to have prevented bloom formation by dispersing the organism offshore and/or through turbulent mixing. The decrease in the cell density at the end of the blooms was significantly affected by tidal mixing, indicating that the turbulent mixing induced by tidal excursions may be one of the factors terminating the bloom. Box model analyses applied to the data collected from the observations in 1996 and 1997 showed that river water runoff apparently dispersed the bloom, implying that stratification of the water column due to river water runoff is not necessary for the bloom formation. In conclusion, calm conditions with less wind and tidal mixing along with less river water runoff are considered to be important for the formation of the A. tamarense bloom in Hiroshima Bay, Japan.  相似文献   

9.
The short- and long-term uptake of nitrate and phosphate ions, and their interactions, were studied as functions of the preconditioning of Pavlova lutheri (Droop) Green. Populations were preconditioned in continuous culture at a variety of growth rates and N:P supply ratios. The maximum uptake rates cell?1 for nitrate and phosphate were of similar magnitudes, in spite of the forty-fold smaller requirement for phosphorus. Short-term phosphate uptake was independent of the nitrate concentration, but the short-term nitrate uptake rate was reduced in the presence of phosphate. The severity of inhibition of nitrate uptake by phosphate was positively correlated with the preconditioning N:P supply ratio and the preconditioning growth rate. In response to large additions of nutrients, P. lutheri was able to increase its phosphorus content sixty-fold, but was only able to take up enough nitrate to double its nitrogen content. The high rate of phosphate uptake relative to its requirement, the inhibition of nitrate uptake by phosphate, and the large capacity for phosphorus storage relative to its requirement, all of which were observed even under N limitation, may imply that even where nitrogen is limiting there can be interspecific competition for available phosphate.  相似文献   

10.
Regulation of phosphate uptake kinetics inOscillatoria agardhii   总被引:1,自引:0,他引:1  
In order to study phosphate uptake kinetics the cyanobacteriumOscillatoria agardhii was grown in continuous culture under a phosphorus limitation. The affinity of the uptake system reflected in the initial slope of the uptake rate versus external substrate concentration curve (dV/ds) was found to be unaffected by the growth wate.The maximum phosphate uptake rate (V m ) decreased as the growth rate was increased. Attempts were made to relate the decrease ofV m to the increase in phosphorus content of the cells that occurred a higher growth rates. Accumulation of phosphate during pulse experiments indeed resulted in a decrease ofV m . However feedback regulation ofV m by accumulated phosphorus was found to occur only to a small extent in steady state growing cells. The main part of the regulation of the activity of the phosphate uptake system seemingly is determined by a long term process that is, at least longer than 2 h. The presence of short term feedback inhibition by accumulated phosphorus on the activity of the uptake system provides an explanation of the phenomenon thatOscillatoria agardhii is not able to grow at near max growth rates under a phosphorus limitation.  相似文献   

11.
Uptake and assimilation of nitrogen and phosphorus were studied in Olisthodiscus luteus Carter. A diel periodicity in nitrate reductase activity was observed in log and stationary phase cultures; there was a 10-fold difference in magnitude between maximum and minimum rates, but other cellular features such as chlorophyll a, carbon, nitrogen, C:N ratio (atoms) · cell?1 were less variable. Ks values (~2 μM) for uptake of nitrate-N and ammonium-N were observed. Phosphorus assimilated · cell?1· day?1 varied with declining external phosphorus concentrations; growth rates <0.5 divisions · day?1 were common at <0.5 μM PO4-P. Phosphate uptake rates (Ks= 1.0–1.98 μM) varied with culture age and showed multiphasic kinetic features. Alkaline phosphatase activity was not detected. Comparisons of the nutrient dynamics of O. luteus to other phytoplankton species and the ecological implications as related to the phytoplankton community of Narragansett Bay (Rhode Island) are discussed.  相似文献   

12.
In an experiment with native maize roots depending on different phosphorus concentration in the external solution (0.001 … 50 mM P), the multiphasic character of the kinetics of phosphate uptake has been stated. The single phases are characterized by the different values of Km and Vmax. In the wide range of concentrations the isotherm of the phosphate uptake has five evident phases. The character of kinetics for the uptake of phosphate is analogical to the kinetics of the enzymatic reactions described by the Michaelis-Menten equation. On the other hand the linear dependence for the inactivated root was determined,i.e. the uptake of phosphate versus different phosphorus concentration in the external solution. The graphic representation of the logarithmic values for the phosphorus taken up versus the different phosphorus concentration in the external solution gives the biphasic course including concentration less than 1.0 mM P and more than 1.0 mM P. Within the framework of the concentration range the following values of Vmax, Km and ϕin were calculated under the conditions if the concentration of phosphorus is less than 1.0mMP: Vmax = 1.705 μmol P × g-1h-1, Km = 0.057 mM P and ϕin = 0.83,i.e. if the concentration of phosphorus is more than 1.0mM P: Vmax = 40 μmol P × g-1 h-1, Km = 16.66 mM and ϕin = 20. According to these results, the phosphate concentration in the external solution influences the activity of the transport mechanisms concerning their conformative changes which discretely change their working regime of membrane transport. This is also demonstrated in the change of values Vmax, Km and ϕin.  相似文献   

13.
Phytoplankton supports fisheries and aquaculture production. Its vital role as food for aquatic animals, like mollusks, shrimp, and fish cannot be overemphasized. Because of its contribution as a food source for fish, the growth kinetics of Microcystis aeruginosa, a dominant cyanobacterium in the lake, was studied. The regular occurrence of M. aeruginosa is experienced during the months of May to July or from September to November in Laguna de Bay, the largest freshwater lake in the Philippines. M. aeruginosa was collected from Laguna de Bay, isolated, and established in axenic conditions. Data on the growth kinetic parameters for nitrate-nitrogen and phosphate-phosphorus utilization by M. aeruginosa gave the following values: half-saturation constant (K s ), 0.530 mg N. L−1 and 0.024 mg P. L−1 respectively; maximum growth rate (μ max ), 0.671. d−1 and 0.668. d−1 respectively; maximum cell yield, 6.5 and 6.54 log, cells. ml−1 respectively; nutrient level for saturated growth yield, 8.71 mg N. L−1 and 0.22 mg P. L−1 respectively; and minimum cell quota (Q 0 ), 2.82 pg N. cell−1 and 0.064 pg P. cell−1 respectively. The low K s value and high maximum growth rate (μ max ) for phosphorus by M. aeruginosa would suggest a high efficiency of phosphorus utilization. On the other hand, the high K s value for nitrogen indicated a low rate of uptake for this nutrient.  相似文献   

14.
Chromatium vinosum DSM 185 was grown in continuous culture at a constant dilution rate of 0.071 h-1 with sulfide as the only electron donor. The organism was subjected to conditions ranging from phosphate limitation (S R-phosphate=2.7 M and S R-sulfide=1.8 mM) to sulfide limitation (S R-phosphate=86 M and S R-sulfide=1.8 mM). At values of S R-phosphate below 7.5 M the culture was washed out, whereas S R-phosphate above this value resulted in steady states. The saturation constant (K ) for growth on phosphate was estimated to be between 2.6 and 4.1 M. The specific phosphorus content of the cells increased from 0.30 to 0.85 mol P mg-1 protein with increasing S R-phosphate. The specific rate of phosphate uptake increased with increasing S R-phosphate, and displayed a non-hyperbolic saturation relationship with respect to the concentration of phosphate in the inflowing medium. Approximation of a hyperbolic saturation function yielded a maximum uptake rate (V max) of 85 nmol P mg-1 protein h-1, and a saturation constant for uptake (K t) of 0.7 M. When phosphate was supplied in excess 8.5% of the phosphate taken up by the cells was excreted as organic phosphorus at a specific rate of 8 nmol P mg-1 protein h-1.Non-standard abbreviations BChla bacteriochlorophyll a - D dilution rate; max, maximum specific growth rate - maximum specific growth rate if the substrate were not inhibitory - K saturation constant for growth on phosphate - V max maximum rate of phosphate uptake - K i saturation constant for phosphate uptake - K i inhibition constant for growth in the presence of sulfide - S R concentration of substrate in the inflowing medium  相似文献   

15.
Production of domoic acid (DA), a neurotoxin, by the diatom Pseudo-nitzschia multiseries (previously Nitzschia pungens f. multiseries) Hasle and its cellular chemical composition were studied in phosphate-limited chemostat continuous cultures and in subsequent batch cultures. Under steady-state chemostat conditions, DA production increased from 0.01 to 0.26 pg DA · cell?1· d?1 as the growth rate decreased. When the nutrient supply was discontinued (to produce a batch culture), DA production was enhanced by a factor of ca. 3. DA production was temporarily suspended upon addition of phosphate to the batch cultures but resumed 1 d later at a higher rate coincident with the decline of phosphate uptake. In both steady-state continuous culture and batch culture, more DA was produced when alkaline phosphatase activity (APA) was high. The association of high DA production with high levels of APA and high cellular N:P ratios strongly suggests that phosphate limitation enhances DA production. Also, DA production was high when other primary metabolism (e.g. uptake of carbon, nitrogen, phosphorus and silicon, and cell division) was low, but chlorophyll a and adenosine triphosphate were generally high. This suggests that the synthesis of DA requires a substantial amount of biogenic energy.  相似文献   

16.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

17.
Both conventional and genetic engineering techniques can significantly improve the performance of animal cell cultures for the large-scale production of pharmaceutical products. In this paper, the effect of such techniques on cell yield and antibody production of two NS0 cell lines is presented. On the one hand, the effect of fed-batch cultivation using dialysis is compared to cultivation without dialysis. Maximum cell density could be increased by a factor of ~5–7 by dialysis fed-batch cultivation. On the other hand, suppression of apoptosis in the NS0 cell line 6A1 bcl-2 resulted in a prolonged growth phase and a higher viability and maximum cell density in fed-batch cultivation in contrast to the control cell line 6A1 (100)3. These factors resulted in more product formation (by a factor ~2). Finally, the adaptive model-based OLFO controller, developed as a general tool for cell culture fed-batch processes, was able to control the fed-batch and dialysis fed-batch cultivations of both cell lines.Abbreviations A membrane area (dm2) - c Glc,F glucose concentration in nutrient feed (mmol L–1) - c Glc,FD glucose concentration in dialysis feed (mmol L–1) - c Glc,i glucose concentration in inner reactor chamber (mmol L–1) - c Glc,o glucose concentration in outer reactor chamber (dialysis chamber) (mmol L–1) - c Lac,FD lactate concentration in dialysis feed (mmol L–1) - c Lac,i lactate concentration in inner reactor chamber (mmol L–1) - c Lac,o lactate concentration in outer reactor chamber (dialysis chamber) (mmol L–1) - c LS,FD limiting substrate concentration in dialysis feed (mmol L–1) - c LS,i limiting substrate concentration in inner reactor chamber (mmol L–1) - c LS,o limiting substrate concentration in outer reactor chamber (dialysis chamber) (mmol L–1) - c Mab monoclonal antibody concentration (mg L–1) - F D feed rate of dialysis feed (L h–1) - F Glc feed rate of nutrient concentrate feed (L h–1) - K d maximum death constant (h–1) - k d,LS death rate constant for limiting substrate (mmol L–1) - k Glc monod kinetic constant for glucose uptake (mmol L–1) - k Lac monod kinetic constant for lactate uptake (mmol L–1) - k LS monod kinetic constant for limiting substrate uptake (mmol L–1) - K Lys cell lysis constant (h–1) - K S,Glc monod kinetic constant for glucose (mmol L–1) - K S,LS monod kinetic constant for limiting substrate (mmol L–1) - µ cell-specific growth rate (h–1) - µ d cell-specific death rate (h–1) - µ d,min minimum cell-specific death rate (h–1) - µ max maximum cell-specific growth rate (h–1) - P Glc membrane permeation coefficient for glucose (dm h–1) - P Lac membrane permeation coefficient for lactate (dm h–1) - P LS membrane permeation coefficient for limiting substrate (dm h–1) - q Glc cell-specific glucose uptake rate (mmol cell–1 h–1) - q Glc,max maximum cell-specific glucose uptake rate (mmol cell–1 h–1) - q Lac cell-specific lactate uptake/production rate (mmol cell–1 h–1) - q Lac,max maximum cell-specific lactate uptake rate (mmol cell–1 h–1) - q LS cell-specific limiting substrate uptake rate (mmol cell–1 h–1) - q LS,max maximum cell-specific limiting substrate uptake rate (mmol cell –1 h–1) - q Mab cell-specific antibody production rate (mg cell–1 h–1) - q MAb,max maximum cell-specific antibody production rate (mg cell–1 h–1) - t time (h) - V i volume of inner reactor chamber (culture chamber) (L) - V o volume of outer reactor chamber (dialysis chamber) (L) - X t total cell concentration (cells L–1) - X viable cell concentration (cells L–1) - Y Lac/Glc kinetic production constant (stoichiometric ratio of lactate production and glucose uptake) (–)  相似文献   

18.
Summer populations of the phytoplankton of the Loosdrecht Lakes were enclosed in laboratory scale enclosures (LSE), supplied with 7.5 g P.l–1.d–1 and 105 g P.l–1.d–1, respectively. The maximum initial phosphate uptake rate (Vm) was related to irradiance and primary production. At phosphate uptake saturating light-irradiance Vm values up to 4 times the Vm values in the dark were measured.The phosphate uptake capacity per unit dry weight remained more or less constant throughout the experiments in the LSE receiving the lower amount of phosphorus, and declined in the LSE receiving the higher amount of phosphorus. Within the range of Vm values measured (<10 g P.mg DW–1.h–1 or 1,3 g P. g chla –1.h–1), the growth rate of the phytoplankton was not influenced by alterations in phosphorus availability.  相似文献   

19.
Two planktonic algal species, Staurastrum chaetoceras (Schr.) G. M. Smith and Cosmarium abbreviatum Rac. var. planctonicum W. et G. S. West, from trophically different alkaline lakes, were compared in their response to a single saturating addition of phosphate (P) in a P-limited growth situation. Storage abilities were determined using the luxury coefficient R = Qmax/Q0. Maximum cellular P quotas differed, depending on whether cells were harvested during exponential growth at μmax (Qmax, R being 26.7 and 9.1 for C. abbreviatum and S. chaetoceras, respectively) or harvested after a saturating pulse at P-limited growth conditions (Q′max, R being 53.5 and 20.2 for C. abbreviatum and S. chaetoceras, respectively). At stringent P-limited conditions, maximum initial uptake rates were higher in S. chaetoceras than in C. abbreviatum (0.094 and 0.073 pmol P·cell?1·h?1, respectively), but long-term (net) uptake rates (over ~20 min) were higher in C. abbreviatum than in S. chaetoceras (0.048 and 0.019 pmol P·cell?1·h?1, respectively). Before growth resumed after the onset of a large P addition (150 μmol·L?1), a lag phase was observed for both species. This period lasted 2–3 days for S. chaetoceras and 3–4 days for C. abbreviatum, corresponding with the time to reach Qmax. Subsequent growth rates (over ~10 days) were 0.010 h?1 and 0.006 h?1 for S. chaetoceras and C. abbreviatum, respectively, being only 20%–30% of maximum growth rates. In conclusion, S. chaetoceras, with a relatively high initial P-uptake rate, short lag phase, and high initial growth rate, is well adapted to a P pulse of short duration. Conversely, C. abbreviatum, with a high long-term uptake rate and high storage capacity, appears competitively superior when exposed to an infrequent but lasting pulse. These characteristics provide information about possible strategies of algal species to profit from temporarily high P concentrations.  相似文献   

20.
The dinoflagellate Alexandrium tamarense (Lebour) Balech 1985 is responsible for recurrent outbreaks of paralytic shellfish poisoning in the St. Lawrence Estuary. In July 1998, an A. tamarense red tide developed in the estuary with maximum cell concentrations reaching 2.3 × 106 cells·L?1 in brackish surface waters. To estimate the growth rate of these cells, surface water samples from different locations and days during the bloom were incubated for 5 to 9 days under in situ temperature and light conditions. Growth rates varied both spatially and temporally between 0 and 0.55 day?1, reaching the maximum growth rate reported for this species in culture. High growth rates were measured even during the peak of the red tide, suggesting that the extremely high cell concentrations observed did not solely result from aggregation or physical concentration but also involved active cellular growth. Alexandrium tamarense cells were found over a large range of salinity (20.8–29.5 psu), but high densities and significant growth were only measured when salinity was lower than 24.5 psu. Under these conditions, the number of divisions achieved by A. tamarense was proportional to the amount of nitrate available at the beginning of the incubations, whereas variations in growth rate were apparently controlled by the availability of phosphate. We hypothesize that the ability of A. tamarense to perform vertical migrations and acquire nitrate at night pushes this species toward phosphate limitation in the St. Lawrence Estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号