首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of osmotic stress on germinal vesicle (GV) and metaphase II (MII) stage bovine cumulus oocyte complexes (COCs) were evaluated by first exposing them to various anisotonic NaCl solutions (75, 150, 600, 1200, 2400, and 4800 +/- 5 mOsm/kg) for 10 min and then returning them to isotonic TL-Hepes solution (270 +/- 5 mOsm/kg) at 20 +/- 2 degrees C. Percentages of oocyte maturation, fertilization, polyspermy, cleavage, and blastocyst formation were measured as endpoints. Exposure to anisotonic conditions had a significant (P < 0.05) effect on the developmental competence of both GV and bovine MII COCs. Oocytes at the GV stage were more sensitive to anisotonic stress than MII oocytes (P < 0.05). None of the GV oocytes developed to the blastocyst stage after exposure to hypertonic conditions (2400 or 4800 mOsm solutions), while exposure to hypotonic conditions (75 or 150 mOsm solutions) resulted in significantly lower (P < 0.05) blastocyst formation (9% and 13%, respectively) compared to the isotonic control (25%). A dramatic decrease to 4% development to blastocyst was observed for MII oocytes following exposure to a 4800 mOsm solution. Blastocyst formation of MII oocytes which were exposed to 75, 150, 600, 1200, or 2400 mOsm solutions were similar (15%, 20%, 18%, 14%, and 13%, respectively; P > 0.05), but lower (P < 0.05) than those in the control group (29%). Exposing GV oocytes to anisotonic conditions increased polyspermic fertilization (P < 0.05), although MII oocytes were not similarly affected (P > 0.05). These data support the hypothesis that osmotic stress is detrimental to bovine oocytes and must be considered when developing optimized cryopreservation procedures for these cells. Mol. Reprod. Dev. 55:212-219, 2000.  相似文献   

2.
Oocyte cryopreservation is an important technology in assisted reproduction and fertility preservation. However, the developmental potential of cryopreserved oocyte remains poor. Osmotic stress injury (OSI) during cryoprotectants (CPAs) loading and unloading steps has critical impact on successful cryopreservation. In order to minimize OSI to oocytes, a microfluidic device was designed and fabricated to achieve continuous CPA concentration change. MII porcine oocytes were loaded and unloaded CPAs with step-wise and microfluidic methods, oocyte volume changes were recorded and compared, loading and unloading duration of microfluidic methods were optimized. The survival and developmental rate of treated oocytes in step-wise and microfluidic linear methods were also evaluated. The results showed that oocyte volume changes with microfluidic method were obviously less than step-wise method, and the survival, cleavage and blastocyst rate of oocytes were 95.3%, 64.4%, and 19.4%, respectively, which were significantly higher than the traditional step-wise method (79.4%, 43.6%, and 9.7%) (p < 0.05). In conclusion, microfluidic device can effectively reduce the osmotic damage to oocytes and improve the survival rate and developmental rate of oocytes, which may provide a new path for oocyte cryopreservation.  相似文献   

3.
There have been intensive attempts to establish reliable in vitro production (IVP) and cryopreservation methods of embryos in pigs. Although a great deal of progress has been made, current IVP systems and cryopreservation still suffer from insufficient cytoplasmic abilities of in vitro matured oocytes, polyspermic fertilization, poor quality of in vitro produced embryos and low efficiency of embryo cryopreservation. Compared to other mammalian species, pig oocytes and embryos are characterized by large amounts of lipid content stored mainly in the form of lipid droplets in the cytoplasm. This fact has a negative influence on biotechnological applications on porcine oocytes and embryos. In this review, we will discuss recent studies about methods and techniques for modifying porcine embryo IVP system and embryo cryopreservation that produces high quality of pig blastocysts using in vitro maturation, in vitro fertilization, in vitro culture, microsurgical manipulation, addition of protein, the use of cytoskeleton stabilizing agents and various physical methods. The presented methods and techniques make it possible to modify the characteristics of oocytes and embryos and thus may become major tools in mammalian gamete and embryo agricultural or biotechnological applications in the future.  相似文献   

4.
The effect of osmotic changes on fertilized mouse ova was studied by measuring their survival, defined as development into hatching blastocysts, after exposure to various concentrations of ethanediol (ethylene glycol). In addition, a Boyle-van't Hoff plot was derived from exposing ova to hypotonic and hypertonic solutions ranging from 0.1 to 2.8 osmol. Volume of ova was inversely proportional to osmolality over this range. Extrapolation of this relationship yielded a nonosmotic volume of the ova of 22.5%. Eighty-five per cent or more of the ova survived exposure to this wide range of concentrations and developed into blastocysts. The rate of development of ova exposed to anisotonic solutions was the same as that of controls. Ova underwent osmotic shock when abruptly diluted out of concentrated solutions of ethanediol with an isotonic solution. Their survival was highly dependent on the ethanediol concentration with which they had equilibrated before dilution, and the manner, rate and temperature of dilution. The longer the exposure to ethanediol the greater was the sensitivity of the ova to osmotic shock, reflecting permeation of ethanediol into the ova. Osmotic shock could be alleviated by dilution at a high temperature, and prevented by the use of sucrose as an osmotic buffer at 37 degrees C. Identification of the variables that influence osmotic shock of ova will be helpful in the systematic study of their cryopreservation.  相似文献   

5.
Nagai T 《Theriogenology》2001,55(6):1291-1301
Recent advances in biotechnology have enabled us to produce cloned and genetically modified cattle and pigs by manipulating in vitro-produced embryos. However, the efficiency is still extremely low, mainly because of the low developmental competence of manipulated embryos. To improve this situation, IVM systems for bovine and porcine oocytes in in vitro embryo production systems must be improved. This paper addresses the selection of ovaries with competent follicles at a slaughterhouse and looking attached sight of oocytes at a lab, and the IVM of oocytes under redox state to enhance the developmental competence of IVM oocytes in cattle and pigs.  相似文献   

6.
The survival and developmental capacity of bovine oocytes after cryopreservation are greatly impaired, possibly due to organelle damage caused by freezing procedures. Distributions of chromosomes, microtubules, and microfilaments in bovine oocytes matured in vitro were examined after cooling, ethylene glycol (EG) exposure, or freezing. Oocytes were incubated after treatment for 20 min or 1 or 3 h, fixed, and evaluated using specific fluorescent probes. Abnormal cytological features increased over control levels after cooling or EG exposure and rewarming. Changes observed in oocytes during prefreezing manipulations included chromosome dispersal and clumping, microtubule depolymerization and alteration of spindle structure, and formation of craters and discontinuity in cytoskeletal actin staining. Freezing also led to an increase in the occurrence of cytological abnormalities. Less than 31% of frozen-thawed oocytes contained a normal chromosome arrangement 3 h postthaw (versus 90% of controls). Only 7-14% of frozen-thawed oocytes had normal spindles (versus 59-71% of controls). Normal distribution of filamentous actin was observed in less than 30% of oocytes postthaw (versus 62-89% of controls). These results indicate that the steps in a conventional freezing procedure cause irreversible alterations in multiple cytological components of bovine oocytes, demonstrating the need for improved strategies for preventing cellular damage during cryopreservation procedures.  相似文献   

7.
Spermatozoa from diploid and tetraploid Pacific oysters (Crassostrea gigas) were examined after anisotonic fixation. Morphological anomalies, such as membrane rupture, detached tails, and the formation of tail vesicles (typically associated with damage attributable to procedures such as cryopreservation) were observed; the Mantel-Haenszel Chi-square test indicated a strong association between the anomalies and fixative osmolality (P<0.001). The present study also indicated that media in a range of 800 to 1,086 mOsm/kg could be assumed to be functionally isotonic to Pacific oysters, and osmolalities below or above this caused severe cell damage. For example, the maximum volume of flagella obtained after hypotonic fixation was approximately twice the volume of the flagella in isotonic fixation. Sperm cell flagellar volumes after hypertonic fixation (1,110 mOsm/kg) were 32% smaller than those in isotonic fixation, and sperm heads were 25% smaller. Although the damage associated with anisotonic fixation was evident in all parts of the sperm cells, the most vulnerable locations were the plasma membrane and flagellum motor apparatus. The formation of tail vesicles after hypotonic fixation was also examined. Because of water uptake, oyster sperm became swollen in hypotonic fixative, and bending or coiling of the axoneme within the tail vesicles led to the appearance of multiple axonemal structures in cross sections when observed by transmission electron microscopy. This phenomenon might be generally misinterpreted as the presence of double tails. This and other fixation artifacts can lead to the misinterpretation of damage caused by cryopreservation in ultrastructure studies of sperm of aquatic species, especially those in marine species.This work was supported in part by funding from the USDA-SBIR program, 4Cs Breeding Technologies, and the Louisiana Sea Grant College Program.  相似文献   

8.
We have successfully produced healthy piglets following cryopreservation of embryos derived from oocytes matured and fertilized in vitro. The appropriate timing of cryopreservation pretreatment (removal of cytoplasmic lipid droplets [delipation] and vitrification) was initially determined using parthenogenetic embryos derived from in vitro-matured (IVM) oocytes. Viable embryos were obtained at the highest rate when embryos were delipated at the four- to eight-cell stages (Day 2 of embryo culture) and were vitrified approximately 15 h later (Day 3) by means of the minimum volume cooling method. After cryopreservation of embryos derived from oocytes matured and fertilized in vitro under the most appropriate conditions, 401 embryos were transferred to five recipient gilts, and the recipients all became pregnant. At autopsy of one of the recipients, which had received 47 embryos, eight fetuses (17.0%) were found. Three recipients each gave birth to two to four piglets (1.4%-6.0%). These results demonstrate that normal offspring can be produced from vitrified porcine embryos derived from IVM oocytes by a strategic combination of delipation and vitrification at the early cleavage stages. This approach has great potential in the reproduction of micromanipulated porcine embryos, such as cloned and sperm-injected embryos, produced from IVM oocytes.  相似文献   

9.
We investigated the in vitro developmental competence of porcine embryos produced from in vitro matured (IVM) oocytes by improved HMC and parthenogenetic activation (PA). Embryos were cultured in a modified North Carolina State University (NCSU37) medium. Firstly, we compared the developmental competence between oocytes from sows and gilts by zona-intact (ZI) and zona-free (ZF) PA. Significantly higher (p < 0.05) blastocyst rates were obtained from sow oocytes (42 +/- 4% for ZF and 55 +/- 6% for ZI) than gilt oocytes (20 +/- 2% for ZF and 26 +/- 5% for ZI). Secondly, sow oocytes were used to establish the modified HMC that was based on a modified enucleation with partial zona digestion and trisection of porcine oocytes and the use of three cytoplasts and one somatic cell for embryo reconstruction. In vitro fertilization (IVF) and in parallel ZF PA were used as the control systems. After oocyte trisection, >90% of oocyte fragments were recovered, resulting in an average of 37 reconstructed embryos from 100 oocytes. Blastocyst rates of HMC, IVF, and ZF PA embryos were 17 +/- 4%, 30 +/- 6%, and 47 +/- 4%, respectively. Our results prove that HMC in pigs may result in high in vitro efficiency up until the blastocyst stage. In vivo developmental competence will be confirmed in embryo transfer experiments.  相似文献   

10.
We have previously reported that ATP-inhibitable K+channels, in vesicles derived from the basolateral membrane ofNecturus maculosus small intestinal cells, exhibit volumeregulatory responses that resemble those found in the intact tissueafter exposure to anisotonic solutions. We now report that increases inK+ channel activity can also be elicited by exposure ofthese vesicles to isotonic solutions containing glucose or alanine thatequilibrate across these membranes. We also demonstrate that swellingafter exposure to a hypotonic solution or an isotonic solutioncontaining alanine or glucose reduces inhibition of channel activity byATP and that this finding cannot be simply attributed to dilution ofintravesicular ATP. We conclude that ATP-sensitive, stretch-activated K+ channels may be responsible for the well-establishedincrease in basolateral membrane K+ conductance ofNecturus small intestinal cells after the addition of sugarsor amino acids to the solution perfusing the mucosal surface, and wepropose that increases in cell volume, resulting in membrane stretch,decreases the sensitivity of these channels to ATP.

  相似文献   

11.
The permeability of the plasma membrane plays a crucial role in the successful cryopreservation of oocytes/embryos. To identify a stage feasible for the cryopreservation of teleost oocytes, we investigated the permeability to water and various cryoprotectants of medaka (Oryzias latipes) oocytes at the germinal vesicle (GV) and metaphase II (MII) stages. In sucrose solutions, the volume changes were greater in GV oocytes than MII oocytes. Estimated values for osmotically inactive volume were 0.41 for GV oocytes and 0.74 for MII oocytes. Water-permeability (microm/min/atm) at 25 degrees C was higher in GV oocytes (0.13+/-0.01) than MII oocytes (0.06+/-0.01). The permeability of MII oocytes to various cryoprotectants (glycerol, propylene glycol, ethylene glycol, and DMSO) was quite low because the oocytes remained shrunken during 2 h of exposure in the cryoprotectant solutions at 25 degrees C. When the chorion of MII oocytes was removed, the volume change was not affected, except in DMSO solution, where dechorionated oocytes shrunk and then regained their volume slowly; the P(DMSO) value was estimated to be 0.14+/-0.01x10(-3) cm/min. On the other hand, the permeability of GV oocytes to cryoprotectants were markedly high, the P(s) values (x10(-3) cm/min) for propylene glycol, ethylene glycol, and DMSO being 2.21+/-0.29, 1.36+/-0.18, and 1.19+/-0.01, respectively. However, the permeability to glycerol was too low to be estimated, because GV oocytes remained shrunken after 2 h of exposure in glycerol solution. These results suggest that, during maturation, medaka oocytes become less permeable to water and to small neutral solutes, probably by acquiring resistance to hypotonic conditions before being spawned in fresh water. Since such changes would make it difficult to cryopreserve mature oocytes, immature oocytes would be more suitable for the cryopreservation of teleosts.  相似文献   

12.
Stallion spermatozoa exhibit osmotic damage during the cryopreservation process. Recent studies have shown that the addition of cholesterol to spermatozoal membranes increases the cryosurvival of bull, ram and stallion spermatozoa, but the exact mechanism by which added cholesterol improves cryosurvival is not understood. The objectives of this study were to determine if adding cholesterol to stallion sperm membranes alters the osmotic tolerance limits and membrane permeability characteristics of the spermatozoa. In experiment one, stallion spermatozoa were treated with cholesterol-loaded cyclodextrin (CLC), subjected to anisotonic solutions and spermatozoal motility analyzed. The spermatozoa were then returned to isotonic conditions and the percentages of motile spermatozoa again determined. CLC treatment increased the osmotic tolerance limit of stallion spermatozoa in anisotonic solutions and when returned to isotonic conditions. The second and third experiments utilized an electronic particle counter to determine the plasma membrane characteristics of stallion spermatozoa. In experiment two, stallion spermatozoa were determined to behave as linear osmometers. In experiment three, spermatozoa were treated with CLC, incubated with different cryoprotectants (glycerol, ethylene glycol or dimethyl formamide) and their volume excursions measured during cryoprotectant removal at 5° and 22 °C. Stallion spermatozoa were less permeable to the cryoprotectants at 5 °C than 22 °C. Glycerol was the least permeable cryoprotectant in control cells. The addition of CLC’s to spermatozoa increased the permeability of stallion spermatozoa to the cryoprotectants. Therefore, adding cholesterol to spermatozoal membranes reduces the amount of osmotic stress endured by stallion spermatozoa during cryopreservation.  相似文献   

13.
Studies were conducted to compare viability of immature and mature porcine oocytes vitrified in ethylene glycol (EG) using open-pulled straws (OPS). Oocytes that had been allowed to mature for 12 h (germinal vesicle group; GV) and 40 h (metaphase II group; MII) were divided into three treatments: (1) control; (2) treated with cytochalasin B and exposed to EG; and (3) treated with cytochalasin B and vitrified by stepwise exposure to EG in OPS. After warming, a sample of oocytes was fixed and evaluated by specific fluorescent probes before visualization using confocal microscopy. The remaining oocytes were fertilized and cleavage rate was recorded. Exposure of GV oocytes to EG or vitrification had a dramatic effect on spindle and chromosome configurations and no cleavage was obtained after in vitro fertilization. When MII oocytes were exposed to EG or were vitrified, 18 and 11% of oocytes, respectively, maintained the spindle structure and either EG exposure or vitrification resulted in substantial disruption in microfilament organization. The cleavage rates of mature oocytes after being exposed to EG or after vitrification were similar (14 and 13%, respectively) but were significantly less than that of control oocytes (69%). These results indicate that porcine oocytes at different meiotic stages respond differently to cryopreservation and MII porcine oocytes had better resistance to cryopreservation than GV stage oocytes.  相似文献   

14.
This experiment investigated the osmotic tolerance limits of the morphology and the cellular actin filament organization of porcine blastocysts. In vitro produced Day 6 blastocysts were subjected to osmotic treatments with sucrose solutions of different osmolalities (75, 150, 210, 600, 1200, and 2400 mOsm) and one isotonic solution (NCSU-23, 285 mOsm). Blastocysts were then either fixed immediately, or cultured for 18 h and subsequently fixed with formalin. The morphology of the treated blastocysts was examined under a stereomicroscope and the integrity of the cellular actin filaments of the blastocysts was examined by confocal microscopy after staining with Alexa Fluor 488 phalloidin. The results indicated that there was a significant relationship between the osmotic levels and the probability of blastocysts exhibiting disrupted cellular actin filaments. In addition, blastocysts also collapsed in proportion to the levels of osmotic treatments. The osmotic tolerance limits which would maintain 70% of the blastocysts with their original morphology immediately after the treatment were 90 and 170%, respectively, of isotonicity. After 18 h of culture, the osmotic tolerance limits were 61 and 163%, respectively, of isotonicity. Similarly, the osmotic conditions relative to isotonicity which would maintain the integrity of cellular actin filaments in 70% of treated blastocysts had to be within the range of 87 and 147% immediately after the treatment and 87 and 169% after 18 h of culture. Collectively, these data indicate that in vitro produced porcine blastocysts are very sensitive to osmotic stress. This information can be used to optimize cryopreservation procedures for porcine embryos.  相似文献   

15.
The spermatozoon of felids (cats) survives cryopreservation inconsistently. Using ejaculates from three species (domestic cat [normospermic versus teratospermic], the normospermic serval and the teratospermic clouded leopard), this study (1) determined the influence of adding and removing two permeating cryoprotectants (glycerol and dimethylsulfoxide) and (2) assessed the impact of one-step versus multi-step cryoprotectant removal on sperm motility and membrane integrity. Spermatozoa were exposed in a single step to various anisotonic solutions or to 1M solutions of glycerol or dimethylsulfoxide. In both cases, sperm then were returned to near isotonic conditions in a single or multi-step with de-ionized water, Ham's F10 medium or saline. Percentage of sperm motility was measured subjectively, and plasma membrane integrity was assessed using a dual fluorescent stain and flow cytometry. Sperm motility was more sensitive to anisotonic conditions than membrane integrity. Rapid dilution into various test solutions and removal of cryoprotectant with de-ionized water reduced (P<0.01) sperm motility compared to control spermatozoa maintained in Ham's F10. Exposing sperm from all species to a 1M solution of either cryoprotectant resulted in >85% spermatozoa retaining intact membranes. However, return to isotonicity with de-ionized water in a single step or multiple steps always caused severe plasma membrane disruption. In contrast, sperm motility and membrane integrity in all species and populations remained unaffected (P>0.05) when spermatozoa were returned to isotonicity in multiple steps with Ham's F10 medium or 0.9% sodium chloride. Results demonstrate that: (1) felid spermatozoa are resistant to hypertonic stress; (2) sperm motility is more sensitive to changes in osmolality than membrane integrity; and (3) removal of cryoprotectant in multiple steps with an isotonic solution minimizes loss of sperm motility and membrane disruption in both normospermic and teratospermic males.  相似文献   

16.
Cryopreservation of porcine embryos derived from in vitro-matured oocytes   总被引:2,自引:0,他引:2  
This study describes a cryopreservation method for porcine in vitro-produced (IVP) embryos using as a model parthenogenetic embryos derived from in vitro-matured (IVM) oocytes. IVP embryos at the expanded blastocyst stage were cryopreserved by vitrification using the minimum volume cooling (MVC) method and exhibited an embryo survival rate of 41.2%. Survival was then significantly improved (83.3%, P < 0.05) by decreasing the amount of cytoplasmic lipid droplets (delipation) prior to vitrification. IVP embryos at the 4-cell stage also survived cryopreservation when vitrified after delipation (survival rate, 36.0%), whereas post-thaw survival of nondelipated embryos was quite low (9.7%). Furthermore, it was demonstrated that porcine IVP morulae can be cryopreserved by vitrification following delipation by a noninvasive method (survival rate, 82.5%). These results clearly confirm that porcine embryos derived from IVM oocytes can be effectively cryopreserved with high embryo survival using the MVC method in conjunction with delipation.  相似文献   

17.
Ebertz SL  McGann LE 《Cryobiology》2002,45(2):109-117
A human corneal equivalent is under development with potential applications in pharmaceutical testing, biomedical research, and transplantation, but the ability to distribute this engineered tissue, depends on successful cryopreservation. Tissue recovery after exposure to conditions during cryopreservation depends on the response of its constituent cells to the changing environment as ice forms and solutes concentrate. This study defines the osmotic properties that define the rate of water movement across the plasma membrane of isolated human corneal endothelial, stroma, and epithelial cells. Cells were transferred from an isotonic (300 mosm/kg) to an anisotonic (150-1500 mosm/kg) solution at constant temperature, and cell volumes monitored using an electronic particle counter. Histograms describing cell volume changes over time after anisosmotic exposure allowed calculation of hydraulic conductivity (L(p)) and osmotically inactive volume fraction (V(b)). Experimental values for L(p) at 4, 13, 22, and 37 degrees C were used to determine the Arrhenius activation energy (E(a)). The L(p) for endothelial, stroma, and epithelial cells at 37 degrees C was 1.98+/-0.32,1.50+/-0.30, and 1.19+/-0.14 microm/min/atm, and the V(b) was 0.28, 0.27, and 0.41, respectively. The E(a) for endothelial, stroma, and epithelial cells was 14.8, 12.0, and 14.1 kcal/mol, respectively, suggesting the absence of aqueous pores. These osmotic parameters and temperature dependencies allow simulation of osmotic responses of human corneal cells to cryopreservation conditions, allowing amount of supercooling to be calculated to indicate the likelihood of intracellular freezing. Simulations show that differences in the osmotic parameters for the constituent cells in the bioengineered cornea result in significant implications for cryopreservation of the engineered corneal equivalent.  相似文献   

18.
配子冷冻保存技术在动物繁殖育种中具有重要的意义,但猪卵母细胞的冷冻保存目前还很困难,主要表现为冻后继续发育能力低。这与影响卵母细胞玻璃化冷冻效果因素众多有关,如脂滴的存在使猪卵母细胞对冷冻非常敏感。冷冻保护剂的使用同时也产生了毒性作用。针对猪卵母细胞冷冻保存的特点,研究人员已研究出了一些新的方法来提高冷冻效果,如细胞骨架稳定剂的使用减少了冷冻对猪卵母细胞造成的损伤,通过改进冷冻载体提高了冷冻速率,从而提高了冷冻效果。  相似文献   

19.
The cell water content determines the cell volume, which in turn controls numerous cellular functions. The mean volume of rat glioma cells was electronically measured under isotonic and anisotonic conditions. Two types of isotonic solutions were used containing either high or low concentrations of NaCl, KCl or N-methylglucamineCl. In low salt solutions, osmolarity was maintained constant by the addition of sucrose or mannitol. Anisotonicity was induced by changing the concentration of electrolytes. As expected, the cell volume increased when the concentration of electrolytes was decreased from a high (165 mM) monovalent cation concentration. In contrast, the cell volume decreased when the concentration of electrolytes was decreased from a low (85 mM) monovalent cation concentration. Reciprocally and unexpectedly, the cell volume increased during a hyperosmotic challenge when the initial cation concentration was low, whereas it decreased when the initial cation concentration was high. These opposite volume changes observed during similar anisotonic challenges but starting from different electrolyte concentrations provide the first evidence that H2O is not only passively transported (downhill) through aquaporins but also follows ion fluxes (uphill).  相似文献   

20.
Men H  Monson RL  Rutledge JJ 《Theriogenology》2002,57(3):1095-1103
We investigated the effect of meiotic stages and two maturation protocols on bovine oocyte's resistance to cryopreservation. Oocytes at germinal vesicle breakdown (GVBD) and metaphase II (MII) stage as well as oocytes matured for 22 h in media supplemented with FSH or LH were vitrified by the open pulled straw method. After warming, oocytes underwent additional 16 h (GVBD group) or 2 h (MII group) maturation. Then they were subjected to in vitro fertilization and culture. Some oocytes that matured in the medium supplemented with LH were subjected to parthenogenetic activation after vitrification to determine their developmental potential in absence of fertilization. Survival of oocytes after vitrifying/warming was determined after 22 h in fertilization medium. Cleavage and blastocyst formation rates were used to assess their developmental competence. In both experiments, a portion of unvitrified MII oocytes were subjected to in vitro fertilization and culture as control groups. In Experiment 1, similar cleavage rates were obtained for both GVBD and MII oocytes (53.56 versus 58.01%, P > 0.05). However, significantly higher proportion of cleaved embryos from vitrified MII oocytes developed into blastocysts than those from vitrified GVBD oocytes (1.06 versus 8.37%, respectively, P < 0.01). In Experiment 2, vitrified MII oocytes matured in medium supplemented with LH were superior to vitrified MII oocytes matured in FSH supplementation not only in cleavage rates (61.13 versus 50.33%), but in blastocyst formation rates (11.79 versus 5.19%, P < 0.01) as well. Cleavage and blastocyst formation rates of parthenogenetically activated oocytes were similar to those that were fertilized. Nevertheless, the vitrifying/ warming process significantly compromised the oocytes' developmental capacity since the vitrified oocytes showed significant reduction in both cleavage and blastocyst rates compared to those of not vitrified controls in both experiments (P < 0.01). We showed that oocytes at different maturation stages respond to cryopreservation differently and MII stage oocytes have better resistance to cryopreservation than GVBD stage oocytes. The maturation protocols also influence oocyte's ability to survive cryopreservation. Poor developmental potential after vitrification seem to have resulted from the cryodamage to the oocyte itself. These results suggested the importance of maturation on the developmental competence of cryopreserved oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号