首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 737 毫秒
1.
Inspired by the Paracelsus Challenge of Rose and Creamer (Proteins 19:1–3, 1994), we have designed a protein sequence that is 50% identical to an all-helical protein but is intended to fold into a largely β-sheet structure. Rather than attempt a de novo design, our strategy was to construct a hybrid sequence based on a helical “parent” protein (434 Cro) and a “target” protein with the desired fold (the B1 domain of protein G). The hybrid sequence (Crotein-G) is 50% identical to 434 Cro but is also 62% identical to the B1 domain of protein G. We also created a variant of Crotein-G (ZCrotein-G) that contains a potential His3Cys1 zinc binding site. At low protein concentrations and in the presence of 20% 2,2,2-trifluoroethanol (TFE) (v/v), the circular dichroism spectra of the designed proteins are distinct from that of 434 Cro and similar to that of the B1 domain of protein G. However, the proteins fail to denature in a cooperative manner. Furthermore, aggregation occurs at moderate protein concentrations or in the absence of TFE. Addition of zinc to ZCrotein-G does not promote structure formation. In summary, 434 Cro has been altered to something that may resemble the B1 domain of protein G, but the protein does not adopt a native structure. Proteins 30:136–143, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
We have developed a fully automated protein design strategy that works on the entire sequence of the protein and uses a full atom representation. At each step of the procedure, an all-atom model of the protein is built using the template protein structure and the current designed sequence. The energy of the model is used to drive a Monte Carlo optimization in sequence space: random moves are either accepted or rejected based on the Metropolis criterion. We rely on the physical forces that stabilize native protein structures to choose the optimum sequence. Our energy function includes van der Waals interactions, electrostatics and an environment free energy. Successful protein design should be specific and generate a sequence compatible with the template fold and incompatible with competing folds. We impose specificity by maintaining the amino acid composition constant, based on the random energy model. The specificity of the optimized sequence is tested by fold recognition techniques. Successful sequence designs for the B1 domain of protein G, for the lambda repressor and for sperm whale myoglobin are presented. We show that each additional term of the energy function improves the performance of our design procedure: the van der Waals term ensures correct packing, the electrostatics term increases the specificity for the correct native fold, and the environment solvation term ensures a correct pattern of buried hydrophobic and exposed hydrophilic residues. For the globin family, we show that we can design a protein sequence that is stable in the myoglobin fold, yet incompatible with the very similar hemoglobin fold.  相似文献   

3.
Hemorrhage is a common occurrence in a victim bitten by crotalid and viperid snakes, and hemorrhagic components in these various venoms have been isolated and characterized. Previously, we have shown that a low molecular weight hemorrhagic protein (HR2a, 202 amino acid residues) isolated from the venom of Trimeresurus flavoviridis is a member of a new subfamily of metalloproteinases. We now report the complete amino acid sequence of a high molecular mass hemorrhagic protein isolated from the same venom. This protein, HR1B, is a mosaic protein composed of 416 residues containing four asparagine-linked oligosaccharide chains. The amino-terminal half (residues 1-203) of HR1B contains a metalloproteinase domain, the sequence of which is 62% identical to that of HR2a and 52% identical to that of hemorrhagic toxin d isolated from Crotalus atrox venom. The most interesting finding is that the middle region (residues 204-300) of HR1B shows a striking similarity to disintegrins, Arg-Gly-Asp-containing platelet aggregation inhibitors, recently found in several viper venoms. Interestingly, however, this region of HR1B does not contain the Arg-Gly-Asp sequence which is known to be a putative binding site in the disintegrins for the platelet fibrinogen receptor, the glycoprotein IIb-IIIa complex. We also found that the carboxyl-terminal region (residues 213-336) of the middle part of HR1B shows 30% identity to residues 1543-1656 of von Willebrand factor and that the remaining region at the carboxyl-terminal end is unique and has a cysteine-rich sequence. These results suggest that the middle portion of HR1B, which shows structural similarities to the disintegrins and von Willebrand factor, may be important in synergistically stimulating hemorrhagic activity in the NH2-terminal metalloproteinase domain.  相似文献   

4.
Epstein-Barr virus (EBV) is associated with human cancers, including nasopharyngeal carcinoma, Burkitt's lymphoma, gastric carcinoma and, somewhat controversially, breast carcinoma. EBV infects and efficiently transforms human primary B lymphocytes in vitro. A number of EBV-encoded genes are critical for EBV-mediated transformation of human B lymphocytes. In this study we show that an EBV-infected lymphoblastoid cell line obtained from the spontaneous outgrowth of B cells from a leukemia patient contains a deletion, which involves a region of approximately 16 kbp. This deletion encodes major EBV genes involved in both infection and transformation of human primary B lymphocytes and includes the glycoprotein gp350, the entire open reading frame of EBNA3A, and the amino-terminal region of EBNA3B. A fusion protein created by this deletion, which lies between the BMRF1 early antigen and the EBNA3B latent antigen, is truncated immediately downstream of the junction 21 amino acids into the region of the EBNA3B sequence, which is out of frame with respect to the EBNA3B protein sequence, and indicates that EBNA3B is not expressed. The fusion is from EBV coordinate 80299 within the BMRF1 sequence to coordinate 90998 in the EBNA3B sequence. Additionally, we have shown that there is no detectable induction in viral replication observed when SNU-265 is treated with phorbol esters, and no transformants were detected when supernatant is used to infect primary B lymphocytes after 8 weeks in culture. Therefore, we have identified an EBV genome with a major deletion in critical genes involved in mediating EBV infection and the transformation of human primary B lymphocytes that is incompetent for replication of this naturally occurring EBV isolate.  相似文献   

5.
The spliceosomal proteins U1A and U2B" each use a homologous RRM domain to bind specifically to their respective snRNA targets, U1hpll and U2hpIV, two stem-loops that are similar yet distinct in sequence. Previous studies have shown that binding of U2B" to U2hpIV is facilitated by the ancillary protein U2A', whereas specific binding of U1A to U1hpll requires no cofactor. Here we report that U2A' enables U2B" to distinguish the loop sequence of U2hpIV from that of U1hpll but plays no role in stem sequence discrimination. Although U2A' can also promote heterospecific binding of U1A to U2hpIV, a much higher concentration of the ancillary protein is required due to the approximately 500-fold greater affinity of U2A' for U2B". Additional experiments have identified a single leucine residue in U1A(Leu-44) that is critical for the intrinsic specificity of this protein for the loop sequence of U1 hpll in preference to that of U2hpIV. Our data suggest that most of the difference in RNA-binding specificity between U1A and U2B" can be accounted for by this leucine residue and by the contribution of the ancillary protein U2A' to the specificity of U2B".  相似文献   

6.
Bordetella pertussis produces a porin protein which is a prominent outer membrane component found in both virulent and avirulent strains. N-terminal amino acid analysis of purified B. pertussis porin was performed and this amino acid sequence was used to design an oligonucleotide that was then utilized to screen a lambda gt11 library containing randomly sheared fragments of DNA from B. pertussis strain 347. One clone, lambda BpPor, was identified and subcloned into pUC18. A portion of the DNA insert in this subclone, pBpPor1, was sequenced and shown to contain the N-terminal region of the structural porin gene. This truncated gene sequence was used to design an additional oligonucleotide that was used to identify a clone, pBpPor2, which overlapped with pBpPor1 and contained a termination codon. The structural gene deduced from this sequence would encode a 365-amino-acid polypeptide with a predicted mass of 39,103 daltons. The predicted product also contains a signal sequence of 20 residues that is similar to that found in other porin genes. The predicted B. pertussis porin protein sequence contains regions that are homologous to regions found in porins expressed by Neisseria species and Escherichia coli, including the presence of phenylalanine as the carboxy-terminal amino acid. DNA hybridization studies indicated that both virulent and avirulent strains of B. pertussis contain only one copy of this gene and that Bordetella bronchiseptica and Bordetella parapertussis contain a similar gene.  相似文献   

7.
Computational protein design has found great success in engineering proteins for thermodynamic stability, binding specificity, or enzymatic activity in a ‘single state’ design (SSD) paradigm. Multi-specificity design (MSD), on the other hand, involves considering the stability of multiple protein states simultaneously. We have developed a novel MSD algorithm, which we refer to as REstrained CONvergence in multi-specificity design (RECON). The algorithm allows each state to adopt its own sequence throughout the design process rather than enforcing a single sequence on all states. Convergence to a single sequence is encouraged through an incrementally increasing convergence restraint for corresponding positions. Compared to MSD algorithms that enforce (constrain) an identical sequence on all states the energy landscape is simplified, which accelerates the search drastically. As a result, RECON can readily be used in simulations with a flexible protein backbone. We have benchmarked RECON on two design tasks. First, we designed antibodies derived from a common germline gene against their diverse targets to assess recovery of the germline, polyspecific sequence. Second, we design “promiscuous”, polyspecific proteins against all binding partners and measure recovery of the native sequence. We show that RECON is able to efficiently recover native-like, biologically relevant sequences in this diverse set of protein complexes.  相似文献   

8.
S Chiocca  A Baker    M Cotten 《Journal of virology》1997,71(4):3168-3177
We have developed a simple screening method to identify genes that mimic bcl-2 or adenovirus E1B 19K in enhancing cell survival after transfection and have used this method to identify such a gene in the avian adenovirus CELO. The gene encodes a novel 30-kDa nuclear protein, which we have named GAM-1, that functions comparably to Bcl-2 and adenovirus E1B 19K in blocking apoptosis. However, GAM-1 has no sequence homology to Bcl-2, E1B 19K, or any other known antiapoptotic proteins and thus defines a novel antiapoptotic function.  相似文献   

9.
We previously identified a protein (p67) in the yeast, Saccharomyces cerevisiae, that specifically recognizes nuclear localization sequences. We report here the partial purification of p67, and the isolation, sequencing, and disruption of the gene (NSR1) encoding this protein. p67 was purified using an affinity column conjugated with a peptide containing the histone H2B nuclear localization sequence from yeast. Using antibodies against p67 we have cloned the gene for this protein. The protein encoded by the NSR1 gene recognizes the wild-type H2B nuclear localization sequence, but does not recognize a mutant H2B sequence that is incompetent for nuclear localization in vivo. Interestingly, the NSR1 protein has two RNA recognition motifs, as well as an acidic NH2 terminus containing a series of serine clusters, and a basic COOH terminus containing arg-gly repeats. We have confirmed the nuclear localization of p67 by immunofluorescence and found that a restricted portion of the nucleus is highlighted. We have also shown that NSR1 (p67) is required for normal cell growth.  相似文献   

10.
Lu W  Wu XD  Shi MD  Yang RF  He YY  Bian C  Shi TL  Yang S  Zhu XL  Jiang WH  Li YX  Yan LC  Ji YY  Lin Y  Lin GM  Tian L  Wang J  Wang HX  Xie YH  Pei G  Wu JR  Sun B 《FEBS letters》2005,579(10):2130-2136
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is an important viral structural protein. Based on bioinformatics analysis, 10 antigenic peptides derived from the S protein sequence were selected and synthesized. The antigenicity and immunoreactivity of all the peptides were tested in vivo and in vitro. Four peptides (P6, P8, P9 and P10) which contain B cell epitopes of the S protein were identified, and P8 peptide was confirmed in vivo to have a potential in serological diagnosis. By using a syncytia formation model, we tested the neutralization ability of all 10 peptides and their corresponding antibodies. It is interesting to find that P8 and P9 peptides inhibited syncytia formation, suggesting that the P8 and P9 spanning regions may provide a good target for anti-SARS-CoV drug design. Our data suggest that we have identified peptides derived from the S protein of SARS-CoV, which are useful for SARS treatment and diagnosis.  相似文献   

11.
As part of the pksX gene cluster of Bacillus subtilis strain 168, pksS has been preliminarily annotated as a cytochrome P450 homolog that hydroxylates the polyketide product of this cluster, which was recently shown to be involved in the biosynthesis of bacillaene and dihydrobacillaene. Here we report that there is a frame-shift error in the reported sequence for pksS, and that we have successfully cloned, overexpressed, and purified the protein encoded by the corrected sequence. By utilizing electronic absorption spectrophotometry, we have observed that the ferrous CO complex of PksS absorbs maximally near 450 nm, which confirms the annotation that this protein is a cytochrome P450. We have also established a cell-free system derived from crude cytosolic B. subtilis protein extracts which provides reductase activity essential to sustaining the putative catalytic cycle of PksS. Using LC-MS analysis we have collected data which suggests that the substrate for PksS is dihydrobacillaene.  相似文献   

12.
13.
14.
J Pines  T Hunter 《The EMBO journal》1994,13(16):3772-3781
We have shown previously that human cyclins A and B1 are localized differentially in the cell during interphase; cyclin A is nuclear and cyclin B1 is a cytoplasmic protein. To understand the basis of this difference we created deletion mutants and various chimeras between the two types of cyclin and expressed them in tissue culture cells by transient transfection. We find that the N-terminus of cyclin B1 contains a 42 amino acid region that is sufficient to retain the normally nuclear cyclin A in the cytoplasm. Conversely, deleting the cytoplasmic retention signal region from cyclin B1 causes the protein to become nuclear. Although the cytoplasmic retention signal region is outside the cyclin box, its sequence is well conserved in human cyclin B2, and is both necessary and sufficient to keep cyclin B2 in the cytoplasm. Thus we propose that the subcellular distribution of the B-type cyclins is determined primarily by a small region of the N-terminus which targets the cyclin--CDK complexes to particular structures in the cytoplasm.  相似文献   

15.
S Lin  W Chen    S S Broyles 《Journal of virology》1992,66(5):2717-2723
The nucleotide sequence of the vaccinia virus open reading frame B1 predicts a polypeptide with significant sequence similarity to the catalytic domain of known protein kinases. To determine whether the B1R polypeptide is a protein kinase, we have expressed it in bacteria as a fusion with glutathione S-transferase. Affinity-purified preparations of the fusion protein were found to undergo autophosphorylation and also phosphorylated the exogenous substrates casein and histone H1. Mutation of lysine 41 to glutamine within the conserved kinase catalytic domain II abrogated protein kinase activity on all three protein substrates, supporting the notion that the protein kinase activity is inherent to the B1R polypeptide. Casein and histone H1 were phosphorylated on serine and threonine residues. The B1R fusion protein was phosphorylated on a threonine residue(s) by an apparently intramolecular mechanism. The autophosphorylation reaction resulted in phosphorylation of the glutathione S-transferase portion of the fusion and not the protein kinase domain. The protein kinase activity of B1R was specific for ATP as the phosphate donor; GTP was not utilized to a detectable extent. Immunoblotting experiments with anti-B1R antiserum showed that the protein kinase is located in the virion particle. Chromatography of virion extracts resulted in separation of the B1R protein kinase from the bulk of the total protein kinase activity, indicating that multiple protein kinases are present in the virion particle and that B1R is distinct from the previously described vaccinia virus-associated protein kinase.  相似文献   

16.
17.
Hepatitis C virus (HCV) nonstructural protein 4B (NS4B) is an integral membrane protein, which plays an important role in the organization and function of the HCV replication complex (RC). Although much is understood about its amphipathic N-terminal and C-terminal domains, we know very little about the role of the transmembrane domains (TMDs) in NS4B function. We hypothesized that in addition to anchoring NS4B into host membranes, the TMDs are engaged in intra- and intermolecular interactions required for NS4B structure/function. To test this hypothesis, we have engineered a chimeric JFH1 genome containing the Con1 NS4B TMD region. The resulting virus titers were greatly reduced from those of JFH1, and further analysis indicated a defect in genome replication. We have mapped this incompatibility to NS4B TMD1 and TMD2 sequences, and we have defined putative TMD dimerization motifs (GXXXG in TMD2 and TMD3; the S/T cluster in TMD1) as key structural/functional determinants. Mutations in each of the putative motifs led to significant decreases in JFH1 replication. Like most of the NS4B chimeras, mutant proteins had no negative impact on NS4B membrane association. However, some mutations led to disruption of NS4B foci, implying that the TMDs play a role in HCV RC formation. Further examination indicated that the loss of NS4B foci correlates with the destabilization of NS4B protein. Finally, we have identified an adaptive mutation in the NS4B TMD2 sequence that has compensatory effects on JFH1 chimera replication. Taken together, these data underscore the functional importance of NS4B TMDs in the HCV life cycle.  相似文献   

18.
CDC25B is a dual-specificity phosphatase that activates CDK1/cyclin B. The nuclear exclusion of CDC25B is controlled by the binding of 14-3-3 to the nuclear export signal (NES) of CDC25B, which was reported to be amino acids H28 to L40 in the N-terminal region of CDC25B. In studying the subcellular localization of CDC25B, we found a functional NES at V52 to L65, the sequence of which is VTTLTQTMHDLAGL, where bold letters are leucine or hydrophobic amino acids frequently seen in an NES. The deletion of this NES sequence caused the mutant protein to locate exclusively in nuclei, while NES-fused GFP was detected in the cytoplasm. Moreover, the introduction of point mutations at some of the critical amino acids impaired cytoplasmic localization. Treatment with leptomycin B, a potent inhibitor of CRM1/exportin1, disrupted the cytoplasmic localization of both Flag-tagged CDC25B and NES-fused GFP. From these results, we concluded that the sequence we found is a bona fide NES of CDC25B.  相似文献   

19.
Replication protein A is a single stranded DNA-binding protein that has multiple roles in eukaryotic DNA metabolism. Typically, eukaryotic replication protein A is a stable heterotrimeric complex with three subunits of 70 kDa (RPA1), 32 kDa (RPA2) and 14 kDa (RPA3). We have previously cloned and characterised an RPA1 subunit from Cryptosporidium parvum, which shares high homology with other eukaryotic replication protein A 1 proteins, but lacks an N-terminal domain. Here, we have identified a second replication protein A 1 (termed CpRPA1B) from the ongoing C. parvum genome-sequencing project. The deduced protein sequence to CpRPA1B shows only 16% sequence identity with CpRPA1, indicating that two different types of RPA1 subunits are present in C. parvum. The CpRPA1B gene predicts a 75.5 kDa peptide similar in size to those of higher eukaryotes, but in contrast to the 53.9 kDa N-terminal short-type CpRPA1 protein. However, western blot analysis suggested that, although the entire CpRPA1B open reading frame might be translated, the protein may be cleaved by posttranslational modification, similar to that observed with the replication protein A 1 gene product in Plasmodium falciparum. Indirect immunofluorescence studies indicated a diffused pattern for both proteins in sporozoites. However, differential localisation was observed with CpRPA1 to the anterior region that contains the apical-complex and CpRPA1B to the central region in/or around the nuclei of the sporozoites. Both CpRPA1 and CpRPA1B full-length open reading frames were expressed for functionality assays. The CpRPA1 and CpRPA1B recombinant proteins were expressed in bacterial Escherichia coli as maltose-binding protein fusion proteins and the entire fusion proteins were assayed for their DNA-binding properties. Studies indicate that CpRPA1B binds ssDNA of >or=5 nucleotides (dT), while CpRPA1 only binds ssDNA >or=20 nucleotides (dT). This study indicates that C. parvum possesses two different types of replication protein A large subunits (replication protein A 1), both differing significantly from their hosts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号