首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F2L is an acetylated amino-terminal peptide derived from the cleavage of the human heme-binding protein. Very recently, F2L was identified as an endogenous chemoattractant peptide acting specifically through formyl peptide receptor-like (FPRL)2. In the present study, we report that F2L stimulates chemotactic migration in human neutrophils. However, F2L inhibits formyl peptide receptor (FPR) and FPRL1 activities, resulting in the complete inhibition of intracellular calcium increases, and superoxide generation induced by N-formyl-Met-Leu-Phe, MMK-1, or Trp-Lys-Tyr-Met-Val-d-Met (WKYMVm) in human neutrophils. In terms of the inhibitory role of F2L on FPR- and FPRL-mediated signaling, we found that F2L competitively inhibits the binding of (125)I-WKYMVm to its specific receptors, FPR and FPRL1. F2L is the first endogenous molecule that inhibits FPR- and FPRL1-mediated signaling, and is expected to be useful in the study of FPR and FPRL1 signaling and in the development of drugs to treat diseases involving the FPR family of receptors.  相似文献   

2.
The formyl peptide receptor (FPR) family is involved in host defence against pathogens, but also in sensing internal molecules that may constitute signals of cellular dysfunction. It includes three subtypes in human and other primates. FPR responds to formyl peptides derived from bacterial and mitochondrial proteins. FPRL1 displays a large array of exogenous and endogenous ligands, including the chemokine variant sCKβ8-1, the neuroprotective peptide humanin, and lipoxin A4. Two high affinity agonists (F2L and humanin) were recently described for FPRL2. In mouse, eight FPR-related receptors have been described. Fpr1 is the ortholog of human FPR, while fpr2 appears to share many ligands with human FPRL1. Altogether, the physiological role of the FPR family is still incompletely understood, due in part to the large variety of ligands, the redundancy with other chemoattractant agents, and the lack of clear orthologs between human and mouse receptors. Newly developed tools will allow to study further this family of receptors.  相似文献   

3.
T-20, a synthetic peptide corresponding to the heptad repeat sequence of HIV-1 gp41, blocks HIV-1 entry by targeting gp41, and is currently in clinical trials as an anti-retroviral agent. We recently reported that in vitro T-20 also functions as a phagocyte chemoattractant and a chemotactic agonist at the phagocyte N-formylpeptide receptor (FPR). Here we show that T-20 is also a potent chemotactic agonist in vitro at a related human phagocyte receptor FPRL1R. To test the relative importance of FPR and FPRL1R in primary cells, we identified the corresponding mouse T-20 receptors, mFPR and FPR2, which are both expressed in neutrophils, and compared T-20 action on neutrophils from wild type and mFPR knockout mice. Surprisingly, although T-20 activates mFPR and FPR2 in transfected cells with equal potency and efficacy in both calcium flux and chemotaxis assays, neutrophils from mFPR knockout mice did not respond to T-20. These results provide genetic evidence that FPR is the major phagocyte T-20 receptor in vivo and point to the potential feasibility of studying T-20 effects on immunity in a mouse model. This may help define the cause of local inflammation after T-20 injection that has recently been reported in Phase I clinical trials.  相似文献   

4.
Neutrophils express the G protein-coupled N-formyl peptide receptor (FPR) and its homologue FPRL1, whereas monocytes express FPR, FPRL1, and FPRL2, an orphan receptor sharing 83% amino acid identity with FPRL1. FPRL1 is a promiscuous receptor activated by serum amyloid A and by different synthetic peptides, including the hexapeptide Trp-Lys-Tyr-Met-Val-d-Met-NH(2) (WKYMVm). By measuring calcium flux in HL-60 cells transfected with FPR, FPRL1, or FPRL2, we show that WKYMVm activated all three receptors, whereas the l-conformer WKYMVM activated exclusively FPRL1 and FPRL2. The functionality of FPRL2 was further assessed by the ability of HL-60-FPRL2 cells to migrate toward nanomolar concentrations of hexapeptides. The half-maximal effective concentrations of WKYMVM for calcium mobilization in HL-60-FPRL1 and HL-60-FPRL2 cells were 2 and 80 nm, respectively. Those of WKYMVm were 75 pm and 3 nm. The tritiated peptide WK[3,5-(3)H(2)]YMVM bound to FPRL1 (K(D) approximately 160 nm), but not to FPR. The two conformers similarly inhibited binding of (125)I-labeled WKYMVm to FPRL2-expressing cells (IC(50) approximately 2.5-3 micrometer). Metabolic labeling with orthophosphoric acid revealed that FPRL1 was differentially phosphorylated upon addition of the l- or d-conformer, indicating that it induced different conformational changes. In contrast to FPRL1, FPRL2 was already phosphorylated in the absence of agonist and not evenly distributed in the plasma membrane of unstimulated cells. However, both receptors were internalized upon addition of either of the two conformers. Taken together, the results indicate that neutrophils are activated by WKYMVM through FPRL1 and that FPRL2 is a chemotactic receptor transducing signals in myeloid cells.  相似文献   

5.
6.
Although formyl peptide receptor like 2 (FPRL2) has been regarded as an important classical chemoattractant receptor, its functional role and signaling pathway have not been fully investigated, because of the lack of its specific ligand. Recently F2L, a heme-binding protein fragment peptide, has been reported as an FPRL2-selective endogenous agonist. In the present study, we examined the effect of Trp-Arg-Trp-Trp-Trp-Trp-CONH2 (WRWWWW, WRW4), on F2L-induced cell signaling. WRW4 inhibited the activation of FPRL2 by F2L, resulting in the complete inhibition of intracellular calcium increase and chemotactic migration induced by F2L. WRW4 also completely inhibited F2L-induced NF-kappaB activation in FPRL2-transfected HEK293 cells. WRW4 specifically inhibited F2L-induced intracellular calcium increase and chemotactic migration in mature monocyte-derived dendritic cells, which express FPRL2 but not the other FPR family. Taken together, WRW4 is the first FPRL2 antagonist and is expected to be useful in the study of FPRL2 signaling and in development of drugs against FPRL2-related cellular responses.  相似文献   

7.
Trp-Lys-Tyr-Val-D-Met (WKYMVm) is a synthetic leukocyte-activating peptide postulated to use seven-transmembrane, G protein-coupled receptor(s). In the study to characterize the receptor(s) for WKYMVm, we found that this peptide induced marked chemotaxis and calcium flux in human phagocytes. The signaling induced by WKYMVm in phagocytes was attenuated by high concentrations of the bacterial chemotactic peptide fMLP, suggesting that WKYMVm might use receptor(s) for fMLP. This hypothesis was tested by using cells over expressing genes encoding two seven-transmembrane receptors, formyl peptide receptor (FPR) and formyl peptide receptor-like 1 (FPRL1), which are with high and low affinity for fMLP, respectively. Both FPR- and FPRL1-expressing cells mobilized calcium in response to picomolar concentrations of WKYMVm. While FPRL1-expressing cells migrated to picomolar concentrations of WKYMVm, nanomolar concentrations of the peptide were required to induce migration of FPR-expressing cells. In contrast, fMLP elicited both calcium flux and chemotaxis only in FPR-expressing cells with an efficacy comparable with WKYMVm. Thus, WKYMVm uses both FPR and FPRL1 to stimulate phagocytes with a markedly higher efficacy for FPRL1. Our study suggests that FPR and FPRL1 in phagocytes react to a broad spectrum of agonists and WKYMVm as a remarkably potent agonist provides a valuable tool for studying leukocyte signaling via these receptors.  相似文献   

8.
9.
Amyloid-beta, the pathologic protein in Alzheimer's disease, induces chemotaxis and production of reactive oxygen species in phagocytic cells, but mechanisms have not been fully defined. Here we provide three lines of evidence that the phagocyte G protein-coupled receptor (N-formylpeptide receptor 2 (FPR2)) mediates these amyloid-beta-dependent functions in phagocytic cells. First, transfection of FPR2, but not related receptors, including the other known N-formylpeptide receptor FPR, reconstituted amyloid-beta-dependent chemotaxis and calcium flux in HEK 293 cells. Second, amyloid-beta induced both calcium flux and chemotaxis in mouse neutrophils (which express endogenous FPR2) with similar potency as in FPR2-transfected HEK 293 cells. This activity could be specifically desensitized in both cell types by preincubation with a specific FPR2 agonist, which desensitizes the receptor, or with pertussis toxin, which uncouples it from G(i)-dependent signaling. Third, specific and reciprocal desensitization of superoxide production was observed when N-formylpeptides and amyloid-beta were used to sequentially stimulate neutrophils from FPR -/- mice, which express FPR2 normally. Potential biological relevance of these results to the neuroinflammation associated with Alzheimer's disease was suggested by two additional findings: first, FPR2 mRNA could be detected by PCR in mouse brain; second, induction of FPR2 expression correlated with induction of calcium flux and chemotaxis by amyloid-beta in the mouse microglial cell line N9. Further, in sequential stimulation experiments with N9 cells, N-formylpeptides and amyloid-beta were able to reciprocally cross-desensitize each other. Amyloid-beta was also a specific agonist at the human counterpart of FPR2, the FPR-like 1 receptor. These results suggest a unified signaling mechanism for linking amyloid-beta to phagocyte chemotaxis and oxidant stress in the brain.  相似文献   

10.
Lee SY  Lee MS  Lee HY  Kim SD  Shim JW  Jo SH  Lee JW  Kim JY  Choi YW  Baek SH  Ryu SH  Bae YS 《FEBS letters》2008,582(2):273-278
F2L, a peptide derived from heme-binding protein, was originally identified as an endogenous ligand for formyl peptide receptor-like (FPRL)2. Previously, we reported that F2L inhibits FPR and FPRL1-mediated signaling in neutrophils. Since endothelial cells express functional FPRL1, we examined the effect of F2L on LL-37 (an FPRL1 agonist)-induced signaling in human umbilical vein endothelial cells (HUVECs). F2L stimulated the chemotactic migration in HUVECs. However, F2L inhibited FPRL1 activity, resulting in the inhibition of cell proliferation and tube formation induced by LL-37 in HUVECs. We suggest that F2L will potentially be useful in the study of FPRL1 signaling and the development of drugs to treat diseases involving the FPRL1 in the vascular system.  相似文献   

11.
A leucine zipper-like domain, T21/DP107, located in the amino terminus of the ectodomain of gp41, is crucial to the formation of fusogenic configuration of the HIV-1 envelope protein gp41. We report that the synthetic T21/DP107 segment is a potent stimulant of migration and calcium mobilization in human monocytes and neutrophils. The activity of T21/DP107 on phagocytes was pertussis toxin-sensitive, suggesting this peptide uses Gi-coupled seven-transmembrane receptor(s). Since the bacterial chemotactic peptide fMLP partially desensitized the calcium-mobilizing activity of T21/DP107 in phagocytes, we postulated that T21/DP107 might preferentially use a lower affinity fMLP receptor. By using cells transfected to express cloned prototype chemotactic N-formyl peptide receptor (FPR) or its variant, FPR-like 1 (FPRL1), we demonstrate that T21/DP107 activates both receptors but has a much higher efficacy for FPRL1. In addition, T21/DP107 at nM concentrations induced migration of FPRL1-transfected human embryonic kidney 293 cells. In contrast, fMLP did not induce significant chemotaxis of the same cells at a concentration as high as 50 microM. Although a lipid metabolite, lipoxin A4, was a high-affinity ligand for FPRL1, it was not reported to induce Ca2+ mobilization or chemotaxis in FPRL1-transfected cells. Therefore, T21/DP107 is a first chemotactic peptide agonist identified thus far for FPRL1. Our results suggest that this peptide domain of the HIV-1 gp41 may have the potential to activate host innate immune response by interacting with FPR and FPRL1 on phagocytes.  相似文献   

12.
We have recently identified a peptide derived from the secreted portion of the HSV-2 glycoprotein G, gG-2p20, to be proinflammatory. Based on its ability to activate neutrophils and monocytes via the formyl peptide receptor (FPR) to produce reactive oxygen species (ROS) that down-regulate NK cell function, we suggested it to be of importance in HSV-2 pathogenesis. We now describe the effects of an overlapping peptide, gG-2p19, derived from the same HSV-2 protein. Also, this peptide activated the ROS-generating NADPH-oxidase, however, only in monocytes and not in neutrophils. Surprisingly, gG-2p19 did not induce a chemotactic response in the affected monocytes despite using a pertussis toxin-sensitive, supposedly G-protein-coupled receptor. The specificity for monocytes suggested that FPR and its homologue FPR like-1 (FPRL1) did not function as receptors for gG-2p19, and this was also experimentally confirmed. Surprisingly, the monocyte-specific FPR homologue FPRL2 was not involved either, and the responsible receptor thus remains unknown so far. However, the receptor shares some basic signaling properties with FPRL1 in that the gG-2p19-induced response was inhibited by PBP10, a peptide that has earlier been shown to selectively inhibit FPRL1-triggered responses. We conclude that secretion and subsequent degradation of the HSV-2 glycoprotein G can generate several peptides that activate phagocytes through different receptors, and with different cellular specificities, to generate ROS with immunomodulatory properties.  相似文献   

13.
Leucocytes accumulate at sites of inflammation and microbial infection in response to locally produced chemotactic factors. N-formylpeptides produced by Gram negative bacteria were among the first chemotactic factors structurally defined which signal through G protein-coupled formylpeptide receptor (FPR) and FPR-like 1 (FPRL1) expressed by phagocytic leukocytes in human and in mouse homogogues mFPR and mFPR2. During the past few years, a number of pathogen- and host-derived agonists/antagonists for FPR, FPRL1 and another FPR variant FPR-like 2 (FPRL2) have been identified. Activation of formylpeptide receptors (FPRs) in phagocytic leukocytes by agonists results in increased cell chemotaxis, phagocytosis, and release of pro-inflammatory mediators. Peptide agonists for FPRs have also been shown to possess immune adjuvant activity when injected in mice. In addition, FPR aberrantly expressed on highly malignant human glioblastoma cells promotes tumor cell migration, proliferation and production of vascular endothelial growth factor in response to agonists released by necrotic tumor cells. Therefore, formylpeptide receptor ligands, by interacting with FPRs, play important roles in host defense and in the rapid progression of human glioblastoma.  相似文献   

14.
15.
Epithelial cells of the alimentary tract play a central role in the mucosal host defence against pathogens and in the recognition of agonists that interact with mucosal surfaces. In particular, the formyl peptide receptor (FPR) family and their three human subtypes: FPR, formyl-peptide-receptor-like-1 (FPRL1) and FPRL2, are involved in the host defence against pathogens that mediate epithelial responses thus upregulating inflammation. To elucidate the mechanisms by which FPR function, we examined the influence of phospholipase D (PLD) 1 and 2 on the activity and signal transduction of human enterocytes cell line HT29. PLD is a key enzyme involved in secretion, endocytosis and receptor signalling. We inhibited PLD1 and 2 by small interference RNA (siRNA) and determined the activity of formyl peptide receptors using Western blotting and cAMP level measurements. We then analyzed the distribution of formyl peptide receptors FPR, FPRL1 and FPRL2 compared to a control. In this study, we demonstrated that the depletion of PLD1 and 2 resulted in a marked reduction of formyl peptide receptor activity due to inhibited extracellular-signal regulated kinases 1/2 (ERK1/2), phosphorylation and cAMP level reduction. In addition, we observed an intracellular accumulation of FPR, FPRL1 and FPRL2 as a result of receptor recycling inhibition using fluorescence microscopy. The constitutive internalization rate was unaffected. Our results support the importance of PLD1 and 2 in formyl peptide receptor function and the role of endocytosis, receptor recycling and reactivation for receptor activity.  相似文献   

16.
Formyl peptide receptor-like 1 (FPRL1) is an important classical chemoattractant receptor that is expressed in phagocytic cells in the peripheral blood and brain. Recently, various novel agonists have been identified from several origins, such as host-derived molecules. Activation of FPRL1 is closely related to inflammatory responses in the host defense mechanism and neurodegenerative disorders. In the present study we identified several novel peptides by screening hexapeptide libraries that inhibit the binding of one of FPRL1's agonists (Trp-Lys-Tyr-Met-Val-D-Met-CONH(2) (WKYMVm)) to its specific receptor, FPRL1, in RBL-2H3 cells. Among the novel peptides, Trp-Arg-Trp-Trp-Trp-Trp-CONH(2) (WRWWWW (WRW(4))) showed the most potent activity in terms of inhibiting WKYMVm binding to FPRL1. We also found that WRW(4) inhibited the activation of FPRL1 by WKYMVm, resulting in the complete inhibition of the intracellular calcium increase, extracellular signal-regulated kinase activation, and chemotactic migration of cells toward WKYMVm. For the receptor specificity of WRW(4) to the FPR family, we observed that WRW(4) specifically inhibit the increase in intracellular calcium by the FPRL1 agonists MMK-1, amyloid beta42 (Abeta42) peptide, and F peptide, but not by the FPR agonist, fMLF. To investigate the effect of WRW(4) on endogenous FPRL1 ligand-induced cellular responses, we examined its effect on Abeta42 peptide in human neutrophils. Abeta42 peptide-induced superoxide generation and chemotactic migration of neutrophils were inhibited by WRW(4), which also completely inhibited the internalization of Abeta42 peptide in human macrophages. WRW(4) is the first specific FPRL1 antagonist and is expected to be useful in the study of FPRL1 signaling and in the development of drugs against FPRL1-related diseases.  相似文献   

17.
Spinorphin is an endogenous heptapeptide (leucylvalylvalyltyrosylprolyltryptophylthreonine), first isolated from bovine spinal cord, whose sequence matches a conserved region of beta-hemoglobin. Also referred to as LVV-hemorphin-4 and a member of the nonclassical opioid hemorphin family, spinorphin inhibits enkephalin-degrading enzymes and is analgesic. Recently, spinorphin was reported to block neutrophil activation induced by the chemotactic N-formylpeptide N-formylmethionylleucylphenylalanine (fMLF), suggesting a potential role as an endogenous negative regulator of inflammation. Here we use both gain- and loss-of-function genetic tests to identify the specific mechanism of spinorphin action on neutrophils. Spinorphin induced calcium flux in normal mouse neutrophils, but was inactive in neutrophils from mice genetically deficient in the fMLF receptor subtype FPR (N-formylpeptide receptor). Consistent with this, spinorphin induced calcium flux in human embryonic kidney 293 cells transfected with mouse FPR, but had no effect on cells expressing the closely related fMLF receptor subtype FPR2. Despite acting as a calcium-mobilizing agonist at FPR, spinorphin was a weak chemotactic agonist and effectively blocked neutrophil chemotaxis induced by fMLF at concentrations selective for FPR. Spinorphin did not affect mouse neutrophil chemotaxis induced by concentrations of fMLF that selectively activate FPR2. Thus, spinorphin blocks fMLF-induced neutrophil chemotaxis by acting as a specific antagonist at the fMLF receptor subtype FPR.  相似文献   

18.
The N-formyl peptide receptor (FPR), a G protein-coupled receptor that binds proinflammatory chemoattractant peptides, serves as a model receptor for leukocyte chemotaxis. Recombinant histidine-tagged FPR (rHis-FPR) was purified in lysophosphatidyl glycerol (LPG) by Ni(2+)-NTA agarose chromatography to >95% purity with high yield. MALDI-TOF mass analysis (>36% sequence coverage) and immunoblotting confirmed the identity as FPR. The rHis-FPR served as an immunogen for the production of 2 mAbs, NFPR1 and NFPR2, that epitope map to the FPR C-terminal tail sequences, 305-GQDFRERLI-313 and 337-NSTLPSAEVE-346, respectively. Both mAbs specifically immunoblotted rHis-FPR and recombinant FPR (rFPR) expressed in Chinese hamster ovary cells. NFPR1 also recognized recombinant FPRL1, specifically expressed in mouse L fibroblasts. In human neutrophil membranes, both Abs labeled a 45-75 kDa species (peak M(r) approximately 60 kDa) localized primarily in the plasma membrane with a minor component in the lactoferrin-enriched intracellular fractions, consistent with FPR size and localization. NFPR1 also recognized a band of M(r) approximately 40 kDa localized, in equal proportions to the plasma membrane and lactoferrin-enriched fractions, consistent with FPRL1 size and localization. Only NFPR2 was capable of immunoprecipitation of rFPR in detergent extracts. The recognition of rFPR by NFPR2 is lost after exposure of cellular rFPR to f-Met-Leu-Phe (fMLF) and regained after alkaline phosphatase treatment of rFPR-bearing membranes. In neutrophils, NFPR2 immunofluorescence was lost upon fMLF stimulation. Immunoblotting approximately 60 kDa species, after phosphatase treatment of fMLF-stimulated neutrophil membranes, was also enhanced. We conclude that the region 337-346 of FPR becomes phosphorylated after fMLF activation of rFPR-expressing Chinese hamster ovary cells and neutrophils.  相似文献   

19.
Bacteria have developed mechanisms to escape the first line of host defense, which is constituted by the recruitment of phagocytes to the sites of bacterial invasion. We previously described the chemotaxis inhibitory protein of Staphylococcus aureus, a protein that blocks the activation of neutrophils via the formyl peptide receptor (FPR) and C5aR. We now describe a new protein from S. aureus that impaired the neutrophil responses to FPR-like1 (FPRL1) agonists. FPRL1 inhibitory protein (FLIPr) inhibited the calcium mobilization in neutrophils stimulated with MMK-1, WKYMVM, prion-protein fragment PrP(106-126), and amyloid beta(1-42). Stimulation with low concentrations of fMLP was partly inhibited. Directed migration was also completely prevented toward MMK-1 and partly toward fMLP. Fluorescence-labeled FLIPr efficiently bound to neutrophils, monocytes, B cells, and NK cells. HEK293 cells transfected with human C5aR, FPR, FPRL1, and FPRL2 clearly showed that FLIPr directly bound to FPRL1 and, at higher concentrations, also to FPR but not to C5aR and FPRL2. FLIPr can reveal unknown inflammatory ligands crucial during S. aureus infections. As a novel described FPRL1 antagonist, it might lead to the development of therapeutic agents in FPRL1-mediated inflammatory components of diseases such as systemic amyloidosis, Alzheimer's, and prion disease.  相似文献   

20.
Mammalian antimicrobial proteins, such as defensins and cathelicidin, have stimulating effects on host leukocytes. Cathelin-related antimicrobial peptide (CRAMP), the orthologue of human cathelicidin/LL-37, is the sole identified murine cathelicidin. CRAMP has been shown to have both antimicrobial and angiogenic activities. However, whether CRAMP, like human cathelicidin/LL-37, also exhibits a direct effect on the migration and function of leukocytes is not known. We have observed that CRAMP, like LL-37, was chemotactic for human monocytes, neutrophils, macrophages, and mouse peripheral blood leukocytes. CRAMP also induced calcium mobilization and the activation of MAPK in monocytes. CRAMP-induced calcium flux in monocytes was desensitized by MMK-1, an agonistic ligand specific for formyl peptide receptor-like-1 (FPRL1), and vice versa, suggesting the use of FPRL1 by CRAMP as a receptor. Furthermore, CRAMP induced the chemotaxis of human embryonic kidney 293 cells transfected with either FPRL1 or mouse formyl peptide receptor-2, the mouse homologue of FPRL1, but not by untransfected parental human embryonic kidney 293 cells, confirming the use of FPRL1/mouse formyl peptide receptor-2 by CRAMP. Injection of CRAMP into mouse air pouches resulted in the recruitment predominantly of neutrophils and monocytes, indicating that CRAMP acts as a chemotactic factor in vivo. Finally, simultaneous administration of OVA with CRAMP to mice promoted both humoral and cellular Ag-specific immune responses. Thus, CRAMP functions as both a chemoattractant for phagocytic leukocytes and an enhancer of adaptive immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号