首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Insect Biochemistry》1987,17(8):1143-1147
Fifth-instar larvae of Erinnyis ello feeding on Euphorbia pulcherrima leaves display the following rates and efficiencies: relative growth rate, 0.3 mg/day per mg; relative consumption rate, 2.6 mg/day per mg; approximate digestibility, 45%; efficiency of conversion of digested food, 25%. Chemical determinations performed on the leaves ingested and on the faeces expelled led to the determination of the approximate digestibilities (%) of the major constituents of leaves, as follows: soluble protein, 49; insoluble protein, 87; total lipids, 63; sucrose, 100; pectin, 0; hemicellulose, 52; starch, 88, cellulose, 0. Values (μg) for the daily absorption of minerals by a 3-g (fresh wt) E. ello larva were: K, 11,000; Ca, 5000; Mg, 2100; Cu, 3.3; Zn, 33; Fe, 110, The data suggest that the physiological role of the E. ello midgut β-fructosidase is to hydrolyze the major leaf carbohydrate sucrose, which is not efficiently digested by E. ello midgut α-glucosidase, whereas the physiological role of E. ello midgut β-glucosidase is to accomplish the final digestion of the hemicellulosic β-d-glycans.  相似文献   

2.
The study aimed at determining the effect of protein type and indigestible carbohydrates on the concentration of microbial metabolites in the large intestine of pigs. The experiment involved 36 pigs (15 kg initial body weight) divided into six groups, fed cereal-based diets with highly digestible casein (CAS) or potato protein concentrate (PPC) of lower ileal digestibility. Each diet was supplemented with cellulose, raw potato starch or pectin. After 2 weeks of feeding, pigs were sacrificed and samples of caecal and ascending, transverse and descending colon digesta were collected for analyses of microbial metabolites. PPC increased the concentration of ammonia, p-cresol, indole, n-butyrate, isovalerate and most of the amines in comparison with CAS. Pectin reduced the production of p-cresol, indole, phenylethylamine and isovalerate in the large intestine compared with potato starch. Starch and pectin increased mainly the concentration of n-butyrate and n-valerate in the colon compared to cellulose. Interaction affected mainly amines. Feeding PPC diet with potato starch considerably increased putrescine, cadaverine, tyramine and total amines concentrations compared with PPC diets with pectin and cellulose, whereas feeding CAS diet with starch reduced their concentrations. There was also a significant effect of interaction between diet and intestinal segment on microbial metabolites. In conclusion, PPC intensifies proteolysis in the large intestine and also n-butyrate production. Raw starch and pectin similarly increase n-butyrate concentration but pectin inhibits proteolysis more efficiently than starch. The interactive effects of both factors indicate that pectin and cellulose may beneficially affect fermentative processes in case of greater protein flow to the large intestine.  相似文献   

3.
Growth, photosynthesis, utilization of assimilates, and the development of a source function in leaves were studied in relation to changes in concentrations and ratios of phytohormones. Carbon isotope 14C was used to trace utilization and outflow of photosynthetic products from the leaf. Concentrations of endogenous phytohormones were determined by solid-phase immunoenzyme assay. It was shown that, in juvenile leaves (one-fifth of their final area), which did not attain a high rate of photosynthesis, up to 80% of assimilates were incorporated into structural polysaccharides (cellulose and hemicellulose) one day after feeding with 14CO2. During leaf growth and the development of its source function, the synthesis of structural polysaccharides declined to 10%, but the formation of alcohol- and water-soluble compounds (AWSC) grew to 80%. Monosaccharides and oligosaccharides, which could act as transport forms of carbohydrates, constituted 30% and 40% of AWSC, respectively. The percentage of assimilates utilized for protein synthesis decreased with leaf growth. The revealed changes correlate with the concentration and the ratio of free forms of phytohormones at various stages of leaf development. Development of a source function, a decline in cellulose and hemicellulose syntheses, and an increase in AWSC were related to the decrease in ABA and IAA concentrations and the increase in the ABA/IAA ratio. The ABA level can regulate the pathways of photoassimilate utilization in leaves by partitioning carbon flows either to the synthesis of high-molecular-weight compounds (cellulose, hemicellulose, and proteins), used for cell growth in leaves, or to the synthesis of transport forms of carbohydrates. A high ABA level favors the first pathway while low level switches leaf metabolism to the second one.  相似文献   

4.
Jie Xiong  Lingyao An  Han Lu  Cheng Zhu 《Planta》2009,230(4):755-765
To study the mechanisms of exogenous NO contribution to alleviate the cadmium (Cd) toxicity in rice (Oryza sativa), rice plantlets subjected to 0.2-mM CdCl2 exposure were treated with different concentrations of sodium nitroprusside (SNP, a NO donor), and Cd toxicity was evaluated by the decreases in plant length, biomass production and chlorophyll content. The results indicated that 0.1 mM SNP alleviated Cd toxicity most obviously. Atomic absorption spectrometry and fluorescence localization showed that treatment with 0.1 mM SNP decreased Cd accumulation in both cell walls and soluble fraction of leaves, although treatment with 0.1 mM SNP increased Cd accumulation in the cell wall of rice roots obviously. Treatment with 0.1 mM SNP in nutrient solution had little effect on the transpiration rate of rice leaves, but this treatment increased pectin and hemicellulose content and decreased cellulose content significantly in the cell walls of rice roots. Based on these results, we conclude that decreased distribution of Cd in the soluble fraction of leaves and roots and increased distribution of Cd in the cell walls of roots are responsible for the NO-induced increase of Cd tolerance in rice. It seems that exogenous NO enhances Cd tolerance of rice by increasing pectin and hemicellulose content in the cell wall of roots, increasing Cd accumulation in root cell wall and decreasing Cd accumulation in soluble fraction of leaves.  相似文献   

5.
Abstract

The synergism of cellulase (C), pectinase (P), and xylanase (X) for the saccharification of sweet potato residues (SPR) was investigated. The removal of starch from SPR was easily achieved by using amylase, but the cellulose conversion of de-starched SPR was relatively low, thus dilute H2SO4, NaOH, and H2O2 pretreatment was conducted to improve the enzymatic digestibility. The lignin content of NaOH pretreated SPR was the lowest, whereas H2SO4 pretreatment resulted in the lowest contents of hemicellulose and pectin. The combination of C, P, and X exhibited different sugar production patterns, C–P displayed synergistic action on glucose and galactose production from each type of SPR, C–X also exhibited synergistic effect on glucose production except when H2SO4 pretreated SPR was used, whereas no synergism between P–X on monosaccharide production was observed. The presence of synergism between cellulase and mixed accessory enzymes [C–(PX)] on glucose formation was determined by C–X, and the degree of synergism between C–P and C–(PX) on glucose production had a positive relationship with pectin content. The highest cellulose conversion of 96.2% was obtained from NaOH pretreated SPR using mixed enzymes comprising C, P, and X with the ratio of 8:1:1.  相似文献   

6.
Abstract.
  • 1 The feeding patterns of specialized (Heliconius butterflies) and generalized (the grasshopper, Osmilia flavolineata) herbivores on leaf age classes and species of neotropical vines in the genus Passiflora are compared by offering them leaf discs in choice experiments.
  • 2 Heliconius larvae selected young meristematic leaves over medium aged and mature leaves of Passiflora auriculata on which to feed.
  • 3 Adults of O. flavolineata consumed more young leaves of P. pittieri from an array of different ages of leaf tissue, but showed no preference for young over mature leaves of P. tetrastylus or P. data.
  • 4 In choice tests conducted with medium aged leaves of four species of Passiflora, O. flavolineata selected P. tetrastylus over P. pittieri and P. vitifolia, which were consumed more than P. alata.
  • 5 P. alata, which was avoided by O. flavolineata in feeding trials, was the only abundant Passiflora in neotropical habitats where generalized herbivores (grasshoppers and katydids) were common.
  • 6 Our results suggest that Passiflora species in forest habitats where some generalized herbivores are rare have fewer chemical defences, but retain physical defences (tough leaves and hooked trichomes) rendering them unpalatable to specialized herbivores like the larvae of Heliconius butterflies.
  相似文献   

7.
Voluntary food and water consumption of Kirk's dikdik (Madoqua kirki) and suni (Nesotragus moschatus) was determined under controlled laboratory conditions. Both species consumed large amounts of dried matter (lucerne hay leaves) per day. Dry matter consumption of dikdik accounted for 3.8 ± 0.5% and of suni for 3.5 ± 0.2% of body weight. Dry matter intake in one immature dikdik and one female dikdik during late pregnancy and lactation was considerably higher. Dikdik drank very little water (278 ml/day, equalling 83 ml/kg0.82) which is further proof of their adaptation to arid environment. Suni drank about twice as much (401 ml/day, equalling 155 ml/kg0.82), but individual variation of water con sumption was high. Thus, the forest-dwelling suni seems to be less adapted to de hydration than the dikdik. There was no difference in the digestibility of dry matter and gross energy of lucerne hay leaves for dikdik and suni. The fraction of N-free extracts which consists mainly of soluble carbohydrates was digested very well (84% and 81%, respectively), whereas fibre and cellulose digestibility was poor. Suni digested crude protein, minerals and cellulose significantly better than dikdik.  相似文献   

8.
Pure cultures of ruminal bacteria characterized as using only a single forage polysaccharide (Fibrobacter succinogenes A3c, cellulolytic; Bacteroides ruminicola H2b, hemicellulolytic; Lachnospira multiparus D15d, pectinolytic) were inoculated separately and in all possible combinations into fermentation tubes containing orchard grass as the sole substrate. Fermentations were run to completion, and then cultures were analyzed for digestion of cellulose plus degradation and utilization of hemicellulose and pectin. Addition of the noncellulolytic organisms, in any combination, to the cellulolytic organism F. succinogenes had little effect on overall cellulose utilization. F. succinogenes degraded but could not utilize hemicellulose; however, when it was combined with B. ruminicola, total utilization of hemicellulose increased markedly over that by B. ruminicola alone. L. multiparus was inactive in hemicellulose digestion, alone or in any combination. Although unable to degrade and utilize purified pectin, B. ruminicola degraded and utilized considerable quantities of the forage pectin. In contrast, L. multiparus was very active against purified pectin, but had extremely limited ability to degrade and utilize pectin from the intact forage. Both degradation and utilization of forage pectin increased when F. succinogenes was combined with B. ruminicola. Sequential addition of two cultures, allowing one to complete its fermentation before adding the second, was used to study synergism between cultures on forage pectin digestion. In general, synergistic effects did not appear to be related to a particular sequence of utilization. The ability of F. succinogenes to degrade and B. ruminicola to degrade and utilize forage pectin contradicts both previous and present data obtained with purified pectin. Thus, isolation and characterization of ruminal bacteria on purified substrates may be misleading with regard to their role in the overall ruminal fermentation.  相似文献   

9.
In this study, a newly isolated Trametes hirsuta yj9 was used to pretreat corn stover in order to enhance enzymatic digestibility. T. hirsuta yj9 preferentially degraded lignin to be as high as 71.49% after 42-day pretreatment. Laccase and xylanase was the major ligninolytic and hydrolytic enzyme, respectively and filter paper activity (FPA) increased gradually with prolonged pretreatment time. Sugar yields increased significantly after pretreatment with T. hirsuta yj9, reaching an enzymatic digestibility of 73.99% after 42 days of pretreatment. Scanning electron microscopy (SEM) showed significant structural changes in pretreated corn stover, the surface of pretreated corn stover became increasingly coarse, the gaps between cellulose fibers were visible, and many pores were developed. Correlation analysis showed that sugar yields were inversely proportional to the lignin contents, less related to cellulose and hemicellulose contents.  相似文献   

10.
On Christmas Island, Indian Ocean, the diet of robber crabs, Birgus latro (Linnaeus) was generally high in fat, storage polysaccharides or protein and largely comprised fruits, seeds, nuts and animal material. The plant items also contained significant amounts of hemicellulose and cellulose. In laboratory feeding trials, crabs had similar intakes of dry matter when fed artificial diets high in either fat or storage polysaccharide, but intake was lower on a high protein diet. Assimilation coefficients of dry matter (69–74%), carbon (72–81%), nitrogen (76–100%), lipid (71–96%) and storage polysaccharide (89–99%) were high on all three diets. B. latro also assimilated significant amounts of the chitin ingested in the high protein diet ( 93%) and hemicellulose (49.6–65%) and cellulose (16–53%) from the high carbohydrate and high fat diets. This is consistent with the presence of chitinase, hemicellulase and cellulase enzymes in the digestive tract of B. latro. The mean retention time (27.2 h) for a dietary particle marker (57Co-labelled microspheres) was longer than measured in leaf-eating land crabs. The feeding strategy of B. latro involves the selection of highly digestible and nutrient-rich plant and animal material and retention of the digesta for a period long enough to allow extensive exploitation of storage carbohydrates, lipids, protein and significant amounts of structural carbohydrates (hemicellulose, cellulose and chitin).Communicated by I.D. Hume  相似文献   

11.
《Insect Biochemistry》1987,17(2):277-282
The nitrogenous and carbohydrate components of ryegrass and faeces from larvae of Tipula paludosa Meigen, fed on ryegrass (Lolium perenne L.), were compared. Proteins in ryegrass were efficiently digested and uric acid was the major nitrogenous excretory product. The alkaline midgut (pH 9.1) was considered to enhance the digestibility of hemicellulose, by removing inhibitory acetyl groups, and of cellulose by altering its crystallinity. T. paludosa larvae assimilated 50% of ryegrass cellulose, and 50% of an isolated 14C-labelled cellulose, whereas 86% of hemicellulose was digested.  相似文献   

12.
The production of single-cell protein (SCP) based on cheap carbon sources such as spent liquor from paper mills is of interest for different reasons. The White-rot fungus (Sporotrichum pulverulentum) has earlier been shown to degrade cellulose and lignin. The nutritive value of this fungus was investigated with rats, pigs, and sheep. The effect of different drying process was evaluated on rats. Experiments with piglets, growing pigs, and sheep were aimed at getting primary information on nutritive parameters with domestic animal species, Chemical analysis of S. pulverulentum showed that the sum of the amino acids corresponded to 70% and ammonia, GABA, and glucosamine to 20% of its crude protein content. Differences between drying treatments in their effect on protein digestibility were not noted. From a protein quality viewpoint, a tendency toward superiority was noted for two of the drying processes. The amino acid digestibility of S. pulverulentum was inferior to values for soybean oil meal given in textbooks. The piglet experiment confirmed the lower nutritive value of S. pulverulentum compared with soybean oil meal. in the piglet stage a content of metabolizable energy of S. pulverulentum was found which corresponded to 60% of that for soybean oil meal. With increasing age the ability of pigs to utilize the fungus increased. The limited nutritive value for monogastric animals is most certainly caused by the cell-wall structure of S. pulverulentum with poor digestibility of the carbohydrates. The experiment with sheep showed more satisfactory results than with monogastric species, with digestibility of crude protein of 82% and a content of metabolizable energy of 70% of soybean oil meal.  相似文献   

13.
Summary Gut extracts of Gammarus fossarum liberated reducing substances (at pH values 7) and amino acids (pH7) from freshly shed oak leaves only after removal of soluble leaf phenols. When carboxymethylcellulose was used at a concentration equal to that of leaf cellulose, release of reducing substances was considerably higher. Fungal enzymes extracted from decomposing leaves were active against structural carbohydrates but showed no proteolytic activity. At low pH values, they retained their full activity in the presence of gut enzymes of G. fossarum, at higher pH values they were inhibited. Conditioned leaves released larger amounts of reducing substances and amino acids when exposed to gut enzymes. The improvement varies with the fungal species used for conditioning and with the length of the conditioning period. The digestibility of leaf carbohydrates and proteins reached separate peaks and then declined. Fungal carbohydrases ingested by G. fossarum retained some activity for up to 4h.  相似文献   

14.
Plant cell walls are composed of cellulose microfibrils embedded in a cross‐linked‐net of matrix polysaccharides and co‐polymerized with lignin. The study presented the genotypic variations of cell wall composition, biohydrogen production, and lignocellulose degradation ratio in a collection of 102 Miscanthus sinensis (M. Sinensis, hereafter) accessions collected from a wide geographical range in China. Significant variations were observed for the determined traits, cellulose content, hemicellulose content, cellulose and hemicellulose degradation efficiency, and biohydrogen yield. The cellulose, hemicellulose, and lignin contents ranged from 30.20–44.25, 28.97–42.65, and 6.96–20.75%, respectively. The degradation ratio of cellulose and hemicellulose varied from 2.08% to 37.87% and from 14.71% to 52.50%, respectively. The feedstock was fermented to produce biohydrogen, and the production varied from 14.59 to 40.66 ml per gram of Miscanthus biomass. The expression profile of three cellulose synthase (MsCesA) genes was initially established to indicate the genotypic difference among the M. sinensis accessions. Pearson's correlations were conducted to reveal the perplexing relationship between the tested traits, biohydrogen yield, cell wall composition and their degradation efficiency. In addition, the relationship pattern, between the test traits and the geographic factors corresponding with the original place, was investigated. The result showed that the significant variation among the M. sinensis genotypes is the result of natural selection in different environments of their original habitats. Improvement in cell wall composition and structure and enhancement of lignocellulose degradation ratio could significantly increase sustainable bioenergy production.  相似文献   

15.
16.
Hydrothermal pretreatment was performed on the leaves and internodes portions of Alamo switchgrass, Panicum virgatum L., to enhance the digestibility of cellulose towards cellulase. It was observed that extractives free leaves portion provided 18.1% lower pretreatment gravimetrical yield and 33.8% greater cellulose-to-glucose yield than internodes portion. The degree of polymerization (DP) and ultrastructure of cellulose were determined by gel-permeation chromatography and solid-state cross polarization/magic angle spinning 13C NMR experiments. The results suggested that hydrothermal pretreatment hydrolyzed amorphous cellulose and yielded a product enriched in paracrystalline cellulose. Furthermore, the DP of cellulose was reduced to one third of the origin value after hydrothermal pretreatment. The resulting biomass after pretreatment for leaves and internodes has similar cellulose ultrastructure and chemical profiles. The results of the enzymatic hydrolysis studies of cellulose suggest that the reduced DP of cellulose of pretreated switchgrass was an important factor influencing the enhanced digestibility of pretreated switchgrass.  相似文献   

17.
A comparison of the ligninolytic, cellulolytic and hemicellulolytic abilities of an alkaliphilic white-rot fungus. Coprinus fimetarius, on wheat straw under varying conditions of solid-substrate fermentation is presented. The extent of fractional degradation (percentage of the original dry weight of the fraction) of straw under an optimized set of cultural conditions (pH 9·0, moisture 65%, temperature 37°C, period 21 days) was in the following order: lignin (45%), cellulose (42%), hemicellulose (27%). Urea nitrogen favoured the degradation of lignin as well as cellulose and hemicellulose up to a certain level (1·5% sterile urea or 3% unsterile urea on a dry weight basis) beyond which the degradation of lignin was relatively more adversely affected than cellulose. The addition of phosphorus and sulphur was found essential for selective lignin removal. Increasing the C:N ratio by addition of free carbohydrates resulted in an overall decrease in the degradation wherein cellulose utilization was the most affected event. The pre-treatment (physical or chemical) of the substrate caused a general increase in biodegradation of lignin, cellulose and hemicellulose. The degrading activity of the fungus declined with the scaling-up of the fermentation particularly under non-sterile conditions.  相似文献   

18.
Proton magnetic resonance has been used to monitor the microscopic physical properties of etiolated hypocotyl cell walls from Phaseolus vulgaris L. at all stages in a series of chemical fractionations with ammonium oxalate and potassium hydroxide. Solid echo measurements indicate that 75% of the polymers in the intact cell wall, including the cellulose and most of the hemicelluloses, are arranged such that there is almost complete restraint of molecular motion. The chemical fractionations generally altered the physical structures of the remaining cell wall components. Digestion with 0.25% ammonium oxalate/oxalic acid solubilized the pectin and increased the mobility of the hemicellulose I component. Extraction with 4% potassium hydroxide removed the hemicellulose I component and loosened the hemicellulose II. Further extraction with 24% potassium hydroxide removed the hemicellulose II and loosened some of the cellulose. The cellulose crystallinity, as monitored by Jeener echo measurements decreased from 83% to 63% during these fractionations. We conclude that, while hemicellulose I is firmly attached to hemicellulose II, it is not in a closely packed structure. Hemicellulose II is strongly bound to cellulose and has a much more closely packed structure.  相似文献   

19.
Cell walls (CW) of untreated wheat straw and sulphur-dioxide (SO2)-treated wheat straw were used as model substrates for the hydrolysis and utilization of CW carbohydrates by pure cultures or pair-combinations of defined rumen bacterial strains. Fibrobacter succinogenes S85 and BL2 strains and their co-cultures with D1 were the best degraders of CW among ruminal cultures, solubilizing 37.2–39.6% of CW carbohydrates of untreated straw and 62.2–74.5% of SO2-treated straw. Complementary action between Butyrivibrio fibrisolvens D1 and the F. succinogenes strains was identified with respect to co-culture growth and carbohydrate utilization. However, the extent of CW solubilization was determined mainly by the F. succinogenes strains. In both substrates, utilization of solubilized cellulose by F. succinogenes S85 and BL2 monocultures was higher than that of xylan and hemicellulose: 96.5–98.3%, 34.4–40.5% and 33.5–36.2%, respectively. Under scanning electron microscopy visualization, S85 and BL2 cells of the co-cultures comprised the most dense layer of bacterial cell mass attached to and colonized on straw stems and leaves, whereas D1 cells were always nearby. Stems and leaves of the untreated straw were less crowded by attached bacteria than that of the SO2-treated straw. In both materials, the cell surface topography of S85 and BL2 bacteria attached to CW particles was specified by a coat of characteristic protuberant structures, polycellulosome complexes.  相似文献   

20.
Pretreatments to enhance the digestibility of lignocellulosic biomass   总被引:25,自引:0,他引:25  
Lignocellulosic biomass represents a rather unused source for biogas and ethanol production. Many factors, like lignin content, crystallinity of cellulose, and particle size, limit the digestibility of the hemicellulose and cellulose present in the lignocellulosic biomass. Pretreatments have as a goal to improve the digestibility of the lignocellulosic biomass. Each pretreatment has its own effect(s) on the cellulose, hemicellulose and lignin; the three main components of lignocellulosic biomass. This paper reviews the different effect(s) of several pretreatments on the three main parts of the lignocellulosic biomass to improve its digestibility. Steam pretreatment, lime pretreatment, liquid hot water pretreatments and ammonia based pretreatments are concluded to be pretreatments with high potentials. The main effects are dissolving hemicellulose and alteration of lignin structure, providing an improved accessibility of the cellulose for hydrolytic enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号