首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoreverse reactions of octopus rhodopsin (Rh) from acid-metarhodopsin (Acid-Meta), which is the final product of the photoreaction of Rh, to Rh were studied by the time-resolved transient absorption and transient grating methods. The time course of the absorption signal showed a rapid change within 500 ns followed by one phase with a time constant of approximately 470 micros, whereas the transient grating signal indicates three phases with time constants of <500 ns, approximately 490 micros, and 2.6 ms. The faster two phases indicate the conformational change in the vicinity of the chromophore, and the slowest one represents conformational change far from the chromophore. The absorption spectrum of the first intermediate created just after the laser excitation (<500 ns) is already very similar to the final product, Rh. This behavior is quite different from that of the forward reaction from Rh to Acid-Meta, in which several intermediates with different absorption spectra are involved within 50 ns-500 micros. This result indicates that the conformation around the chromophore is easily adjusted from all-trans to 11-cis forms compared with that from 11-cis to all-trans forms. Furthermore, it was found that the protein energy is quickly relaxed after the excitation. One of the significantly different properties between Rh and Acid-Meta is the diffusion coefficient (D). D is reduced by about half the transformation from Rh to Acid-Meta. This large reduction was interpreted in terms of the helix opening of the Rh structure.  相似文献   

2.
Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin   总被引:1,自引:0,他引:1  
C Pande  H Deng  P Rath  R H Callender  J Schwemer 《Biochemistry》1987,26(23):7426-7430
We present the first visual pigment resonance Raman spectra from the UV-sensitive eyes of an insect, Ascalaphus macaronius (owlfly). This pigment contains 11-cis-retinal as the chromophore. Raman data have been obtained for the acid metarhodopsin at 10 degrees C in both H2O and D2O. The C = N stretching mode at 1660 cm-1 in H2O shifts to 1631 cm-1 upon deuteriation of the sample, clearly showing a protonated Schiff base linkage between the chromophore and the protein. The structure-sensitive fingerprint region shows similarities to the all-trans-protonated Schiff base of model retinal chromophores, as well as to the octopus acid metarhodopsin and bovine metarhodopsin I. Although spectra measured at -100 degrees C with 406.7-nm excitation, to enhance scattering from rhodopsin (lambda max 345 nm), contain a significant contribution from a small amount of contaminants [cytochrome(s) and/or accessory pigment] in the sample, the C = N stretch at 1664 cm-1 suggests a protonated Schiff base linkage between the chromophore and the protein in rhodopsin as well. For comparison, this mode also appears at approximately 1660 cm-1 in both the vertebrate (bovine) and the invertebrate (octopus) rhodopsins. These data are particularly interesting since the absorption maximum of 345 nm for rhodopsin might be expected to originate from an unprotonated Schiff base linkage. That the Schiff base linkage in the owlfly rhodopsin, like in bovine and in octopus, is protonated suggests that a charged chromophore is essential to visual transduction.  相似文献   

3.
Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts   总被引:2,自引:0,他引:2  
C Pande  A Pande  K T Yue  R Callender  T G Ebrey  M Tsuda 《Biochemistry》1987,26(16):4941-4947
We report here the resonance Raman spectra of octopus rhodopsin and its photoproducts, bathorhodopsin and acid metarhodopsin. These studies were undertaken in order to make comparisons with the well-studied bovine pigments, so as to understand the similarities and the differences in pigment structure and photochemical processes between vertebrates and invertebrates. The flow method was used to obtain the Raman spectrum of rhodopsin at 13 degrees C. The bathorhodopsin spectrum was obtained by computer subtraction of the spectra containing different photostationary mixtures of rhodopsin, isorhodopsin, hypsorhodopsin, and bathorhodopsin, obtained at 12 K using the pump-probe technique and from measurements at 80 K. Like their bovine counterparts, the Schiff base vibrational mode appears at approximately 1660 cm-1 in octopus rhodopsin and the photoproducts, bathorhodopsin and acid metarhodopsin, suggesting a protonated Schiff base linkage between the chromophore and the protein. Differences between the Raman spectra of octopus rhodopsin and bathorhodopsin indicate that the formation of bathorhodopsin is associated with chromophore isomerization. This inference is substantiated by the chromophore chemical extraction data which show that, like the bovine system, octopus rhodopsin is an 11-cis pigment, while the photoproducts contain an all-trans pigment, in agreement with previous work. The octopus rhodopsin and bathorhodopsin spectra show marked differences from their bovine counterparts in other respects, however. The differences are most dramatic in the structure-sensitive fingerprint and the HOOP regions. Thus, it appears that although the two species differ in the specific nature of the chromophore-protein interactions, the general process of visual transduction is the same.  相似文献   

4.
Enthalpy changes (Delta H) of the photointermediates that appear in the photolysis of octopus rhodopsin were measured at physiological temperatures by the laser-induced transient grating method. The enthalpy from the initial state, rhodopsin, to bathorhodopsin, lumirhodopsin, mesorhodopsin, transient acid metarhodopsin, and acid metarhodopsin were 146 +/- 15 kJ/mol, 122 +/- 17 kJ/mol, 38 +/- 8 kJ/mol, 12 +/- 5 kJ/mol, and 12 +/- 5 kJ/mol, respectively. These values, except for lumirhodopsin, are similar to those obtained for the cryogenically trapped intermediate species by direct calorimetric measurements. However, the Delta H of lumirhodopsin at physiological temperatures is quite different from that at low temperature. The reaction volume changes of these processes were determined by the pulsed laser-induced photoacoustic method along with the above Delta H values. Initially, in the transformation between rhodopsin and bathorhodopsin, a large volume expansion of +32 +/- 3 ml/mol was obtained. The volume changes of the subsequent reaction steps were rather small. These results are compared with the structural changes of the chromophore, peptide backbone, and water molecules within the membrane helixes reported previously.  相似文献   

5.
M Nakagawa  S Kikkawa  T Iwasa    M Tsuda 《Biophysical journal》1997,72(5):2320-2328
Light-induced protein conformational changes in the photolysis of octopus rhodopsin were measured with a highly sensitive time-resolved transient UV absorption spectrophotometer with nanosecond time resolution. A negative band around 280 nm in the lumirhodopsin minus rhodopsin spectra suggests that alteration of the environment of some of the tryptophan residues has taken place before the formation of lumirhodopsin. A small recovery of the absorbance at 280 nm was observed in the transformation of lumirhodopsin to mesorhodopsin. Kinetic parameters suggest that major conformational changes have taken place in the transformation of mesorhodopsin to acid metarhodopsin. In this transformation, drastic changes of amplitude and a shift of a difference absorption band around 280 nm take place, which suggest that some of the tryptophan residues of rhodopsin become exposed to a hydrophilic environment.  相似文献   

6.
The intermediate photolytic sequence of octopus rhodopsin was studied at different temperatures and different pH values by means of a flash photolysis-rapid scan spectrophotometry near physiological temperature. The first photoproduct in the photolysis of rhodopsin was lumirhodopsin. Transformation of lumirhodopsin leads to mesorhodopsin took place independently of the pH of the solution. Mesorhodopsin was transformed to acid metarhodopsin in acid solution. In alkaline solution, mesorhodopsin was transformed to transient acid metarhodopsin whose absorption spectrum was similar to acid metarhodopsin. Transient acid metarhodopsin was then transformed to alkaline metarhodopsin reaching a tautomeric equilibrium which was determined by the pH of the solution.  相似文献   

7.
Nagy L  Maróti P  Terazima M 《FEBS letters》2008,582(25-26):3657-3662
Spectrally silent conformation change after photoexcitation of photosynthetic reaction centers isolated from Rhodobacter sphaeroides R-26 was observed by the optical heterodyne transient grating technique. The signal showed spectrally silent structural change in photosynthetic reaction centers followed by the primary P+BPh- charge separation and this change remains even after the charge recombination. Without bound quinone to the RC, the conformation change relaxes with about 28micros lifetime. The presence of quinone at the primary quinone (QA) site may suppress this conformation change. However, a weak relaxation with 30-40micros lifetime is still observed under the presence of QA, which increases up to 40micros as a function of the occupancy of the secondary quinone (QB) site.  相似文献   

8.
We consider the problem of color regulation in visual pigments for both bovine rhodopsin (lambda max = 500 nm) and octopus rhodopsin (lambda max = 475 nm). Both pigments have 11-cis-retinal (lambda max = 379 nm, in ethanol) as their chromophore. These rhodopsins were bleached in their native membranes, and the opsins were regenerated with natural and artificial chromophores. Both bovine and octopus opsins were regenerated with the 9-cis- and 11-cis-retinal isomers, but the octopus opsin was additionally regenerated with the 13-cis and all-trans isomers. Titration of the octopus opsin with 11-cis-retinal gave an extinction coefficient for octopus rhodopsin of 27,000 +/- 3000 M-1 cm-1 at 475 nm. The absorption maxima of bovine artificial pigments formed by regenerating opsin with the 11-cis dihydro series of chromophores support a color regulation model for bovine rhodopsin in which the chromophore-binding site of the protein has two negative charges: one directly hydrogen bonded to the Schiff base nitrogen and another near carbon-13. Formation of octopus artificial pigments with both all-trans and 11-cis dihydro chromophores leads to a similar model for octopus rhodopsin and metarhodopsin: there are two negative charges in the chromophore-binding site, one directly hydrogen bonded to the Schiff base nitrogen and a second near carbon-13. The interaction of this second charge with the chromophore in octopus rhodopsin is weaker than in bovine, while in metarhodopsin it is as strong as in bovine.  相似文献   

9.
The chromophore of octopus rhodopsin is 11-cis retinal, linked via a protonated Schiff base to the protein backbone. Its stable photoproduct, metarhodopsin, has all-trans retinal as its chromphore. The Schiff base of acid metarhodopsin (lambda max = 510 nm) is protonated, whereas that of alkaline metarhodopsin (lambda max = 376 nm) is unprotonated. Metarhodopsin in photoreceptor membranes was titrated and the apparent pK of the Schiff base was measured at different ionic strengths. From these salt-dependent pKs the surface charge density of the octopus photoreceptor membranes and the intrinsic Schiff base pK of metarhodopsin were obtained. The surface charge density is sigma = -1.6 +/- 0.1 electronic charges per 1,000 A2. Comparison of the measured surface charge density with values from octopus rhodopsin model structures suggests that the measured value is for the extracellular surface and so the Schiff base in metarhodopsin is freely accessible to protons from the extracellular side of the membrane. The intrinsic Schiff base pK of metarhodopsin is 8.44 +/- 0.12, whereas that of rhodopsin is found to be 10.65 +/- 0.10 in 4.0 M KCl. These pK values are significantly higher than the pK value around 7.0 for a retinal Schiff base in a polar solvent; we suggest that a plausible mechanism to increase the pK of the retinal pigments is the preorganization of their chromophore-binding sites. The preorganized site stabilizes the protonated Schiff base with respect to the unprotonated one. The difference in the pK for the octopus rhodopsin compared with metarhodopsin is attributed to the relative freedom of the latter's chromophore-binding site to rearrange itself after deprotonation of the Schiff base.  相似文献   

10.
The ultraviolet absorbance of squid and octopus rhodopsin changes reversibly at 234 nm and near 280 nm in the interconversion of rhodopsin and metarhodopsin. The absorbance change near 280 nm is ascribed to both protein and chromophore parts. Rhodopsin is photoregenerated from metarhodopsin via an intermediate, P380, on irradiation with yellow light (λ > 520 nm). The ultraviolet absorbance decreases in the change from rhodopsin to metarhodopsin and recovers in two steps; mostly in the process from metarhodopsin to P380 and to a lesser extent in the process from P380 to rhodopsin. P380 has a circular dichroism (CD) band at 380 nm and its magnitude is the same order as that of rhodopsin. Thus it is considered that the molecular structure of P380 is close to that of rhodopsin and that the chromophore is fixed to opsin as in rhodopsin. In the change from metarhodopsin to P380, the chromophore is isomerized from the all-trans to the 11-cis form, and the conformation of opsin changes to fit 11-cis retinal. In the change from P380 to rhodopsin, a small change in the conformation of the protein part and the protonation of the Schiff base, the primary retinal-opsin link, occur.  相似文献   

11.
Motoyuki Tsuda 《BBA》1979,545(3):537-546
The intermediate photolytic sequence of octopus rhodopsin was studied at different temperatures and different pH values by means of a flash photolysisrapid scan spectrophotometry near physiological temperature.The first photoproduct in the photolysis of rhodopsin was lumirhodopsin. Transformation of lumirhodopsin → mesorhodopsin took place independently of the pH of the solution. Mesorhodopsin was transformed to acid metarhodopsin in acid solution. In alkaline solution, mesorhodopsin was transformed to transient acid metarhodospsin whose absorption spectrum was similar to acid metarhodopsin. Transient acid metarhodopsin was then transformed to alkaline metarhodopsin reaching a tautomeric equilibrium which was determined by the pH of the solution.  相似文献   

12.
The optical activity of octopus rhodopsin, acid metarhodopsin and alkaline metarhodopsin was studied by a sensitive and rapid CD apparatus. For sometime it has been thought that cephalopod metarhodopsins do not have any optical activity associated with their main absorption band. However, the present work shows that acid metarhodopsin in digitonin has a positive CD band at 498 nm and a negative CD band at 436 nm and alkaline metarhodopsin has a negative CD band at 381 nm. Detergent affected the wavelength of the CD peak of the visual pigments though the pattern of the spectrum was similar. From these results it is concluded that the conformation of all-trans retinal in octopus metarhodopsin is influenced by the asymmetric conformation of the protein near the retinal and therefore inducing optical activity.  相似文献   

13.
Glutamic acid at position 113 in bovine rhodopsin ionizes to form the counterion to the protonated Schiff base (PSB), which links the 11-cis-retinylidene chromophore to opsin. Photoactivation of rhodopsin requires both Schiff base deprotonation and neutralization of Glu-113. To better understand the role of electrostatic interactions in receptor photoactivation, absorbance difference spectra were collected at time delays from 30 ns to 690 ms after photolysis of rhodopsin mutant E113Q solubilized in dodecyl maltoside at different pH values at 20 degrees C. The PSB form (pH 5. 5, lambda(max) = 496 nm) and the unprotonated Schiff base form (pH 8. 2, lambda(max) = 384 nm) of E113Q rhodopsin were excited using 477 nm or 355 nm light, respectively. Early photointermediates of both forms of E113Q were qualitatively similar to those of wild-type rhodopsin. In particular, early photoproducts with spectral shifts to longer wavelengths analogous to wild-type bathorhodopsin were seen. In the case of the basic form of E113Q, the absorption maximum of this intermediate was at 408 nm. These results suggest that steric interaction between the retinylidene chromophore and opsin, rather than charge separation, plays the dominant role in energy storage in bathorhodopsin. After lumirhodopsin, instead of deprotonating to form metarhodopsin I(380) on the submillisecond time scale as is the case for wild type, the acidic form of E113Q produced metarhodopsin I(480), which decayed very slowly (exponential lifetime = 12 ms). These results show that Glu-113 must be present for efficient deprotonation of the Schiff base and rapid visual transduction in vertebrate visual pigments.  相似文献   

14.
The rhodopsin system of the squid   总被引:6,自引:19,他引:6  
Squid rhodopsin (λmax 493 mµ)—like vertebrate rhodopsins—contains a retinene chromophore linked to a protein, opsin. Light transforms rhodopsin to lumi- and metarhodopsin. However, whereas vertebrate metarhodopsin at physiological temperatures decomposes into retinene and opsin, squid metarhodopsin is stable. Light also converts squid metarhodopsin to rhodopsin. Rhodopsin is therefore regenerated from metarhodopsin in the light. Irradiation of rhodopsin or metarhodopsin produces a steady state by promoting the reactions, See PDF for Equation Squid rhodopsin contains neo-b (11-cis) retinene; metarhodopsin all-trans retinene. The interconversion of rhodopsin and metarhodopsin involves only the stereoisomerization of their chromophores. Squid metarhodopsin is a pH indicator, red (λmax 500 mµ) near neutrality, yellow (λmax 380 mµ) in alkaline solution. The two forms—acid and alkaline metarhodopsin—are interconverted according to the equation, Alkaline metarhodopsin + H+ acid metarhodopsin, with pK 7.7. In both forms, retinene is attached to opsin at the same site as in rhodopsin. However, metarhodopsin decomposes more readily than rhodopsin into retinene and opsin. The opsins apparently fit the shape of the neo-b chromophore. When light isomerizes the chromophore to the all-trans configuration, squid opsin accepts the all-trans chromophore, while vertebrate opsins do not and hence release all-trans retinene. Light triggers vision by affecting directly the shape of the retinene chromophore. This changes its relationship with opsin, so initiating a train of chemical reactions.  相似文献   

15.
Fourier-transform infrared difference spectroscopy has been used to detect the vibrational modes in the chromophore and protein that change in position and intensity between octopus rhodopsin and its photoproducts formed at low temperature (85 K), bathorhodopsin and isorhodopsin. The infrared difference spectra between octopus rhodopsin and octopus bathorhodopsin, octopus bathorhodopsin and octopus isorhodopsin, and octopus isorhodopsin and octopus rhodopsin are compared to analogous difference spectra for the well-studied bovine pigments, in order to understand the similarities in pigment structure and photochemical processes between the vertebrate and invertebrate systems. The structure-sensitive fingerprint region of the infrared spectra for octopus bathorhodopsin shows strong similarities to spectra of both all-trans-retinal and bovine bathorhodopsin, thus confirming chemical extraction data that suggest that octopus bathorhodopsin contains an all-trans-retinal chromophore. In contrast, we find dramatic differences in the hydrogen out-of-plane modes of the two bathorhodopsins, and in the fingerprint lines of the rhodopsins and isorhodopsins for the two pigments. These observations suggest that while the primary effect of light in the octopus rhodopsin system, as in the bovine rhodopsin system, is 11-cis/11-trans isomerization, the protein-chromophore interactions for the two systems are quite different. Finally, striking similarities and differences in infrared lines attributable to changes in amino acid residues in the opsin are found between the two pigment systems. They suggest that no carboxylic acid or tyrosine residues are affected in the initial changes of light-energy transduction in octopus rhodopsin. Comparing the amino acid sequences for octopus and bovine pigments also allows us to suggest that the carboxylic acid residues altered in the bovine transitions are Glu-122 and/or Glu-134.  相似文献   

16.
17.
In the bleaching process of cephalopod rhodopsin, a new intermediate was found in the conversion process from lumirhodopsin to metarhodopsin. This intermediate of octopus has an absorption peak at about 475 nm and has been named as M475. The circular dichroism value of M475 is too small to be evaluated. On the other hand, lumirhodopsin shows a negative CD at 470 nm, a positive CD at 350 nm and a large positive CD band with three peaks at 280, 287 and 295 nm. Such a large CD band in the ultraviolet region is not observed in rhodopsin, M475 and metarhodopsin. This CD seems to be mainly due to tryptophan and tyrosine residues restricted in free rotation in the protein moiety of lumirhodopsin. The intermediate in the photoregeneration process of cephalopod rhodopsin, P380, has a positive CD band at the main peak, 380 nm, and also a large positive CD band in the ultraviolet region like lumirhodopsin.  相似文献   

18.
G Renk  R K Crouch 《Biochemistry》1989,28(2):907-912
Several analogue pigments have been prepared containing retinals altered at the cyclohexyl ring or proximal to the aldehyde group in order to examine the role of the chromophore in the formation of the metarhodopsin I and II states of visual pigments. Deletion of the 13-methyl group on the isoprenoid chain did not affect metarhodopsin formation. However, analogue pigments containing chromophores with modified rings did not show the typical absorption changes associated with the metarhodopsin transitions of native or regenerated rhodopsins. In particular, 4-hydroxyretinal pigments did not show clear transitions between the metarhodopsin I and metarhodopsin II states. Pigment formed with an acyclic retinal showed no evidence by absorption spectroscopy of metarhodopsin formation. A retinal altered by substitution of a five-membered ring containing a nitroxide required a more acidic pH than the native pigment for formation of the metarhodopsin II state. ESR data suggest that the ring remains buried within the protein through the metarhodopsin II state. However, the Schiff base linkage is susceptible to hydrolysis of hydroxylamine in the metarhodopsin II state. These data indicate that (1), in the transition from rhodopsin to metarhodopsin II, major protein conformational changes are occurring near the lysine-retinal linkage whereas the ring portion of the chromophore remains deeply buried within the protein and (2) pigment absorptions characteristic of the metarhodopsin I and II states may be due to specific protein-chromophore interactions near the region of the chromophore ring.  相似文献   

19.
The visual process in rod cells is initiated by absorption of a photon in the rhodopsin retinal chromophore and consequent retinal cis/trans-isomerization. The ring structure of retinal is thought to be needed to transmit the photonic energy into conformational changes culminating in the active metarhodopsin II (Meta II) intermediate. Here, we demonstrate that cis-acyclic retinals, lacking four carbon atoms of the ring, can activate rhodopsin. Detailed analysis of the activation pathway showed that, although the photoproduct pathway is more complex, Meta II formed with almost normal kinetics. However, lack of the ring structure resulted in a low amount of Meta II and a fast decay of activity. We conclude that the main role of the ring structure is to maintain the active state, thus specifying a mechanism of activation by a partial agonist of the G protein-coupled receptor rhodopsin.  相似文献   

20.
Photoisomerization of the chromophore of squid rhodopsin is dependent upon the irradiation temperature. Above 0 degrees C, only 11-cis in equilibrium all-trans reaction proceeds and the all-trans leads to 9-cis reaction is limited to extremely low efficiency. At liquid nitrogen temperature, 11 cis in equilibrium all-trans in equilibrium 9-cis reaction takes place. At intermediary low temperatures (-80 degrees C to -15 degrees C) another isomer of retinal may be produced by the irradiation, which forms a pigment having an absorbance maximum at 465 nm (P-465). The formation of P-465 decreases remarkably in the narrow temperature range from -30 degrees C to 0 degrees C where mesorhodopsin converts to metarhodopsin. Medsorhodopsin is quite different from metarhodopsin in the photoisomerization of the chromophore because P-465 is produced from the former but not from the latter. No P-465 is produced both at liquid nitrogen temperature and above 0 degrees C. P-465 is more labile than any of the other photoproducts so far known, that is isorhodopsin, alkaline and acid metarhodopsins. P-465 is converted to metarhodopsin by irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号