首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A new teichoic acid was identified in the cell walls of Streptomyces griseoviridis VKM Ac-622T, Streptomyces sp. VKM Ac-2091, and Actinoplanes campanulata VKM Ac-1319T. The polymer is poly(glycosylglycerol phosphate). The repeating units of the polymer, alpha-galactopyranosyl-(1-->3)-2-acetamido-2-deoxy-beta-galactopyran+ ++ osyl-(1-->1)-glycerols, are in phosphodiester linkage at C-3 of glycerol and C-6 of galactose. The structures of cell wall teichoic acids in the strains Streptomyces chryseus VKM Ac-200T and "Streptomyces subflavus" VKM Ac-484 similar in morphology and growth characteristics are also identical: 1,5-poly(ribitol phosphate) substituted at C-4(2) by 2-acetamido-2-deoxy-beta-glucopyranosyl residues and 1,3-poly(glycerol phosphate). The taxonomic aspects of these results are discussed.  相似文献   

2.
The lipopolysaccharide of Sphaerotilus natans afforded a ladder-like pattern of bands in sodium deoxycholate-polyacrylamide gel electrophoresis, indicating the presence of a S-form lipopolysaccharide. The chemical analysis showed neutral sugars (rhamnose, glucose, l-glycero-d-manno-heptose), 3-deoxy-octulosonic acid (Kdo), amino compounds (glucosamine, glucosamine phosphate, ethanolamine and ethanolamine phosphate), and phosphorus. The lipid A fraction contained saturated and unsaturated capric, lauric, and myristic acids, and 3-hydroxy capric acid (3-OH-10:0). Its chemical structure was consisting of a glucosamine disaccharide, glycosidically substituted by a phosphomonoester, and substituted at C-4 by a pyrophosphodiester esterified with ethanolamine. The amino groups of both glucosamines are acylated by 3-hydroxy capric acids and these in turn are substituted by saturated and unsaturated capric, lauric, and myristic acids. Hydroxyl groups of the backbone disaccharide at C-3 and C-3 were also esterified by 3-hydroxy capric acid, those at C-4 and C-6 were unsubstituted. The latter provides the attachment site for Kdo.Abbreviations Kdo 3-deoxy-d-manno-octulosonic acid - 3-OH-10:0 3-hydroxy capric acid - DOC-PAGE deoxycholate-polyacrylamide gel electrophoresis - GC-MS gas chromatography/mass spectrometry - LD-MS laser desorption mass spectrometry - LPS lipopolysaccharide - PS polysaccharide  相似文献   

3.
Two polymeric water-soluble fractions were isolated by gel filtration after mild acid hydrolysis of the lipopolysaccharide from Pseudomonas aeruginosa N.C.T.C. 1999. The fraction of higher molecular weight retained the O-antigenic specificity of the lipopolysaccharide and may be 'side-chain' material. This fraction was rich in N (about 10%) and gave several basic amino compounds on acid hydrolysis; fucosamine (at least 2.8% w/w) was the only specifc component identified. The fraction of lower molecular weight was a phosphorylated polysaccharide apparently corresponding to 'core' material. The major components of this fraction and their approximate molar proportions were: glucose (3-4); rhamnose (1); heptose (2); 3-deoxy-2-octulonic acid (1); galactosamine (1); alanine (1-1.5); phosphorus (6-7). In the intact lipopolysaccharide this fraction was probably linked to lipid A via a second residue of 3-deoxy-2-octulonic acid, and probably also contained additional phosphate residues and ethanolamine. The residues of 3-deoxy-2-octulonic acid were apparently substituted in the C-4 or C-5 position, and the phosphorylated heptose residues in the C-3 position. The rhamnose was mainly 2-substituted, though a little 3-substitution was detected. The glucose residues were either unsubstituted or 6-substituted. Four neutral oligosaccharides were produced by partial acid hydrolysis and were characterized by chemical, enzymic, chromatographic and mass-spectrometric methods of analysis. The structures assigned were: Glcpalpha1-6Glc; Glcpbeta1-2Rha; Rhapalpha1-6Glc; Glcpbeta1-2Rhapalpha1-6Glc. The galactosamine was substituted in the C-3 or C-4 position, the attachment of alanine was indicated, and evidence that the amino sugar linked the glucose-rhamnose region to the 'inner core' was obtained.  相似文献   

4.
E V Rao  N V Rao  K Sri Ramana 《Phytochemistry》1991,30(4):1183-1186
A sulphated heteropolysaccharide, [alpha]D +59 degrees, was isolated from a green seaweed, Spongomorpha indica, by extraction with ammonium oxalate. The polymer is composed of arabinose, xylose, galactose and glucose in the ratio 8.9:1.0:12.0:1.0. Studies showed that the polysaccharide is a complex and multilinked polymer containing arabinose in both furanose and pyranose forms. The core of the polysaccharide is composed of 1,4-linked galactose units. The arabinofuranose units are present as non-reducing end units, as well as jointed through 1,3- and 1,2-linkages. The majority of the arabinopyranose units are joined through 1,4-linkages. Xylose is present as a branch terminating unit. Glucose is joined through 1,4-linkages. Both arabinose and galactose carry branches. Sulphate groups are present on some of the arabinose units at C-2 and on some of the galactose units at C-2 and C-3.  相似文献   

5.
The exopolysaccharide of Pseudomonas marginalis HT041B has been characterized as a 1,3-linked galactoglucan in which galactose and glucose are in the alpha- and beta-anomeric configurations, respectively. The polysaccharide is substituted with pyruvate at the 4 and 6 positions of galactose and with succinic acid at either the 2 or 4 position of glucose. This polysaccharide has been given the trivial name marginalan.  相似文献   

6.
Structural studies were carried out on two kinds of teichuronic acid-glycopeptide complexes (designated as TU-GP-I and TU-GP-II) isolated from lysozyme digest of N-acetylated cell walls of Bacillus megaterium AHU 1375 by ion-exchange chromatography and gel chromatography. TU-GP-I, accounting for about 25% of the cell walls, contained N-acetylmannosaminuronic acid, N-acetylglucosamine, glucose, galactose, glycerol, and phosphorus in an approximate molar ratio of 1:1:2:1:0.5:0.5, together with small amounts of glycopeptide components. TU-GP-II, accounting for about 9% of the cell walls, contained glucuronic acid, glucose, and fucose in a molar ratio of about 2:1.5:1, together with small amounts of glycopeptide components. The results of analyses involving Smith degradation, chromium oxidation, methylation, acetolysis, and H-NMR measurement led to the conclusion that the polysaccharide chain of TU-GP-I comprised repeating units,----6) Glc(alpha 1----3)-ManNAcUA(beta 1----4)[Gal(alpha 1----3)][Glc(beta 1----6)]GlcNAc(beta 1----. About half of the repeating units were substituted by glycerophosphoryl residues at C-6 of the beta-glucosyl residues linked to the N-acetylglucosamine residues. By means of a similar procedure, the polysaccharide chain of TU-GP-II was shown to comprise repeating units,----4)GlcUA(alpha 1----3)GlcUA(alpha 1----3)Glc(alpha 1----3)Fuc(alpha 1----, of which about half were substituted by alpha-glucosyl residues at C-3 of the 4-substituted glucuronosyl residues.  相似文献   

7.
The primary structure of teichuronic acid in Bacillus subtilis AHU 1031   总被引:3,自引:0,他引:3  
Structural studies were carried out on the acidic polysaccharide fraction obtained from lysozyme digest of the cell walls of Bacillus subtilis AHU 1031. The polysaccharide fraction contained N- acetylmannosaminuronic acid ( ManNAcA ), N-acetylglucosamine (GlcNAc), glucose, glycerol and phosphorus in a molar ratio of 2:2:4:1:1, together with glycopeptide components. The results of analyses involving Smith degradation, chromium trioxide oxidation, methylation and proton magnetic resonance spectroscopy led to the conclusion that the backbone chain of the polysaccharide has the repeating unit----6)Glc(alpha 1----3/4) ManNAcA (beta 1----4)GlcNAc(beta 1----. About 50% of the N-acetylglucosamine residues in the backbone chain seem to be substituted at C-3 by the glycosidic branches, glycerol phospho-6-glucose, while the other half seem to be substituted by glucose.  相似文献   

8.
Studies of the lipopolysaccharide of Pseudomonas alcaligenes strain BR 1/2 were extended to the polysaccharide moiety. The crude polysaccharide, obtained by mild acid hydrolysis of the lipopolysaccharide, was fractionated by gel filtration. The major fraction was the phosphorylated polysaccharide, for which the approximate proportions of residues were; glucose (2), rhamnose (0.7), heptose (2-3), galactosamine (1), alanine (1), 3-deoxy-2-octulonic acid (1), phosphorus (5-6). The heptose was l-glycero-d-manno-heptose. The minor fractions from gel filtration contained free 3-deoxy-2-octulonic acid, P(i) and PP(i). The purified polysaccharide was studied by periodate oxidation, methylation analysis, partial hydrolysis, and dephosphorylation. All the rhamnose and part of the glucose and heptose occur as non-reducing terminal residues. Other glucose residues are 3-substituted, and most heptose residues are esterified with condensed phosphate residues, possibly in the C-4 position. Free heptose and a heptosylglucose were isolated from a partial hydrolysate of the polysaccharide. The location of galactosamine in the polysaccharide was not established, but either the C-3 or C-4 position appears to be substituted and a linkage to alanine was indicated. In its composition, the polysaccharide from Ps. alcaligenes resembles core polysaccharides from other pseudomonads: no possible side-chain polysaccharide was detected.  相似文献   

9.
The group-specific polysaccharide of the group B Streptococcus was isolated by nitrous acid extraction followed by gel filtration on Sepharose 6B and chromatography on DEAE-Bio-Gel A. It was composed of rhamnose, galactose, N-acetylglucosamine, and glucitol phosphate. Mild periodate oxidation of the polysaccharide resulted in a rapid reduction in molecular weight, indicating that the glucitol was located in the backbone of the polymer. High-resolution 31P NMR showed the presence of a single type of phosphodiester bond in the molecule. Methylation analysis and several specific chemical degradations were done to determine sugar linkages. The basic structure of the group B polysaccharide consists of a backbone of 2-linked rhamnose, 2,4-linked rhamnose, and glucitol phosphate, and side chains of rhamnose(1----3)galactose(1----3)N-acetylglucosamine linked to the 4-position of a rhamnose in the backbone.  相似文献   

10.
B Jann  P Prehm    K Jann 《Journal of bacteriology》1978,134(2):462-469
The structure of the O-specific polysaccharide moiety of the lipopolysaccharide from Citrobacter 396 was elucidated by composition, methylation, and periodate oxidation studies. The repeating unit consists of four 2-linked mannoses and one 3-linked N-acetylglucosamine. One of the mannose units is substituted at C3 with alpha-glucose, and one is substituted at C3 with alpha-(2-O-acetyl)-abequose. All the mannosyl linkages appear to have the beta-configuration; the N-acetylglucosaminyl linkage has the alpha-configuration. In bacterial agglutination and passive hemagglutination in some Salmonella antisera, Citrobacter 396 as well as its O-antigenic lipopolysaccharide expressed the serological factors 5 and 6. In corroboration of our structural studies, this showed the presence of alpha-(2-O-acetyl)-abequosyl-1,3-mannose (factor 5) and alpha-glucosyl-1,3-mannose (factor 6).  相似文献   

11.
K S Ramana  E V Rao 《Phytochemistry》1991,30(1):259-262
A sulphated heteropolysaccharide, [alpha]27D + 59.9 degrees, has been isolated from a green seaweed, Cladophora socialis, by extraction with dilute acid and purified by fractional precipitation. The polymer is composed of galactose (58.3%), arabinose (31.8%), xylose (10.6%) and sulphate (16.9%). The results of methylation analysis, periodate oxidation and partial acid hydrolysis studies indicate that the polymer is a branched one and is composed of 1,3-linked galactose and 1,4-linked arabinose units. Xylose is present at the non-reducing end position of the branches. Both arabinose and galactose carry branches. Desulphation and subsequent analysis of the polymer show that some of the arabinose units carry sulphate groups at C-3 and some of the galactose units carry the sulphate groups at C-4 and some at C-4 and C-6 as well.  相似文献   

12.
The lipoteichoic acids from Bifidobacterium bifidum spp. pennsylvanicum were extracted from cytoplasmic membranes or from disintegrated bacteria with aqueous phenol and purified by gel chromatography. The lipoteichoic acid preparations contained phosphate, glycerol, galactose, glucose and fatty acids in a molar ratio of 1.0:1.0:1.3:1.2:0.3. Chemical analysis and NMR studies of the native preparations and of products from various acid and alkaline hydrolysis procedures gave evidence for the structure of two lipoteichoic acids. The lipid anchor appeared to be 3-O-(6'-(sn-glycero-1-phosphoryl)diacyl-beta-D-galactofuranosyl)-sn-1, 2-diacylglycerol. The polar part showed two structural features not previously described for lipoteichoic acids. A 1,2-(instead of the usual 1,3-) phosphodiester-linked sn-glycerol phosphate chain is only used substituted at the terminal glycerol unit with a linear polysaccharide, containing either beta(1----5)-linked D-galactofuranosyl groups or beta(1----6)-linked D-glucopyranosyl groups.  相似文献   

13.
A teichoic acid from the cell walls of Nocardioides luteus VKM Ac-1246T, a validly described species of the Nocardioides genus, is a 1,5-poly(ribitol phosphate) completely substituted at C-4 by alpha-D-galactopyranosyl residues carrying a 4,6-pyruvate ketal group in R-configuration. The structure of the repeating unit of the polymer is as follows: [figure]. The chain consists of approximately 18 repeating units and six beta-D-galactofuranosyl residues linked in the oligomer by 1,6-glycosidic bonds. The oligomer probably terminates the growing end of the teichoic acid. The structure of the polymer was determined by chemical methods and NMR spectroscopy. This teichoic acid has not been described so far.  相似文献   

14.
1. The composition of the lipopolysaccharides and the corresponding lipid-free polysaccharides from four R-mutants of Salmonella has been studied. All the lipopolysaccharides, from RI and RII serotypes contained d-glucose, d-galactose, heptose, N-acetylglucosamine and 3-deoxy-2-oxo-octonate. The polysaccharide obtained from the RII lipopolysaccharides also contained all these sugars. The polysaccharides from RI lipopolysaccharides lacked N-acetylglucosamine. 2. From partial hydrolysates of the lipopolysaccharides, a number of oligosaccharides have been isolated and partially characterized. Oligosaccharides containing N-acetylglucosamine or glucosamine were obtained only from RII lipopolysaccharides. Several oligosaccharides composed of glucose and galactose were common to RI and RII preparations. 3. A structural unit, based on the oligosaccharides found, is proposed for the RII lipopolysaccharide. It contains the sequence: alpha-N-acetylglucosaminyl- alpha-glucosyl-alpha-galactosyl-glucosyl.... A second alpha-galactosyl residue is bound to position 6 of the last glucosyl group. The complete unit is believed to to be attached to a polyheptose phosphate backbone in the RII antigen. 4. The RI lipopolysaccharide of Salmonella minnesota contains an analogous structure lacking the terminal N-acetylglucosamine residue. 5. A basal structure common to the lipopolysaccharides of several Salmonella species is proposed.  相似文献   

15.
Bacillus pumilus strain Sh18 cell wall polysaccharide (CWP), cross-reactive with the capsular polysaccharide of Haemophilus influenzae type b, was purified and its chemical structure was elucidated using fast atom bombardment mass spectrometry, nuclear magnetic resonance techniques, and sugar-specific degradation procedures. Two major structures, 1,5-poly(ribitol phosphate) and 1,3-poly(glycerol phosphate), with the latter partially substituted by 2-acetamido-2-deoxy-alpha-galactopyranose (13%) and 2-acetamido-2-deoxy-alpha-glucopyranose (6%) on position O-2, were found. A minor component was established to be a polymer of -->3-O-(2-acetamido-2-deoxy-beta-glucopyranosyl)-1-->4-ribitol-1-OPO3-->. The ratios of the three components were 56, 34, and 10 mol%, respectively. The Sh18 CWP was covalently bound to carrier proteins, and the immunogenicity of the resulting conjugates was evaluated in mice. Two methods of conjugation were compared: (i) binding of 1-cyano-4-dimethylaminopyridinium tetrafluoroborate-activated hydroxyl groups of the CWP to adipic acid dihydrazide (ADH)-derivatized protein, and (ii) binding of the carbodiimide-activated terminal phosphate group of the CWP to ADH-derivatized protein. The conjugate-induced antibodies reacted in an enzyme-linked immunosorbent assay with the homologous polysaccharide and with a number of other bacterial polysaccharides containing ribitol and glycerol phosphates, including H. influenzae types a and b and strains of Staphylococcus aureus and Staphylococcus epidermidis.  相似文献   

16.
In the ascidian Halocynthia roretzi, sperm-egg binding is probably mediated through the interaction between alpha-L-fucosidase present on the sperm surface and anionic saccharide chains of the egg vitelline coat. To characterize biologically active glycans, total glycans were chemically released from the glycopeptide fraction of the vitelline coat. The fraction of uncharged glycans and two fractions of negatively charged glycans were separated by diethylaminoethyl-anion exchange chromatography. In a competitive inhibition assay of fertilization, both anionic fractions showed inhibitory activity, with more anionic glycans being most potent, while uncharged glycans were biologically inactive. Chemical desulfation combined with a competitive inhibition assay of fertilization and ion analysis determined that sulfate groups were responsible for anionic character and crucial for biological activity. Monosaccharide analysis of anionic fractions showed a high content of N-acetylgalactosamine, galactose, xylose and the presence of arabinose, mannose, N-acetylglucosamine, glucose and rhamnose. Glycans were O-linked and galactose and xylose residues were detected at reducing termini. Linkage analysis suggested that 1,4-linked xylose, 1,3-linked galactose and N-acetylgalactosamine residues, substituted to different degrees by sulfate groups on the C-3 and C-4 carbons, respectively, constituted the core structures of anionic glycans.  相似文献   

17.
The O-specific polysaccharide obtained from the lipopolysaccharide of Shigella dysenteriae type 1 (Shigella shiga) by mild acid hydrolysis followed by fractionation on Sephadex G-50 was found to be identical to that desribed by Morgan's group and was composed of L-rhamnose, D-galactose and N-acetyl-D-glycosamine in a ratio 2:1:1. On the basis of methylation analysis data the polysaccharide was proved to be a linear chain of monosaccharide residues in pyranose forms substituted at position 3, except for that of galactose substituted at position 2. Selective cleavage, based on the N-deacetylation reaction of the polymer, together with determination of linkage configurations by chromic anhydride oxidation showed that the O-specific polysaccharide is built up of repeating tetrasaccharide units whose proposed structure is given below -3)-alpha-L-Rhap (1-3)-alpha-L-Rhap(1-2)-alpha-D-Galp(1-3)-alphapD-GlcNAcp(1- where RHAP = rhamnopyranose, Galp = galactopyranose, and GlcNAcp = N-acetyl-glucosamine. The present findings confirmed the considerations of Heidelberger on the substitution patterns of L-rhamnose and D-galactose residues from the results of serological studies.  相似文献   

18.
The O-specific polysaccharide of the lipopolysaccharide of Proteus penneri strain 103 was studied using 1H and 13C NMR spectroscopy, including 2D COSY, TOCSY, NOESY, H-detected 1H,(13)C HMQC, 1H, 31P HMQC, and HMBC experiments. It was found that the polysaccharide is built up of oligosaccharide-ribitol phosphate repeating units and thus resembles ribitol teichoic acids of Gram-positive bacteria. The following structure of the polysaccharide was established:where Etn and Rib-ol are ethanolamine and ribitol, respectively. This structure is unique among the known structures of Proteus O-antigens and, therefore, we propose classification of the strain studied into a new Proteus serogroup, O73. The molecular basis for cross-reactivity between O-antiserum against P. penneri 103 and O-antigens of P. mirabilis O33 and D52 is discussed.  相似文献   

19.
A teichuronic acid, containing glucuronic acid and N-acetylgalactosamine, was purified from acid extracts of Bacillus licheniformis 6346 cell walls as described by Janczura, Perkins & Rogers (1961). After reduction of the carboxyl function of glucuronic acid residues in the polysaccharide the reduced polymer contains equimolar amounts of N-acetylgalactosamine and glucose. Methylation of the reduced polysaccharide by the Hakamori (1964) technique showed the glucose residues to be substituted on C-4. A disaccharide, 3-O-glucuronosylgalactosamine, was isolated from partial acid hydrolysates of teichuronic acid. After N-acetylation the disaccharide produces chromogen readily on heating at pH7, in agreement with C-3 substitution of the reducing N-acetylamino sugar. Teichuronic acid also produces chromogen under the same conditions, with concurrent elimination of a modified polysaccharide from C-3 of reducing terminal N-acetylgalactosamine residues of the teichuronic acid chains. The number-average chain lengths of several preparations of teichuronic acid were estimated from the amounts of chromogen produced in comparison with the N-acetylated disaccharide. The values obtained are in good agreement with the weight-average molecular weight determined by ultracentrifugal analysis. The reducing terminals of teichuronic acid are shown to be exclusively N-acetylgalactosamine by reduction with sodium boro[(3)H]hydride. The number-average chain lengths of the teichuronic acid preparations were estimated by the extent of in corporation of tritium and are in agreement with values obtained by the other methods.  相似文献   

20.
An unusual ribitol teichoic acid-like O-polysaccharide was isolated by mild acid degradation of the lipopolysaccharide from a previously non-classified Proteus vulgaris strain TG 276-1. Structural studies using chemical analyses and 2D (1)H and (13)C NMR spectroscopy showed that the polysaccharide is a zwitterionic polymer with a repeating unit containing 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose (D-FucNAc4N) and two D-ribitol phosphate (D-Rib-ol-5-P) residues and having the following structure:[formula: see text] where the non-glycosylated ribitol residue is randomly mono-O-acetylated. Based on the unique O-polysaccharide structure and the finding that the strain studied is serologically separate among Proteus bacteria, we propose to classify P. vulgaris strain TG 276-1 into a new Proteus serogroup, O53.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号