首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The export of lipoprotein has been found to be affected in both secA and secY mutants of Escherichia coli which are defective in the secretion of a number of outer membrane and periplasmic proteins. The kinetics of accumulation of prolipoprotein upon a temperature shift to 42 degrees C is indistinguishable from that of pre-OmpA protein accumulation in the secA mutant. In both secA and secY mutants, the accumulated prolipoprotein is unmodified with glyceride and localized in the cytoplasmic membrane. We conclude from these results that the early steps in protein export are common to prolipoprotein and non-lipoprotein precursors. The pathways for the export of these two groups of precursor proteins diverge with regard to the modification and processing reactions which are late events in the export process.  相似文献   

2.
N Kosic  M Sugai  C K Fan    H C Wu 《Journal of bacteriology》1993,175(19):6113-6117
The kinetics of processing of glyceride-modified prolipoprotein that accumulated in globomycin-treated Escherichia coli has been found to be affected by sec mutations, i.e., secA, secE, secY, secD, and secF, and by metabolic poisons which affect proton motive force (PMF). The effect of sec mutations on processing of glyceride-modified prolipoprotein in vivo was not due to a secondary effect on PMF. Neither a secF mutation nor metabolic poisons affected the processing of previously accumulated proOmpA protein in vivo, suggesting that the requirements for functional sec gene products and PMF are specific to the processing of lipoprotein precursors by signal peptidase II.  相似文献   

3.
T Watanabe  S Hayashi    H C Wu 《Journal of bacteriology》1988,170(9):4001-4007
Export of the outer membrane lipoprotein in Escherichia coli was examined in conditionally lethal mutants that were defective in protein export in general, including secA, secB, secC, and secD. Lipoprotein export was affected in a secA(Ts) mutant of E. coli at the nonpermissive temperature; it was also affected in a secA(Am) mutant of E. coli at the permissive temperature, but not at the nonpermissive temperature. The export of lipoprotein occurred normally in E. coli carrying a null secB::Tn5 mutation; on the other hand, the export of an OmpF::Lpp hybrid protein, consisting of the signal sequence plus 11 amino acid residues of mature OmpF and mature lipoprotein, was affected by the secB mutation. The synthesis of lipoprotein was reduced in the secC mutant at the nonpermissive temperature, as was the case for synthesis of the maltose-binding protein, while the synthesis of OmpA was not affected. Lipoprotein export was found to be slightly affected in secD(Cs) mutants at the nonpermissive temperature. These results taken together indicate that the export of lipoprotein shares the common requirements for functional SecA and SecD proteins with other exported proteins, but does not require a functional SecB protein. SecC protein (ribosomal protein S15) is required for the optimal synthesis of lipoprotein.  相似文献   

4.
Pullulanase is an extracellular, cell surface-anchored lipoprotein produced by Gram-negative bacteria belonging to the genus Klebsiella. Its correct localization in recombinant Escherichia coli requires the products of 14 genes that are linked to the enzyme structural gene in the Klebsiella chromosome. In addition, we show here that six sec genes (secA, secB, secD, secE, secF and secY) are all required for processing of the prepullulanase signal peptide to occur. This implies that pullulanase crosses the cytoplasmic membrane via the general export pathway of which the sec gene products are essential components. Removal or drastic alteration of the prepullulanase signal peptide cause the enzyme to remain cytoplasmic. We propose that pullulanase secretion occurs in two steps, the first of which is common to all signal peptide-bearing precursors of exported and secreted proteins, whereas the second is specifically involved in translocating pullulanase to the cell surface.  相似文献   

5.
secD, a new gene involved in protein export in Escherichia coli.   总被引:47,自引:26,他引:21       下载免费PDF全文
New mutants of Escherichia coli altered in protein export were identified in phoA-lacZ and lamB-lacZ gene fusion strains by searching for mutants that showed an altered lactose phenotype. Several mutations mapped in a new gene, secD. These mutants were, in general, cold sensitive for growth, and the mutations led to an accumulation of precursor of exported proteins. The secD gene is closely linked to tsx on the E. coli chromosome, but separable from another gene proposed to be involved in export, ssaD, which maps nearby. A plasmid carrying secD+ was identified and used to show that the mutations are recessive. The secD gene may code for a component of the cellular export machinery.  相似文献   

6.
C Gardel  K Johnson  A Jacq    J Beckwith 《The EMBO journal》1990,9(10):3209-3216
Cold-sensitive mutations in the secD locus of Escherichia coli result in severe defects in protein export at the non-permissive temperature of 23 degrees C. DNA sequence of a cloned fragment that includes the secD locus reveals open reading frames for seven polypeptide chains. Both deletions and TnphoA insertions in this clone have been used in maxicell and complementation studies to define the secD locus and its products. The secD mutations fall into two complementation groups, defining genes we have named secD and secF. These two genes comprise an operon, the first case of two genes involved in the export process being co-transcribed. The DNA sequence of the two genes along with alkaline phosphatase fusion analysis indicates that they code for integral proteins of the cytoplasmic membrane. We suggest that these two proteins may form a complex in the membrane which acts at late steps in the export process.  相似文献   

7.
The mRNA level in sec genes of Streptomyces lividans was studied as a function of growth temperature, glucose effect, and growth using two different carbon sources. Glucose and xylan, a complex hemicellulose, were used as carbon sources for the growth of S. lividans. For both substrates, the mRNA levels of secA, secD, secE, secF, and secY genes were almost constant during the early and log phases, but showed a marked decrease at the beginning of the stationary phase followed by a full recovery of mRNA level in the late stationary phase. This indicates that the sec genes are actively transcribed during the differentiation process. The mRNA level in xylan was generally from 1.5- to 2-fold that in glucose. At growth temperatures of 28 degrees C, 34 degrees C, or 40 degrees C, there was no significant difference in the sec gene mRNA levels.  相似文献   

8.
P. D. Riggs  A. I. Derman    J. Beckwith 《Genetics》1988,118(4):571-579
It was shown previously that the secA gene of Escherichia coli is derepressed in cells that have a defect in protein export. Here it is demonstrated that the beta-galactosidase produced by a secA-lacZ gene fusion strain is regulated in the same way. Studies on the fusion strain reveal that the promoter or a site involved in regulation of the secA gene is located considerably upstream from the structural gene. The properties of the fusion strain provide a new selection for mutants that are defective in protein export. Selection for increased lac expression of a secA-lacZ fusion strain yields mutations in three of the known sec genes, secA, secD and prlA/secY. In addition, mutations in several genes not previously known to affect secA expression were obtained. A mutation in one of these genes causes a pleiotropic defect in protein export and a cold-sensitive growth defect; this gene, which maps at approximately 90 min on the bacterial chromosome, has been named secE.  相似文献   

9.
The secD operon of Escherichia coli is required for the efficient export of proteins. We have characterized this operon, and found that, in addition to secD and secF, it contains the upstream gene yajC, but not the genes queA or tgt, in contrast to previous reports. An analysis of yajC mutations constructed in vitro and recombined onto the chromosome indicates that yajC is neither essential nor a sec gene. The secD operon is not induced in response to either secretion defects or temperature changes. TnphoA fusions have been used to analyze the topology of SecD in the inner membrane; the protein contains six transmembrane stretches and a large periplasmic domain. TnphoA fusions to SecD and SecF have also been recombined onto the chromosome and used to determine the level of these proteins within the cell. Our results indicate that there are fewer than 30 SecD and SecF molecules per cell.  相似文献   

10.
The relationship between the modification and processing of prolipoprotein and the formation of murein-bound lipoprotein has been investigated using Escherichia coli mutants altered in the signal sequence of prolipoprotein and an E. coli strain producing OmpF-Lpp hybrid protein. The glyceride-modified prolipoprotein in mutant lppT20 and in globomycin-treated wild-type strain were covalently attached to the peptidoglycan. Likewise, the unmodified prolipoproteins in mutants lppL20, lppV20, and lppG21 were attached to the peptidoglycan. The OmpF-Lpp hybrid protein that is processed but not modified with lipid due to the absence of the cysteine-containing modification site in the hybrid protein was also covalently linked to the peptidoglycan. These results indicate that neither lipid modification nor the processing of prolipoprotein is essential for the formation of murein-bound lipoprotein in E. coli. In contrast, introduction of a charged amino acid residue such as Asp or Arg at the 14th position of prolipoprotein affected not only the lipid modification and processing of the mutant prolipoprotein but also the formation of murein-bound lipoprotein. Replacement of the Gly14 with Glu or Lys partially affected the lipid modification and processing of prolipoprotein; the peptidoglycan of the lppE14 and lppK14 mutants contained a reduced amount of mature lipoprotein but no mutant prolipoprotein. In addition, lpp mutants A20I23I24 and A20I23K24 were found to be defective in both lipid modification/processing of prolipoprotein and the formation of murein-bound lipoprotein. The defective formation of murein-bound lipoprotein in the latter mutants may be related to an alteration in the secondary structure at the modification/processing site of the mutant prolipoproteins.  相似文献   

11.
The effect of the overproduction of SecF encoded by the tac-secF gene on a plasmid on the synthesis of other Sec proteins was studied in Escherichia coli. SecF overproduction resulted in the simultaneous overproduction of SecD encoded by the tac-secD gene on a plasmid. Deletion of the orf6 gene, located downstream of the secF gene, had no effect on SecD overproduction. A pulse-chase experiment revealed that the overproduction was due to stabilization of SecD with SecF. SecF overproduction also resulted in the overproduction of SecY encoded by the tac-secY gene on a plasmid as well. SecF overproduction also enhanced the level of SecY expressed by the chromosomal secY gene. This SecF effect was not due to its effect on SecD or SecE, since SecF overproduction did not affect the levels of SecD and SecE expressed by the chromosomal secD and secE genes, respectively. SecE-dependent overproduction of SecY has already been demonstrated. It is suggested that SecF interacts with both SecD and SecY. SecE-SecY interaction has been demonstrated. It is likely, therefore, that all Sec proteins in the cytoplasmic membrane interact with each other.  相似文献   

12.
The pseudopilin PulG is an essential component of the pullulanase-specific type II secretion system from Klebsiella oxytoca. PulG is the major subunit of a short, thin-filament pseudopilus, which presumably elongates and retracts in the periplasm, acting as a dynamic piston to promote pullulanase secretion. It has a signal sequence-like N-terminal segment that, according to studies with green and red fluorescent protein chimeras, anchors unassembled PulG in the inner membrane. We analyzed the early steps of PulG inner membrane targeting and insertion in Escherichia coli derivatives defective in different protein targeting and export factors. The beta-galactosidase activity in strains producing a PulG-LacZ hybrid protein increased substantially when the dsbA, dsbB, or all sec genes tested except secB were compromised by mutations. To facilitate analysis of native PulG membrane insertion, a leader peptidase cleavage site was engineered downstream from the N-terminal transmembrane segment (PrePulG*). Unprocessed PrePulG* was detected in strains carrying mutations in secA, secY, secE, and secD genes, including some novel alleles of secY and secD. Furthermore, depletion of the Ffh component of the signal recognition particle (SRP) completely abolished PrePulG* processing, without affecting the Sec-dependent export of periplasmic MalE and RbsB proteins. Thus, PulG is cotranslationally targeted to the inner membrane Sec translocase by SRP.  相似文献   

13.
SecD and SecF facilitate protein export in Escherichia coli.   总被引:18,自引:10,他引:8       下载免费PDF全文
We show here that the rate of protein translocation in the bacterium Escherichia coli depends on the levels of the SecD and SecF proteins in the cell. Overexpression of SecD and SecF stimulates translocation in wild type cells and improves export of proteins with mutant signal sequences. Depletion of SecD and SecF from the cell greatly reduces but does not abolish protein translocation. A secDF::kan null mutant deleted for the genes encoding both proteins is cold-sensitive for growth and protein export, has a severe export defect at 37 degrees C and is barely viable. The phenotypes of a secD null mutant and a secF null mutant are identical to the secDF::kan double null mutant. These results partially resolve the conflict between genetic studies and results from in vitro translocation systems which do not require SecD and SecF for activity, affirm the importance of these proteins to the export process, and suggest that SecD and SecF function together to stimulate protein export in a role fundamentally different from other Sec proteins. Our results provide additional support for the notion that an early step in protein export is cold-sensitive.  相似文献   

14.
SecA protein synthesis levels were elevated 10- to 20-fold when protein secretion was blocked in secA, secD, and secY mutants or in a malE-lacZ fusion-containing strain but not in a secB null mutant. An active secB gene product was not required to derepress secA, since SecA levels were elevated during protein export blocks in secB secY and secB malE-lacZ double mutants.  相似文献   

15.
As an approach for studying how SecY, an integral membrane protein translocation factor of Escherichia coli, interacts with other protein molecules, we isolated a dominant negative mutation, secY-d1, of the gene carried on a plasmid. The mutant plasmid severely inhibited export of maltose-binding protein and less severely of OmpA, when introduced into sec+ cells. It inhibited growth of secY and secE mutant cells, but not of secA and secD mutant cells or wild-type cells. The mutation deletes three amino acids that should be located at the interface of cytoplasmic domain 5 and transmembrane segment 9. We also found that some SecY-PhoA fusion proteins that lacked carboxy-terminal portions of SecY but retain a region from periplasmic domain 3 to transmembrane segment 7 were inhibitory to protein export. We suggest that these SecY variants are severely defective in catalytic function of SecY, which requires cytoplasmic domain 5 and its carboxy-terminal side, but retain the ability to associate with other molecules of the protein export machinery, which requires the central portion of SecY; they probably exert the 'dominant negative' effects by competing with normal SecY for the formation of active Sec complex. These observations should provide a basis for further genetic analysis of the Sec protein complex in the membrane.  相似文献   

16.
The tgt/sec operon in E. coli consists of five genes: queA, tgt, ORF12, secD, and secF. QueA and Tgt participate in the biosynthesis of the hypermodified t-RNA nucleoside Queuosine, whereas SecD and SecF are involved in protein secretion. Examination of the promoter region of the operon showed structural similarity to promoter regions of the rrn-operons. An upstream activation sequence (UAS) containing a potential binding site for the factor of inversion stimulation (FIS) was found. Gel retardation assays and DNaseI footprinting indicated, that FIS binds specifically and with high affinity to a site centred at position -58. Binding of FIS caused bending of the DNA, as deduced from circular permutation analysis. Various 5' deletion mutants of the promoter region were constructed and fused to a lacZ reporter gene to determine the influence of the UAS element on the promoter strength. An approximately two-fold activation of the promoter by the UAS element was observed.  相似文献   

17.
Biogenesis of membrane lipoproteins in Escherichia coli.   总被引:5,自引:0,他引:5       下载免费PDF全文
H C Wu  J S Lai  S Hayashi    C Z Giam 《Biophysical journal》1982,37(1):307-315
Globomycin-resistant mutants of Escherichia coli have been isolated and partially characterized. Approximately 2-5% of these mutants synthesize structurally altered Braun's lipoprotein. The majority of these mutants contain unprocessed and unmodified prolipoprotein. One mutant is found to contain modified, processed, but structurally altered lipoprotein. Mutants containing lipid-deficient prolipoprotein or lipoprotein also show increased resistance to globomycin. These results suggest that the inhibition of processing of modified prolipoprotein by globomycin may require fully modified prolipoprotein as the biochemical target of this novel antibiotic. Our failure to isolate mutant containing cleaved but unmodified lipoprotein among globomycin-resistant mutants is consistent with the possibility that modification of prolipoprotein precedes the removal of signal sequence by a unique signal peptidase. Recent evidence indicates that the minor lipoproteins in the cell envelope of E. coli are also synthesized as lipid-containing prolipoproteins and the processing of these prolipoproteins is inhibited by globomycin. These results suggest the existence of modifying enzymes in E. coli which would transfer glyceryl and fatty acyl moieties to cysteine residues located in the proper sequences of the precursor proteins. This speculation is confirmed by our demonstration that Bacillus licheniformis penicillinase synthesized in E. coli as well as in B. licheniformis is a lipoprotein containing glyceride-cysteine at its NH2-terminus.  相似文献   

18.
19.
A mutant of Escherichia coli that accumulated prolipoprotein, a secretory precursor of the outer membrane lipoprotein, was isolated. The prolipoprotein accumulated in this mutant was modified by glyceride, but the in vitro cleavage of the signal peptide of the accumulated prolipoprotein was found to be temperature sensitive. The mutation appears to be located outside the gene for the lipoprotein, thus suggesting that the gene for the signal peptidase for the prolipoprotein was mutated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号