首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chronic volume overload (VO) on the left ventricle (LV) augments redox stress and activates matrix metalloproteinase (MMP) which causes the endocardial endothelial-myocyte (EM) disconnection leading to myocardial contractile dysfunction. VO-induced MMP-9 activation impairs cardiac functions, in part by endothelial endocardial apoptosis, but the role of MMP-9 on EM functions remains obscure. We conjecture that chronic VO activates MMP-9 and causes EM uncoupling. Arteriovenous fistula (AVF) was created in genetically identical wild type (WT) mice (FVB/NJ) and MMP-9 knockout mice (MMP-9KO, FVB.Cg-MMP9(tm1Tvu)/J). Sham-operated mice were used as controls. Before experimentation the phenotype analysis of MMP-9KO mice was carried out. In-gel-gelatin zymography for MMP-9 activation was performed on LV homogenates. The EM functions were determined on LV rings using tissue myobath. We report a decrease in MMP-9 activity in left ventricular myocardial extracts in MMP-9 deficient mice after AVF. The responses to drugs affecting cardiac functions (acetylcholine (Ach), nitroprusside and bradykinin) were attenuated in AVF mice suggesting the impairment of EM coupling. Interestingly, the EM functions were restored in the MMP-9 deficient mice after AVF. We suggest a direct cause-and-effect relationship between MMP-9 activation and EM uncoupling in LV myocardium after chronic VO and the possible involvement of MMP-9 in myocardial contractile performance.  相似文献   

2.
We examined the hypothesis that oxidants generated nitroso derivatives, activated latent matrix metalloproteinase (MMP), and induced proteinase-activated receptor 1 (PAR-1), leading to disconnection between the endothelium and myocytes. Administration of cardiospecific tissue inhibitor of metalloproteinase-4 (TIMP-4/CIMP) ameliorated the oxidative-proteolytic stress and endothelial-myocyte uncoupling in chronic heart failure (CHF) in mice. Aortic-vena cava fistula (AVF) was created in 30 male mice (C57BL/6J) and studied at 0-, 2-, and 8-wk AVF. To reverse cardiac remodeling, as measured by MMP activation, purified CIMP was administered by an osmotic minipump subcutaneously after 8-wk AVF, and groups of mice (n = 6 mice/group) were examined after 12 and 16 wk. Levels of PAR-1 in the left ventricle (LV) were increased at 2 and 8 wk (compared with 0 wk of no CIMP treatment) but were normal at 12 and 16 wk after CIMP treatment, as measured by Western blot analysis. Similar results were obtained for LV levels of nitrotyrosine, MMP-2 and -9 activities, and TIMP-1 and -3. However, the levels of TIMP-4, endothelial cell density, and responses of cardiac rings to acetylcholine and bradykinin were attenuated at 2 and 8 wk and normalized after CIMP administration in AVF mice. CIMP induced nitric oxide in microvascular endocardial endothelial cells. The results suggest that nitro generation activated MMP and PAR-1, leading to endothelial-myocyte uncoupling. CIMP treatment normalized PAR-1 expression and ameliorated endothelial-myocyte uncoupling by decreasing oxidant-mediated proteolytic stress in CHF.  相似文献   

3.
Although matrix metalloproteinase-9 (MMP‐9) is involved in cardiomyocytes contractility dysfunction, tissue inhibitor of metalloproteinase-4 (TIMP‐4) mitigates the effect of MMP‐9, and proteinase-activated receptor-1 (PAR‐1, a G-protein couple receptor, GPCR) is involved in the signaling cascade of MMP‐9-mediated cardiac dysfunction, the mechanism(s) are unclear. To test the hypothesis that induction of dicer and differential expression of microRNAs (miRNAs) contribute, in part, to the down regulation of sarcoplasmic reticulum calcium ATPase isoform 2a (serca-2a) in MMP-9 and PAR-1-mediated myocytes dysfunction, ventricular cardiomyocytes were isolated from C57BL/6J mice and treated with 3 ng/ml of MMP-9, 12 ng/ml of TIMP-4, and 10 and 100 μM of PAR-1 antagonist with MMP-9. Specific role of MMP-9 was determined by using MMP-9 knock out (MMP-9KO) and their corresponding control (FVB) mice. Ion Optics video-edge detection system and Fura 2-AM loading were used for determining the contractility and calcium release from cardiomyocytes. Quantitative and semi-quantitative PCR were used to determine the expression of dicer, TIMP-4 and serca-2a. miRNA microarrays were used for assessing the expression of different miRNAs between MMP-9KO and FVB cardiomyocytes. The results suggest that MMP‐9 treatment attenuates the voltage‐induced contraction of primary cardiomyocytes while TIMP‐4, an inhibitor of MMP‐9, reverses the inhibition. MMP‐9 treatment is also associated with reduced Ca2+ transients. This effect is blocked by a PAR‐1 antagonist, suggesting that PAR‐1 mediates this effect. The effect is not as great at high concentrations (100 μM) perhaps due to mild toxicity. The PAR‐1 antagonist effect did not affect calcium transients unlike TIMP‐4. Interestingly, we show that MMP‐KO myocytes contract more rapidly and release more Ca2+ than FVB. The relevant RNA species serca-2a is induced and dicer is inhibited. There is selective inhibition of miR-376b and over-expression of miR-1, miR-26a, miR-30d, and miR-181c in MMP‐9KO that are implicated in regulation of G-PCR and calcium handling.  相似文献   

4.
Left ventricular (LV) pressure (PO) or volume (VO) overload is accompanied by myocardial remodeling, but mechanisms that contribute to this progressive remodeling process remain unclear. The matrix metalloproteinases (MMPs) contribute to tissue remodeling in a number of disease states. This study tested the hypothesis that increased MMP expression and activity occur after the induction of an LV overload, which is accompanied by a loss of endogenous MMP inhibitory control. LV MMP zymographic activity and species abundance were measured in dogs under the following conditions: acute PO induced by ascending aortic balloon inflation (6 h, n = 9), prolonged PO by aortic banding (10 days, n = 5), acute VO through mitral regurgitation secondary to chordal rupture (6 h, n = 6), prolonged VO due to mitral regurgitation (14 days, n = 7), and sham controls (n = 11). MMP zymographic activity in the 92-kDa region, indicative of MMP-9 activity, increased over threefold in acute PO and VO and fell to control levels in prolonged PO and VO. The MMP-9 activity-to-abundance ratio increased by over fourfold with acute VO and twofold in acute PO, suggesting a loss of inhibitory control. Endogenous MMP inhibitor content was unchanged with either PO or VO. Interstitial collagenase (MMP-1) content decreased by 50% with acute VO but not with acute PO. Stromelysin (MMP-3) levels increased by 40% with acute VO and increased by 80% with prolonged PO. Although changes in LV myocardial MMP activity and inhibitory control occurred in both acute and prolonged PO and VO states, these changes were not identical. These results suggest that the type of overload stimulus may selectively influence myocardial MMP activity and expression, which in turn would affect the overall LV myocardial remodeling process in LV overload.  相似文献   

5.
Chronic hyperhomocysteinemia (HHcy) is an important factor in development of arterial hypertension. HHcy is associated with activation of matrix metalloproteinases (MMPs); however, it is unclear whether HHcy-dependent extracellular matrix (ECM) accumulation plays a role in arterial hypertrophy and hypertension. We tested the hypothesis that in HHcy the mechanism of arterial hypertension involves arterial dysfunction in response to ECM accumulation between endothelial and arterial smooth muscle cells and subsequent endothelium-myocyte (E-M) uncoupling. To decrease plasma Hcy, dietary supplementation with 3-deazaadenosine (DZA), the S-adenosylhomocysteine hydrolase inhibitor, was administered to cystathionine beta-synthase (CBS) knockout (KO) mice. Mice were grouped as follows: wild type (WT; control), WT+DZA, CBSKO, and CBSKO+DZA (n = 4/group). Mean aortic blood pressure and heart rate were monitored in real time with a telemetric system before, during, and after DZA treatment (6 wk total). In vivo aorta function and morphology were analyzed by M-mode and Doppler echocardiography in anesthetized mice. Aorta MMP activity in unfixed cryostat sections was measured with DQ gelatin. Aorta MMP-2, MMP-9, and connexin 43 expression were measured by RT-PCR and Western blot analyses, respectively. HHcy caused increased aortic blood pressure and resistance, tachycardia, and increased wall thickness and ECM accumulation in aortic wall vs. control groups. There was a linear correlation between aortic wall thickness and plasma Hcy levels. MMP-2, MMP-9, and connexin 43 expression were increased in HHcy. In the CBSKO+DZA group, aortic blood pressure and levels of MMP and connexin 43 were close to those found in control groups. However, removal of DZA reversed the aortic lumen-to-wall thickness ratio in CBSKO mice, suggesting, in part, a role of vascular remodeling in the increase in blood pressure in HHcy. The results show that arterial hypertension in HHcy mice is, in part, associated with arterial remodeling and E-M uncoupling in response to MMP activation.  相似文献   

6.
7.
Elevated levels of homocysteine (Hcy) known as hyperhomocysteinemia (HHcy) are associated with arrhythmogenesis and sudden cardiac death (SCD). Hcy decreases constitutive neuronal and endothelial nitric oxide (NO), and cardiac diastolic relaxation. Hcy increases the iNOS/NO, peroxynitrite, mitochondrial NADPH oxidase, and suppresses superoxide dismutase (SOD) and redoxins. Hcy activates matrix metalloproteinase (MMP), disrupts connexin-43 and increases collagen/elastin ratio. The disruption of connexin-43 and accumulation of collagen (fibrosis) disrupt the normal pattern of cardiac conduction and attenuate NO transport from endothelium to myocyte (E-M) causing E-M uncoupling, leading to a pro-arrhythmic environment. The goal of this review is to elaborate the mechanism of Hcy-mediated iNOS/NO in E-M uncoupling and SCD. It is known that Hcy creates arrhythmogenic substrates (i.e. increase in collagen/elastin ratio and disruption in connexin-43) and exacerbates heart failure during chronic volume overload. Also, Hcy behaves as an agonist to N-methyl-D-aspartate (NMDA, an excitatory neurotransmitter) receptor-1, and blockade of NMDA-R1 reduces the increase in heart rate-evoked by NMDA-analog and reduces SCD. This review suggest that Hcy increases iNOS/NO, superoxide, metalloproteinase activity, and disrupts connexin-43, exacerbates endothelial-myocyte uncoupling and cardiac failure secondary to inducing NMDA-R1.  相似文献   

8.
Microvascular rarefaction following an episode of acute kidney injury (AKI) is associated with renal hypoxia and progression toward chronic kidney disease. The mechanisms contributing to microvascular rarefaction are not well-understood, although disruption in local angioregulatory substances is thought to contribute. Matrix metalloproteinase (MMP)-9 is an endopeptidase important in modifying the extracellular matrix (ECM) and remodeling the vasculature. We examined the role of MMP-9 gene deletion on microvascular rarefaction in a rodent model of ischemic AKI. MMP-9-null mice and background control (FVB/NJ) mice were subjected to bilateral renal artery clamping for 20 min followed by reperfusion for 14, 28, or 56 days. Serum creatinine level in MMP-9-null mice 24 h after injury [1.4 (SD 0.8) mg/dl] was not significantly different from FVB/NJ mice [1.5 (SD 0.6) mg/dl]. Four weeks after ischemic injury, FVB/NJ mice demonstrated a 30-40% loss of microvascular density compared with sham-operated (SO) mice. In contrast, microvascular density was not significantly different in the MMP-9-null mice at this time following injury compared with SO mice. FVB/NJ mice had a 50% decrease in tissue vascular endothelial growth factor (VEGF) 2 wk after ischemic insult compared with SO mice. A significant difference in VEGF was not observed in MMP-9-null mice compared with SO mice. There was no significant difference in the liberation of angioinhibitory fragments from the ECM between MMP-9-null mice and FVB/NJ mice following ischemic injury. In conclusion, MMP-9 deletion stabilizes microvascular density following ischemic AKI in part by preserving tissue VEGF levels.  相似文献   

9.
Matrix metalloproteinases (MMPs) are a large family of endopeptidases that proteolytically degrade extracellular matrix. Many different cells produce MMP-9, and levels have been shown to be up-regulated in patients with allergic asthma. The aim of this study was to investigate the in vivo role of MMP-9 during allergen-induced airway inflammation. Acute allergic pulmonary eosinophilia was established in MMP-9 knockout (KO) and wild-type (WT) control mice by sensitization and challenge with OVA. Cell recruitment was significantly increased in both bronchoalveolar lavage (BAL) and lung tissue compartments in MMP-9 KO mice compared with WT mice. This heightened cell recruitment was primarily due to increased eosinophils and Th2 cells in the BAL and lung tissue of MMP-9 KO mice in comparison with WT controls. Moreover, levels of the Th2 cytokines, IL-4 and IL-13, and the chemokines eotaxin/CCL11 and macrophage-derived chemokine/CCL22 were substantially increased in MMP-9 KO mice compared with WT after OVA challenge. Resolution of eosinophilia was similar between MMP-9 KO and WT mice, but Th2 cells persisted in BAL and lungs of MMP-9 KO mice for longer than in WT mice. Our results indicate that MMP-9 is critically involved in the recruitment of eosinophils and Th2 cells to the lung following allergen challenge, and suggest that MMP-9 plays a role in the development of Th2 responses to allergen.  相似文献   

10.
Metalloproteinases (MPs) include matrix metalloproteinases (MMPs) and metalloproteinase-disintegrins (ADAMs). Their physiological inhibitors are tissue inhibitor of metalloproteinases (TIMPs). MPs are thought to be mediators of cellular infiltration in the pathogenesis of multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE). We used real-time RT-PCR to profile the expression of all 22 known mouse MMPs, seven ADAMs, and all four known TIMPs in spinal cord from SJL/J mice and mice with adoptively transferred myelin basic protein (MBP)-specific EAE. A significant and >3-fold alteration in expression was observed for MMP-8, MMP-10, MMP-12, ADAM-12, and TIMP-1, which were up-regulated, and for MMP-15, which was down-regulated. Expression levels correlated with disease course, with all but ADAM-12 returning toward control levels in remission. To examine potential cellular sources of these strongly affected proteins in the inflamed CNS, we isolated macrophages, granulocytes, microglia, and T cells by cell sorting from the CNS of mice with EAE and analyzed their expression by real-time RT-PCR. This identified macrophages as a major source of MMP-12 and TIMP-1. Granulocytes were a major source of MMP-8. ADAM-12 was expressed primarily by T cells. Cellular localization of MMP-10, TIMP-1, and ADAM-12 in perivascular infiltrates was confirmed by immunostaining or in situ hybridization. Microglia from control mice expressed strong signal for MMP-15. Strikingly, the expression of MMP-15 by microglia was significantly down-regulated in EAE, which was confirmed by immunostaining. Our study identifies the cellular sources of key MPs in CNS inflammation.  相似文献   

11.
目的对清洁级FVB.KO和FVB的生理发育指标和繁殖性能进行分析比较,探讨Fmr1基因敲除对小鼠生理发育和繁殖性能的影响。方法挑选10周龄清洁级FVB.KO和FVB各20只(雌雄各半),采取1∶1同居,全部同胞兄妹近交繁殖,测定新生仔鼠生理发育指标和品系繁殖性能。结果 FVB.KO在耳廓分离、体毛长出、门齿萌发、眼睑开裂等生理发育指标上和FVB比较接近,在平均每窝产仔数和离乳率等方面偏低,在雌雄比例上有显著差异。结论 Fmr1基因敲除对小鼠生理发育和繁殖性能影响较小,对后代雌雄比例可能有一定的影响。  相似文献   

12.
ADAM-9 belongs to a family of transmembrane, disintegrin-containing metalloproteinases involved in protein ectodomain shedding and cell-cell and cell-matrix interactions. The aim of this study was to analyze the expression of ADAM-9 in skin and to assess the role of this proteolytic/adhesive protein in skin physiology. In normal skin, ADAM-9 expression was detected in both the epidermis and dermis and in vitro in keratinocytes and fibroblasts. Here we report that ADAM-9 functions as a cell adhesion molecule via its disintegrin-cysteine-rich domain. Using solid phase binding assays and antibody inhibition experiments, we demonstrated that the recombinant disintegrin-cysteine-rich domain of ADAM-9 specifically interacts with the beta1 integrin subunit on keratinocytes. This was corroborated by co-immunoprecipitation. In addition, engagement of integrin receptors by the disintegrin-cysteine-rich domain resulted in ERK phosphorylation and increased MMP-9 synthesis. Treatment with the ERK inhibitor PD98059 inhibited MMP-9 induction. Furthermore, the presence of the soluble disintegrin-cysteine-rich domain did not interfere with cell migration on different substrates. However, keratinocytes adhering to the immobilized disintegrin-cysteine-rich domain showed increased motility, which was partially due to the induction of MMP-9 secretion. In summary, our results indicate that the ADAM-9 adhesive domain plays a role in regulating the motility of cells by interaction with beta1 integrins and modulates MMP synthesis.  相似文献   

13.
AimsVascular endothelial growth factor (VEGF) and pathologic angiogenesis have been demonstrated to play a pathogenic role in the development and progression of inflammatory bowel disease. Thus, we hypothesized that the potent anti-angiogenic factor endostatin might play a beneficial role in experimental ulcerative colitis (UC).Main methodsWe used three animal models of UC: (1) induced by 6% iodoacetamide (IA) in rats, or (2) by 3% dextran sulfate sodium (DSS) in matrix metalloproteinase-9 (MMP-9) knockout (KO) and wild-type mice, and (3) interleukin-10 (IL-10) KO mice. Groups of MMP-9 KO mice with DSS-induced UC were treated with endostatin or water for 5 days.Key findingsWe found concomitant upregulation of VEGF, PDGF, MMP-9 and endostatin in both rat and mouse models of UC. A positive correlation between the levels of endostatin or VEGF and the sizes of colonic lesions was seen in IA-induced UC. The levels and activities of MMP-9 were also significantly increased during UC induced by IA and IL-10 KO. Deletion of MMP-9 decreased the levels of endostatin in both water- and DSS-treated MMP-9 KO mice. Treatment with endostatin significantly improved DSS-induced UC in MMP-9 KO mice.Significance1) Concomitantly increased endostatin is a defensive response to the increased VEGF in UC, 2) MMP-9 is a key enzyme to generate endostatin which may modulate the balance between VEGF and endostatin during experimental UC, and 3) endostatin treatment plays a beneficial role in UC. Thus, anti-angiogenesis seems to be a new therapeutic option for UC.  相似文献   

14.
Gut epithelial apoptosis is involved in the pathophysiology of multiple diseases. This study characterized intestinal apoptosis in three mechanistically distinct injuries with different kinetics of cell death. FVB/N mice were subjected to gamma radiation, Pseudomonas aeruginosa pneumonia or injection of monoclonal anti-CD3 antibody and sacrificed 4, 12, or 24 hours post-injury (n=10/time point). Apoptosis was quantified in the jejunum by hematoxylin and eosin (H&E), active caspase-3, terminal deoxynucleotidyl transferase dUTP-mediated nick end labeling (TUNEL), in situ oligoligation reaction (ISOL,) cytokeratin 18, and annexin V staining. Reproducible results were obtained only for H&E, active caspase-3, TUNEL and ISOL, which were quantified and compared against each other for each injury at each time point. Kinetics of injury were different with early apoptosis highest following radiation, late apoptosis highest following anti CD3, and more consistent levels following pneumonia. ISOL was the most consistent stain and was always statistically indistinguishable from at least 2 stains. In contrast, active caspase-3 demonstrated lower levels of apoptosis, while the TUNEL assay had higher levels of apoptosis in the most severely injured intestine regardless of mechanism of injury. H&E was a statistical outlier more commonly than any other stain. This suggests that regardless of mechanism or kinetics of injury, ISOL correlates to other quantification methods of detecting gut epithelial apoptosis more than any other method studied and compares favorably to other commonly accepted techniques of quantifying apoptosis in a large intestinal cross sectional by balancing sensitivity and specificity across a range of times and levels of death.  相似文献   

15.
Although studies have suggested microvessel endothelial cells (MVEC) activation and induction of matrix metalloproteinases (MMPs) by homocysteine (Hcy), the transduction mechanism leading to endothelial activation was unclear. We hypothesized that Hcy induced metalloproteinase and altered the levels of integrin in MVEC. MVEC from mouse brain were isolated and characterized by CD-31 (PECAM-1) FITC labeling. The MVEC were activated with different doses (6-40 microM) of Hcy. The cultured-conditioned-medium was analyzed for MMP activity by gelatin gel-zymography. TIMP-1, -4, beta-1 integrin, and a disintegrin and metalloproteinase-12 (ADAM-12) were quantified by Western blot analysis. We used MVEC in cell culture to study the effect of increasing concentrations of Hcy upon the secretion of various proteins into the culture medium. MMP-9, beta-1 integrin, ADAM-12, and TIMP-1 were found in increased concentrations in the culture medium of Hcy-treated cells whereas TIMP-4 was decreased. We have shown that purified TIMP-4 blocked the increase of beta-1 integrin shedding in Hcy-treated cells. Interestingly, our results suggest that TIMP-1 and TIMP-4 function antagonistically in Hcy-induced signaling pathways.  相似文献   

16.
Neointimal hyperplasia contributes to failure of hemodialysis arteriovenous fistulas (AVFs). Increased expression of matrix metalloproteinase (MMP)-9 occurs in AVFs, and MMP-9 is implicated in neointimal hyperplasia and vascular injury. Recent studies demonstrate that MMP-9, by degrading N-cadherin, leads to increased expression of β-catenin and β-catenin-dependent proliferation of smooth muscle cells. The present study examined this pathway in the venous limb of a murine AVF model. Western analyses demonstrate that, in this model, there is diminished expression of N-cadherin accompanied by increased expression of β-catenin, c-Myc, and proliferating cell nuclear antigen (PCNA). By immunohistochemistry, β-catenin and c-Myc localized to proliferating smooth muscle cells in the venous limb of the AVF. Increased expression of β-catenin was accompanied by augmented expression of phosphorylated (p)-glycogen synthase kinase (GSK)-3β, GSK-3β, and integrin-linked kinase. The administration of doxycycline suppressed MMP-9 expression but did not reduce venous histological injury in the AVF, or increase AVF patency assessed 6 wk after its creation. Doxycycline did not influence expression of β-catenin, c-Myc, GSK-3β, or integrin-linked kinase. Thus, in this vascular injury model, the upregulation of β-catenin cannot be readily attributed to MMP-9 upregulation; increased β-catenin expression may reflect either the upregulation of p-GSK-3β, GSK-3β, or integrin-linked kinase. This study provides the first exploration of β-catenin in an AVF, demonstrating substantial upregulation of this mitogenic signaling molecule and uncovering possible mechanisms that may account for such upregulation.  相似文献   

17.

Background

Although both animal and human studies suggested the association between placenta growth factor (PlGF) and chronic obstructive pulmonary disease (COPD), especially lung emphysema, the role of PlGF in the pathogenesis of emphysema remains to be clarified. This study hypothesizes that blocking PlGF prevents the development of emphysema.

Methods

Pulmonary emphysema was induced in PlGF knock-out (KO) and wild type (WT) mice by intra-tracheal instillation of porcine pancreatic elastase (PPE). A group of KO mice was then treated with exogenous PlGF and WT mice with neutralizing anti-VEGFR1 antibody. Tumor necrosis factor alpha (TNF-α), matrix metalloproteinase-9 (MMP-9), and VEGF were quantified. Apoptosis measurement and immuno-histochemical staining for VEGF R1 and R2 were performed in emphysematous lung tissues.

Results

After 4 weeks of PPE instillation, lung airspaces enlarged more significantly in WT than in KO mice. The levels of TNF-α and MMP-9, but not VEGF, increased in the lungs of WT compared with those of KO mice. There was also increased in apoptosis of alveolar septal cells in WT mice. Instillation of exogenous PlGF in KO mice restored the emphysematous changes. The expression of both VEGF R1 and R2 decreased in the emphysematous lungs.

Conclusion

In this animal model, pulmonary emphysema is prevented by depleting PlGF. When exogenous PlGF is administered to PlGF KO mice, emphysema re-develops, implying that PlGF contributes to the pathogenesis of emphysema.  相似文献   

18.
A characteristic of malignant cells is their capacity to invade their surrounding and to metastasize to distant organs. During these processes, proteolytic activities of tumor and stromal cells modify the extracellular matrix to produce a microenvironment suitable for their growth and migration. In recent years the family of ADAM proteases has been ascribed important roles in these processes. ADAM-9 is expressed in human melanoma at the tumor-stroma border where direct or indirect interactions between tumor cells and fibroblasts occur. To analyze the role of ADAM-9 for the interaction between melanoma cells and stromal fibroblasts, we produced the recombinant disintegrin-like and cysteine-rich domain of ADAM-9 (DC-9). Melanoma cells and human fibroblasts adhered to immobilized DC-9 in a Mn(2+)-dependent fashion suggesting an integrin-mediated process. Inhibition studies showed that adhesion of fibroblasts was mediated by several β1 integrin receptors independent of the RGD and ECD recognition motif. Furthermore, interaction of fibroblasts and high invasive melanoma cells with soluble recombinant DC-9 resulted in enhanced expression of MMP-1 and MMP-2. Silencing of ADAM-9 in melanoma cells significantly reduced cell adhesion to fibroblasts. Ablation of ADAM-9 in fibroblasts almost completely abolished these cellular interactions and melanoma cell invasion in vitro. In summary, these results suggest that ADAM-9 expression plays an important role in mediating cell-cell contacts between fibroblasts and melanoma cells and that these interactions contribute to proteolytic activities required during invasion of melanoma cells.  相似文献   

19.
ADAMs (a disintegrin and metalloprotease) constitute a family of cell surface proteins containing disintegrin and metalloprotease domains which associate features of adhesion molecules and proteases. ADAMTSs (a disintegrin and metalloprotease with thrombospondin motifs) bear thrombospondin type I motifs in C-terminal extremity, and most of them are secreted proteins. Because genetic studies have shown that ADAM-33 gene polymorphisms are associated with asthma, we designed this study to assess mRNA expression profile of several ADAM and ADAMTS proteases in sputum from patients with asthma and to investigate the relationship between expression of these proteases and asthma-associated inflammation and airway obstruction. mRNA expression profile of selected ADAM and ADAMTS proteinases (ADAM-8, -9, -10, -12, -15, -17, and -33; ADAMTS-1, -2, -15, -16, -17, -18, and -19), their physiological inhibitors TIMP-1 and TIMP-3, and RECK, a membrane-anchored MMP activity regulator, was obtained by RT-PCR analysis performed on cells collected by sputum induction from 21 patients with mild to moderate asthma and 17 healthy individuals. mRNA levels of ADAM-8, ADAM-9, ADAM-12, TIMP-1, and TIMP-3 were significantly increased, whereas mRNA levels coding for ADAMTS-1, ADAMTS-15, and RECK were significantly decreased in patients with asthma compared with control patients. ADAM-8 expression was negatively correlated with the forced expiratory volume at the first second (FEV(1)) (r = -0.57, P < 0.01), whereas ADAMTS-1 and RECK expressions were positively correlated to FEV(1) (r = 0.45, P < 0.05, and r = 0.55, P = 0.01, respectively). We conclude that expression of ADAMs and ADAMTSs and their inhibitors is modulated in airways from patients with asthma and that these molecules may play a role in the pathogenesis of asthma.  相似文献   

20.
目的:探讨Janus激酶2-信号转导子和转录激活子3(JAK2/STAT3)信号通路在运动预适应(EP)抗心肌细胞凋亡中的作用及其机制。方法:健康雄性SD大鼠80只,随机分为对照组(C组)、力竭组(EE组)、运动预适应组(EP组)、运动预适应+AG490组(EP+AG组)(n=20)。连续3 d的间歇跑台运动建立EP动物模型,力竭运动致大鼠运动性心肌损伤。采用TUNEL法检测心肌细胞凋亡改变、Western blot法检测心脏Caspase-3定量表达的变化,免疫组织化学法和Western blot法显示心脏p-JAK2和p-STAT3定位和定量表达的变化。结果:与C组相比,EE组心肌细胞凋亡、心脏Caspase-3、p-JAK2和p-STAT3的表达均显著升高;与EE组相比,EP组心肌细胞凋亡和心脏Caspase-3表达明显降低,而心脏p-JAK2和p-STAT3表达显著升高;与EP组相比,EP+AG组心肌细胞凋亡和心脏Caspase-3表达均显著升高,而心脏p-JAK2和p-STAT3表达明显降低。结论:EP可诱导心脏磷酸化JAK2和STAT3表达增加,减少心脏Caspase-3的表达,抑制心肌细胞凋亡,提示JAK2/STAT3信号通路参与了EP抗心肌细胞凋亡的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号