共查询到20条相似文献,搜索用时 15 毫秒
1.
The 26S proteasome: a dynamic structure 总被引:1,自引:0,他引:1
The proteasomal system consists of a proteolytic core, the 20S proteasome, which associates in ATP-dependent and independent reactions with endogenous regulators providing specific substrate binding sites, chaperone function and regulation of activity to the protease. The best known regulators of the 20S proteasome are the 11S and the 19S complexes. Three subunits of the 20S proteasome and the two subunits of the 11S regulator are induced by -Interferon. However, there are no indications for an influence of -interferon on the subunit composition of the 19S regulator and only a few data exist about the dynamics of this complex. The analysis of 19S regulator subunits from yeast mutants reveals that the ATPases appear to be stringently organized in the 26S complex, while peripheral non-ATPases, such as S5a, might serve as subunits which shuttle substrates to the enzyme. A novel non-ATPase has been cloned, sequenced and identified in a complex besides the 19S regulator, the function of which is presently unknown. The dynamic structure of the 26S proteasome is also characterized by transient associations with components such as the modulator and isopeptidases. Certain viral proteins can also be associated with components of the proteasomal system and alter enzymatic activities. 相似文献
2.
The 20S proteasome is the proteolytic complex that is involved in removing abnormal proteins, and it also has other diverse biological functions. Its structure comprises 28 subunits arranged in four rings of seven subunits, and exists as a hollow cylinder. The two outer rings and two inner rings form an 7β7β77 structure, and each subunit, and β, exists as seven different types, thus giving 14 kinds of subunits. In this study, we report the primary structures of the 14 proteasomal subunit subfamilies in rice (Oryza sativa), representing the first set for all of the subunits from monocots. Amino acid sequence homology within the rice family (-type: 28.9–42.1%; β-type: 17.2–31.9%) were lower than those between rice subunits and corresponding orthologs from Arabidopsis and yeast (-type: 49.2–94.5%; β-type: 34.8–87.7%). Structural features observed in eukaryotic proteasome subunits, i.e., - or β-type signature at the N-termini, Thr active sites in β1, β2 and β5 subunits, and nuclear localization signal-like sequences in some -type subunits, were shown to be conserved in rice. 相似文献
3.
The 26S proteasome is an eukaryotic ATP-dependent, dumbbell-shaped protease complex with a molecular mass of approximately 2000 kDa. It consists of a central 20S proteasome, functioning as a catalytic machine, and two large V-shaped terminal modules, having possible regulatory roles, composed of multiple subunits of 25–110 kDa attached to the central portion in opposite orientations. The primary structures of all the subunits of mammalian and yeast 20S proteasomes have been determined by recombinant DNA techniques, but structural analyses of the regulatory subunits of the 26S proteasome are still in progress. The regulatory subunits are classified into two subgroups, a subgroup of at least 6 ATPases that constitute a unique multi-gene family encoding homologous polypeptides conserved during evolution and a subgroup of approximately 15 non-ATPase subunits, most of which are structurally unrelated to each other. 相似文献
4.
Natalia Gruba Magdalena Wysocka Magdalena Brzezińska Dawid Debowski Krzysztof Rolka Nathaniel I. Martin Adam Lesner 《Analytical biochemistry》2016
This article describes the synthesis, using combinatorial chemistry, of internally quenched substrates of the trypsin-like subunit of human 20S proteasome. Such substrates were optimized in both the nonprime and prime regions of the peptide chain. Two were selected as the most susceptible for proteasomal proteolysis with excellent kinetic parameters: (i) ABZ-Val-Val-Ser-Arg-Ser-Leu-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 934,000 M−1 s−1) and (ii) ABZ-Val-Val-Ser-GNF-Ala-Met-Gly-Tyr(3-NO2)-NH2 (kcat/KM = 1,980,000 M−1 s−1). Both compounds were efficiently hydrolyzed by the 20S proteasome at picomolar concentrations, demonstrating significant selectivity over other proteasome entities. 相似文献
5.
Mycobacterium tuberculosis (Mtb) possesses a proteasome system analogous to the eukaryotic ubiquitin‐proteasome pathway. Mtb requires the proteasome to resist killing by the host immune system. The detailed assembly process and the gating mechanism of Mtb proteasome have remained unknown. Using cryo‐electron microscopy and X‐ray crystallography, we have obtained structures of three Mtb proteasome assembly intermediates, showing conformational changes during assembly, and explaining why the β‐subunit propeptide inhibits rather than promotes assembly. Although the eukaryotic proteasome core particles close their protein substrate entrance gates with different amino terminal peptides of the seven α‐subunits, it has been unknown how a prokaryotic proteasome might close the gate at the symmetry axis with seven identical peptides. We found in the new Mtb proteasome crystal structure that the gate is tightly sealed by the seven identical peptides taking on three distinct conformations. Our work provides the structural bases for assembly and gating mechanisms of the Mtb proteasome. 相似文献
6.
The proteasome and heat shock proteins have been found in the centrosome. The evidence of their copurification reported by several studies suggests that they form stable complex. In addition, Hsp90 is involved in the loading of proteasome-generated antigenic peptides to the class I major histocompatibility complex. In this article, we report a detailed thermodynamic and kinetic characterization of the Hsp90-20S proteasome interaction, using a surface plasmon resonance technique. The modulation exerted by protons in solution has been investigated, and the results have been discussed, taking into account structural motifs characterizing the binding interface between the two macromolecules. 相似文献
7.
8.
Wenjing Chen Ke Mou Bo Xu Xiaomei Ling Jingrong Cui Ping Xu 《Analytical biochemistry》2009,394(1):62-67
A method for studying 20S proteasome inhibitors by capillary electrophoresis (CE) has been developed. Proteasome plays a fundamental role in degrading key regulatory proteins. The 20S proteasome can degrade intrinsically disordered proteins in an ATP-independent manner without additional “helper” molecules. The discovery of new proteasome inhibitors with little or no toxicity is highly desirable in anticancer therapy. In this study, the inhibitory effects of MG132 and MG115 on the 20S proteasome were evaluated by CE for the first time. The optimized CE conditions were as follows: fused-silica capillary of 30 cm effective length and 75 μm internal diameter, pressure injection of 0.5 psi for 5 s, 50 mM Hepes buffer (pH 7.6) with 2% dimethyl sulfoxide, constant voltage of 20 kV, and detection wavelength at 340 nm. Also, the new method was used to study the inhibitory effects of 30 novel peptidyl vinyl ester derivatives of MG132. The 50% inhibition concentrations (IC50 values) of MG132 and MG115 were 40.0 and 84.7 nM, respectively. Two new compounds, XP32 and XP35, showed considerable inhibitory effects on the 20S proteasome. When the concentrations of them were fixed at 172 nM, their inhibition rates were 36.2% and 29.1%, respectively. The results showed that the CE method was powerful, sensitive, and fast and required little sample. It could be employed as one of the reliable drug screening methods for 20S proteasome inhibitors. 相似文献
9.
The proteasome is responsible for most intracellular protein degradation and is essential for cell survival. Previous research has shown that the proteasome can be inhibited by a number of oxidants, including 4-hydroxynonenal (HNE). The present study demonstrates that HNE rapidly inhibits the chymotrypsin-like activity of the 20S proteasome purified from liver. Subunits containing HNE-adducts were identified following 2D gel electrophoresis, Western immunoblotting, and analysis by MALDI-TOF MS. At a time when only the chymotrypsin-like activity was inhibited, the alpha 6/C2 subunit was uniquely modified. These results provide important molecular details regarding the catalytic site-specific inhibition of proteasome by HNE. 相似文献
10.
11.
The 20S proteasome from wheat ( Triticum aestivum L., Yangmai 158) endosperm was purified to apparent homogeneity by three sequential centrifugations and gradient PAGE (GPAGE). The purified 20S proteasome clearly cleaved peptidyl-arylamide bonds in the model synthetic substrates Z-GGL-AMC and Z-GGR-AMC, which are used to reflect chymotrypsin-like and trypsin-like activity, respectively. For both substrates, the optimum pH was 8.0, but the optimum temperatures for chymotrypsin-like and trypsin-like activity were 55 °C and 37 °C, respectively. Both enzyme activities were clearly inhibited by MG115 and PMSF. Polyubiquitinated proteins remained constant from 0 to 7 days after seed imbibition, but caseinolytic activity and the amount of the 20S proteasome associated with the aleurone layer decreased from 1 to 2 days after imbibition (DAI), then increased from 2 to 4 DAI, and reached a maximum at 4 DAI that was retained until 7 DAI. An increase was seen in the mRNA level of the β5 subunit of the 20S proteasome from 2 DAI, and caseinolytic activity and the amount of the 20S proteasome increased from 3 DAI onwards. In addition, the main storage proteins of the wheat endosperm could not be hydrolyzed by the 20S proteasome. The evidence suggests that the main role of the 20S proteasome may not be to degrade massive proteins of the wheat endosperm after seed imbibition. 相似文献
12.
Olaf Sommerburg Oliver Ullrich Nicolle Sitte David von Zglinicki Werner Siems Tilman Grune 《Free radical biology & medicine》1998,24(9):1369-1374
The lens of the human eye is a suitable model for age-related alterations at the molecular level. Age-related cataract formation is closely related to the accumulation of oxidatively altered proteins. In this study the influence of UV-A, UV-B, and UV-C irradiation on the proteolytic susceptibility of -, βL-, and βH-crystallins by the isolated 20S proteasome was investigated. The proteins were irradiated with 280, 300, and 350 nm monochromatic light. Changes of the physical properties of the crystallins were characterized by absorbance measurements at 280 nm, fluorescence spectra, and SDS-PAGE-electrophoresis. The proteolytic susceptibility of crystallins was maximal after irradiation at 280 nm and three- to fivefold lower at 300 nm. Irradiation at 350 nm was not able to initiate proteolysis, probably due to protein-aggregate formation of higher molecular weight, as shown by SDS-PAGE. The damage of crystallins by UV-C light might be a signal for its proteolytic degradation by the 20S proteasome, whereas UV-B and UV-A do not increase the proteolytic susceptibility to the same extent but promote the formation of crosslinked proteins. Therefore, irradiation with UV, which is not followed by an increase in the proteolytic susceptibility, is accompanied by the formation of crosslinked proteins. It was concluded, that also long UV-B and UV-A may be involved in age-related alterations of the human lens and cataract formation. 相似文献
13.
Kim HJ Lee D Lee CH Chung KC Kim J Paik SR 《Archives of biochemistry and biophysics》2006,455(1):40-47
Alpha-synuclein is a pathological component of Parkinson's disease by participating in Lewy body formation. Imbalance in protein turnover could result in the abnormal protein aggregation responsible for eventual neuronal cell death. This in vitro digestion study showed that both m-calpain and 20S proteasome preferentially hydrolyzed the N-terminal half of alpha-synuclein, which made the hydrophobic NAC and following acidic C-terminal region resistant against the proteolyses. Since the acidic C-terminal region contains the PEST segment-a protein degradation signal enriched with amino acids of proline (P), glutamate (E), serine (S), and threonine (T)-, the PEST segment has not been processed or even required for the proteolyses. Alpha-synuclein would be recognized primarily by m-calpain since the common substrate was processed by m-calpain five times more effectively than 20S proteasome with k(cat)/K(m) of 1.64 x 10(4)M(-1)s(-1) and 0.32 x 10(4) M(-1)s(-1), respectively. The N-terminally truncated protease-resistant C-terminal fragment of alpha-syn61-140 was demonstrated to stimulate the 20S proteasome-mediated breakdown of alpha-synuclein and its mutant forms of Ala53Thr and Ala30Pro. The stimulation for Ala53Thr, however, was noticeably less efficient than those for the other proteins, which might support the previous observation of the prolonged intracellular life span of Ala53Thr by 1.5-fold compared to that of wild-type form. We have hypothesized that the N-terminally truncated C-terminal fragment derived from the abundant alpha-synuclein through intracellular proteolyses could be involved in various physiological or pathological effects which might be related to the formation of abnormal protein aggregation and subsequent neuronal degeneration by influencing the intracellular protein turnover or directly participating in the aggregate formation. 相似文献
14.
Ubiquitin-independent proteolytic functions of the proteasome 总被引:10,自引:0,他引:10
The discovery of the 20S proteasome (multicatalytic proteinase complex) was followed by the recognition that this multisubunit macromolecule is the proteolytic core of the 26S proteasome. Most of the research on extralysosomal proteolysis has concentrated on the role of the 26S proteasome in the ubiquitin-dependent proteolytic pathway. However, little attention has been directed toward the possible involvement of the proteasome in ubiquitin-independent proteolysis. In the past few years, many publications have provided evidence that both the 20S proteasome and the 26S proteasome can degrade some proteins in an ubiquitin-independent manner. Furthermore, it is becoming clear that demonstration of ubiquitin-protein conjugates after exposure of cells to proteasome inhibitors does not eliminate the possibility that the same protein can also be degraded by the proteasome without ubiquitination. The possible mechanisms of degradation of an unmodified protein by the 20S proteasome are discussed. These include targeting, protein unfolding, and opening of the gated channel to the catalytic sites. It is reasonable to assume that in the future the number of proteins recognized as substates of the ubiquitin-independent pathway will continue to increase, and that the metabolic significance of this pathway will be clarified. 相似文献
15.
Specific labelling with monoclonal antibodies reveals that in regulator-proteasome complexes the asymmetric 19S regulator (PA700) binds to one or both terminal alpha-disks of the cylinder-shaped 20S core proteasome in such a way that its reclining front part is positioned in the vicinity of proteasome subunit alpha6. The protruding rear part of the regulator appears to be situated distal to the sites occupied by the subunits alpha2 and alpha3, respectively. When viewed from beta1/beta1' to beta4/beta4' along the polar 2-fold axis of the 20S proteasome core, the rear part of each 19S regulator cap appears to protrude clockwise. Thus, a defined alignment of the 19S regulator with respect to the single polar 2-fold rotational axis of the 20S core proteasome is obtained. 相似文献
16.
Carbonylated (oxidized) proteins are known to accumulate in the cerebral white matter (WM) and gray matter (GM) of patients with multiple sclerosis (MS). Although oxidative stress is necessary for carbonyl generation, it is the failure of the degradation systems that ultimately leads to the build-up of carbonylated proteins within tissues. In this study, we measured the activity of the 20S proteasome and other proteolytic systems in the cerebral WM and GM of 13 MS patients and 13 controls. We report that the activities of the three peptidases of the 20S proteasome (i.e. chymotrypsin-like, caspase-like and trypsin-like) in both MS-WM and MS-GM are greatly reduced. Interestingly, neither the amount of proteasome nor the levels of the catalytic subunits (β1, β2, and β5) are diminished in this disease. Proteins containing Lys-48 poly-ubiquitin also accumulate in MS tissues, indicating failure of the 26S proteasome as well. Levels of the regulatory caps 11S α and 19S are also lower in MS than in controls, suggesting that the activity of the more complex proteasomes may be reduced further. Finally, the activities of other proteases that might also remove oxidized proteins (calpain, cathepsin B, mitochondrial LonP) are not lessened in MS. Together, these studies suggest that direct inactivation of proteolytic centers in the 20S particle and/or the presence of specific inhibitors is the underlying cause of proteasomal dysfunction in MS. 相似文献
17.
18.
The mechanism by which yeast 20 S proteasomes are imported into the nucleus is still unresolved. Here, we provide the first evidence that 20 S proteasomes are imported as precursor complexes into the nucleus. By using the srp1-49 mutant which is deficient in nuclear import of cargos with classical nuclear localization sequences (cNLS), we show that proteasome precursor complexes associate with importin/karyopherin alphabeta, the cNLS receptor, and that they accumulate inside the cytoplasm. Reconstitution assays revealed that only precursor complexes are targeted to the nuclear envelope (NE) by karyopherin alphabeta. In support, the green fluorescent protein (GFP)-labelled maturation factor Ump1, marking precursor complexes, mainly localizes to the nucleus and around the NE. Our data suggest that nuclear 20 S proteasomes are finally matured inside the nucleus. 相似文献
19.
Alessandra Scotti Claudio Trapella Valeria Ferretti Eleonora Gallerani Riccardo Gavioli 《Journal of enzyme inhibition and medicinal chemistry》2016,31(3):456-463
The ubiquitin proteasome pathway is crucial in regulating many processes in the cell. Modulation of proteasome activities has emerged as a powerful strategy for potential therapies against much important pathologies. In particular, specific inhibitors may represent a useful tool for the treatment of tumors. Here, we report studies of a new series of peptide-based analogues bearing a naphthoquinone pharmacophoric unit at the C-terminal position. Some derivatives showed inhibition in the µM range of the post-acidic-like and chymotrypsin-like active sites of the proteasome. 相似文献
20.
Eukaryotic 20S proteasomes are complex oligomeric proteins. The maturation process of the 14 different - and -subunits has to occur in a highly coordinate manner. In addition -subunits are synthesized as proproteins and correct processing has to be guaranteed during complex maturation. The structure formation can be subdivided in different phases. The knowledge of the individual phases is summarized in this publication. As a first step the newly synthesized monomers have to adopt the correct tertiary structure, a process that might be supported in the case of the -subunits by the intramolecular chaperone activity postulated for the prosequences. Subsequently the -subunits form ring-like structures thereby providing docking sites for the different -subunits. The result most likely is a double ring structure (13S precursor) representing half-proteasomes, which contain immature proproteins. Two 13S precursors associate to form the proteolytically inactive 16S assembly intermediate which still contains unprocessed -monomers. In addition the chaperone Hsc73 is present within these particles suggesting an essential role during the structure formation process. The processing of monomers with an N-terminal threonine occurs within the 16S particles and is achieved autocatalytically by two subsequent processing events finally leading to the mature, active 20S proteasome. 相似文献