首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The proteoglycans synthesized by fibroblasts derived from healthy human gingivae were isolated and characterized. The largest medium proteoglycan was excluded from Sepharose CL-4B but not from Sepharose CL-2B; it was recovered in the most-dense density gradient fraction and identified as a chondroitin sulfate proteoglycan. The medium contained two smaller proteoglycans; one contained predominantly chondroitin sulfate proteoglycan, while the other was comprised predominantly of dermatan sulfate proteoglycan and was quantitatively the major species. The largest proteoglycan in the cell layer fraction, excluded from both Sepharose CL-2B and Sepharose CL-4B, was found in the least-dense density gradient fraction and contained heparan sulfate and chondroitin sulfate proteoglycan. It could be further dissociated by treatment with detergent, suggesting an intimate association with cell membranes. Two other proteoglycan populations of intermediate size were identified in the cell layer extracts which contained variable proportions of heparan sulfate, dermatan sulfate, or chondroitin sulfate proteoglycan. Some small molecular weight material indicative of free glycosaminoglycan chains was also associated with the cell layer fraction. Carbohydrate analysis of the proteoglycans demonstrated the glycosaminoglycan chains to have approximate average molecular weights of 25,000. In addition, N- and O-linked oligosaccharides which were associated with the proteoglycans appeared to be sulfated in varying degrees.  相似文献   

2.
Structural Properties of the Heparan Sulfate Proteoglycans of Brain   总被引:1,自引:1,他引:0  
The heparan sulfate proteoglycans present in a deoxycholate extract of rat brain were purified by ion exchange chromatography, affinity chromatography on lipoprotein lipase agarose, and gel filtration. Heparitinase treatment of the heparan sulfate proteoglycan fraction (containing 86% heparan sulfate and 10% chondroitin sulfate) that was eluted from the lipoprotein lipase affinity column with 1 M NaCl led to the appearance of a major protein core with a molecular size of 55,000 daltons, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Comparison of the effects of heparinase and heparitinase treatment revealed that the heparan sulfate proteoglycans of brain contain a significant proportion of relatively short N-sulfoglucosaminyl 6-O-sulfate [or N-sulfoglucosaminyl](alpha 1-4)iduronosyl 2-O-sulfate(alpha 1-4) repeating units and that the portions of the heparan sulfate chains in the vicinity of the carbohydrate-protein linkage region are characterized by the presence of D-glucuronic acid rather than L-iduronic acid. After chondroitinase treatment of a proteoglycan fraction that contained 62% chondroitin sulfate and 21% heparan sulfate (eluted from lipoprotein lipase with 0.4 M NaCl), the charge and density of a portion of the heparan sulfate-containing proteoglycans decreased significantly. These results indicate that a population of "hybrid" brain proteoglycans exists that contain both chondroitin sulfate and heparan sulfate chains covalently linked to a common protein core.  相似文献   

3.
A rat hepatoma cell line was shown to synthesize heparan sulfate and chondroitin sulfate proteoglycans. Unlike cultured hepatocytes, the hepatoma cells did not deposit these proteoglycans into an extracellular matrix, and most of the newly synthesized heparan sulfate proteoglycans were secreted into the culture medium. Heparan sulfate proteoglycans were also found associated with the cell surface. These proteoglycans could be solubilized by mild trypsin or detergent treatment of the cells but could not be displaced from the cells by incubation with heparin. The detergent-solubilized heparan sulfate proteoglycan had a hydrophobic segment that enabled it to bind to octyl- Sepharose. This segment could conceivably anchor the molecule in the lipid interior of the plasma membrane. The size of the hepatoma heparan sulfate proteoglycans was similar to that of proteoglycans isolated from rat liver microsomes or from primary cultures of rat hepatocytes. Ion-exchange chromatography on DEAE-Sephacel indicated that the hepatoma heparan sulfate proteoglycans had a lower average charge density than the rat liver heparan sulfate proteoglycans. The lower charge density of the hepatoma heparan sulfate can be largely attributed to a reduced number of N-sulfated glucosamine units in the polysaccharide chain compared with that of rat liver heparan sulfate. Hepatoma heparan sulfate proteoglycans purified from the culture medium had a considerably lower affinity for fibronectin-Sepharose compared with that of rat liver heparan sulfate proteoglycans. Furthermore, the hepatoma proteoglycan did not bind to the neoplastic cells, whereas heparan sulfate from normal rat liver bound to the hepatoma cells in a time-dependent reaction. The possible consequences of the reduced sulfation of the heparan sulfate proteoglycan produced by the hepatoma cells are discussed in terms of the postulated roles of heparan sulfate in the regulation of cell growth and extracellular matrix formation.  相似文献   

4.
Chondroitin sulfate represents approximately 15% of the 35SO4-labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product.  相似文献   

5.
Kidneys were perfused with [35S]sulfate at 4 h in vitro to radiolabel sulfated proteoglycans. Glomeruli were isolated from the labeled kidneys, and purified fractions of glomerular basement membrane (GBM) were prepared therefrom. Proteoglycans were extracted from GBM fractions by use of 4 M guanidine-HCl at 4 degrees C in the presence of protease inhibitors. The efficiency of extraction was approximately 55% based on 35S radioactivity. The extracted proteoglycans were characterized by gel-filtration chromatography (before and after degradative treatments) and by their behavior in dissociative CsCl gradients. A single peak of proteoglycans with an Mr of 130,000 (based on cartilage proteoglycan standards) was obtained on Sepharose CL-4B or CL-6B. Approximately 85% of the total proteoglycans were susceptible to nitrous acid oxidation (which degrades heparan sulfates), and approximately 15% were susceptible to digestion with chondroitinase ABC (degrades chondroitin-4 and -6 sulfates and dermatan sulfate). The released glycosaminoglycan (GAG) chains had an Mr of approximately 26,000. Density gradient centrifugation resulted in the partial separation of the extracted proteoglycans into two types with different densities: a heparan sulfate proteoglycan that was enriched in the heavier fraction (p greater than 1.43 g/ml), and a chondroitin sulfate proteoglycan that was concentrated in the lighter fractions (p less than 1.41). The results indicate that two types of proteoglycans are synthesized and incorporated into the GBM that are similar in size and consist of four to five GAG chains (based on cartilage proteoglycan standards). The chromatographic behavior of the extracted proteoglycans and the derived GAG, together with the fact that the two types of proteoglycans can be partially separated into the density gradient, suggest that the heparan sulfate and chondroitin sulfate(s) are located on different core proteins.  相似文献   

6.
Metastatic ovarian carcinoma metastasizes by intra-peritoneal, non-hematogenous dissemination. The adhesion of the ovarian carcinoma cells to extracellular matrix components, such as types I and III collagen and cellular fibronectin, is essential for intra-peritoneal dissemination. The purpose of this study was to determine whether cell surface proteoglycans (a class of matrix receptors) are produced by ovarian carcinoma cells, and whether these proteoglycans have a role in the adhesion of ovarian carcinoma cells to types I and III collagen and fibronectin. Proteoglycans were metabolically labeled for biochemical studies. Both phosphatidylinositol-anchored and integral membrane-type cell surface proteoglycans were found to be present on the SK-OV-3 and NIH:OVCAR-3 cell lines. Three proteoglycan populations of differing hydrodynamic size were detected in both SK-OV-3 and NIH:OVCAR-3 cells. Digestions with heparitinase and chondroitinase ABC showed that cell surface proteoglycans of SK-OV-3 cells had higher proportion of chondroitin sulfate proteoglycans (75:25 of chondroitin sulfate:heparan sulfate ratio), while NIH:OVCAR-3 cells had higher proportion of heparan sulfate proteoglycans (10:90 of chondroitin sulfate:heparan sulfate ratio). RT-PCR indicated the synthesis of a unique assortment of syndecans, glypicans, and CD44 by the two cell lines. In adhesion assays performed on matrix-coated titer plates both cell lines adhered to types I and III collagen and cellular fibronectin, and cell adhesion was inhibited by preincubation of the matrix with heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, or chondroitin glycosaminoglycans. Treatment of the cells with heparitinase, chondroitinase ABC, or methylumbelliferyl xyloside also interfered with adhesion confirming the role of both heparan sulfate and chondroitin sulfate cell surface proteoglycans as matrix receptors on ovarian carcinoma cells.  相似文献   

7.
We have studied the affinity between fibroblast proteoheparan sulfate (medium- and cell surface-derived species) and heparan sulfate-agaroses by affinity chromatography. The evidence for an interaction between the heparan sulfate side chains of the proteoglycans and the immobilized heparan sulfate are as follows: (a) the individual side chains released from the proteoglycan by papain bind to the affinity matrix, (b) the bound proteoglycans are desorbed by a solution of cognate heparan sulfate chains, and (c) the core protein obtained by heparan sulfate-lyase digestion of the proteoglycan does not bind to the affinity matrix. The proteoglycans interact only with one subtype of heparan sulfate. The binding of free heparan sulfate chains to the affinity matrix is completely abolished by heparan sulfate oligosaccharides provided they are composed of both iduronate- and glucuronate-containing disaccharide sequences.  相似文献   

8.
Primary cultures that contain only Schwann cells and sensory nerve cells synthesize basal lamina. The assembly of this basal lamina appears to be essential for normal Schwann cell development. In this study, we demonstrate that Schwann cells synthesize two major heparan sulfate-containing proteoglycans. Both proteoglycans band in dissociative CsCl gradients at densities less than 1.4 g/ml, and therefore, presumably, have relatively low carbohydrate-to-protein ratios. The larger of these proteoglycans elutes from Sepharose CL-4B in 4 M guanidine hydrochloride (GuHCl) at a Kav of 0.21 and contains heparan sulfate and chondroitin sulfate chains of Mr 21,000 in a ratio of approximately 3:1. This proteoglycan is extracted from cultures by 4 M GuHCl but not Triton X-100 and accumulates only when Schwann cells are actively synthesizing basal lamina. The smaller proteoglycan elutes from Sepharose CL-4B at a Kav of 0.44 and contains heparan sulfate and chondroitin sulfate chains of Mr 18,000 in a ratio of approximately 4:1. This proteoglycan is extracted by 4 M GuHCl or by Triton X-100. The accumulation of this proteoglycan is independent of basal lamina production.  相似文献   

9.
Heparan sulfate proteoglycans were extracted from rat brain microsomal membranes or whole forebrain with deoxycholate and purified from accompanying chondroitin sulfate proteoglycans and membrane glycoproteins by ion-exchange chromatography, affinity chromatography on lipoprotein lipase-Sepharose, and gel filtration. The proteoglycan has a molecular size of approximately 220,000, containing glycosaminoglycan chains of Mr = 14,000-15,000. In [3H]glucosamine-labeled heparan sulfate proteoglycans, approximately 22% of the radioactivity is present in glycoprotein oligosaccharides, consisting predominantly of N-glycosidically linked tri- and tetraantennary complex oligosaccharides (60%, some of which are sulfated) and O-glycosidic oligosaccharides (33%). Small amounts of chondroitin sulfate (4-6% of the total glycosaminoglycans) copurified with the heparan sulfate proteoglycan through a variety of fractionation procedures. Incubation of [35S]sulfate-labeled microsomes with heparin or 2 M NaCl released approximately 21 and 13%, respectively, of the total heparan sulfate, as compared to the 8-9% released by buffered saline or chondroitin sulfate and the 82% which is extracted by 0.2% deoxycholate. It therefore appears that there are at least two distinct types of association of heparan sulfate proteoglycans with brain membranes.  相似文献   

10.
The biologic properties of two major proteoglycans of bovine aorta, heparan sulfate proteoglycan and chondroitin sulfate-dermatan sulfate proteoglycan were compared. The heparan sulfate proteoglycan was isolated either by elastase digestion or by 4.0 M guanidine hydrochloride extraction, of aorta tissue, fractionated by CsCl isopycnic centrifugation and purified by chondroitinase ABC treatment. The first method resulted in considerably greater yield (about 70% of the total heparan sulfate proteoglycan of the tissue) than the second procedure (12% of total). The chondroitin sulfate-dermatan sulfate proteoglycan was obtained by 4.0 M guanidine-HCl extraction of aorta tissue followed by CsCl isopycnic centrifugation. The chemical composition of both heparan sulfate proteoglycan preparations was similar. Unlike the chondroitin sulfate-dermatan sulfate proteoglycan, which eluted in the void volume of Sepharose CL-6B column, the heparan sulfate proteoglycan preparations were each resolved into a high molecular weight fraction (kav = 0.18 and 0.13) and a low molecular weight fraction (kav = 0.47 and 0.36). The heparan sulfate proteoglycan preparations exhibited significantly more potent anticoagulant and platelet aggregation inhibitory activities than the chondroitin sulfate-dermatan sulfate proteoglycan. The protein core of the proteoglycan molecules did not seem to be essential for their hemostatic properties. The complex forming ability of the heparan sulfate proteoglycan with serum low density lipoproteins (LDL) was much less than that of chondroitin sulfate-dermatan sulfate proteoglycan in the presence and absence of Ca2+. Interaction between heparan sulfate proteoglycan and LDL was also much more sensitive to changes in the ionic strength of the medium than that of chondroitin sulfate-dermatan sulfate proteoglycan and the lipoprotein. Since the total sulfate content of both proteoglycans is almost similar, the smaller molecular size and hence the lower overall charge density of the heparan sulfate proteoglycan appears to be partly responsible for its low affinity for LDL. The differences in biologic properties of the two proteoglycans might have implications in the pathophysiology of cardiovascular diseases.  相似文献   

11.
The proteoglycans secreted by a malignant human breast cell line (MDA-MB-231) were compared with the corresponding proteoglycans from a normal human breast cell line (HBL-100). The physicochemical characteristics of these proteoglycans were established by hexosamine analysis, chemical and enzymatic degradations, and dissociative cesium chloride density gradient centrifugation, and by gel filtration before and after alkaline beta-elimination. Both cell lines secreted approximately 70% of the synthesized proteoglycans, which were composed of 20% heparan sulfate and 80% chondroitin sulfate proteoglycans. The MDA cell line secreted large hydrodynamic size (major) and small hydrodynamic size heparan sulfate proteoglycan. In contrast HBL cells secreted only one species having a hydrodynamic size intermediate to the above two. The chondroitin sulfate proteoglycans from MDA medium were slightly larger than the corresponding polymers from HBL medium. All proteoglycans except the small hydrodynamic size heparan sulfate proteoglycan from MDA medium were of high buoyant density. The proteoglycans of both cell lines contained significant proportions of disulfide-linked lower molecular weight components which were more pronounced in the proteoheparan sulfate polymers, particularly those from MDA medium, than in chondroitin sulfate proteoglycans. The glycosaminoglycans of heparan sulfate proteoglycans from MDA medium were more heterogeneous than those from HBL medium. The glycosaminoglycan chains of large hydrodynamic size heparan sulfate proteoglycans from MDA medium were larger in size than those from HBL medium while small hydrodynamic size heparan sulfate proteoglycans contained shorter glycosaminoglycan chains. In contrast to the glycosaminoglycans derived from chondroitin sulfate proteoglycans of both MDA and HBL medium were comparable in size. The heparan sulfate as well as chondroitin sulfate proteoglycans of both cell lines contained both neutral (di- and tetrasaccharides) and sialylated (tri- to hexasaccharides) O-linked oligosaccharides.  相似文献   

12.
M W Lark  L A Culp 《Biochemistry》1983,22(9):2289-2296
Newly formed adhesion sites, left bound to the tissue culture substratum after [ethylenebis(oxyethylenenitrilo)] tetraacetic acid mediated detachment of simian virus 40 transformed Balb/c 3T3 cells, have been extracted with 0.5 M guanidine hydrochloride or Zwittergent (3-12), extractions which identify different subfractions of proteoglycans in these sites. The compositions of these extracts were then compared to similar extracts of "maturing" adhesion sites in an effort to identify structural and metabolic changes which may occur with time and which may play a role in altering adhesion during cell movement. Guanidine hydrochloride (0.5 M) extracts both hyaluronate and chondroitin sulfate proteoglycan from newly formed sites (but which are not complexed in an aggregate similar to that found in cartilage) but only hyaluronate from fully matured sites, indicating that the chondroitin sulfate proteoglycans somehow become resistant to extraction with time. Both high and low molecular weight forms of hyaluronate also accumulate in sites with time. Zwittergent 3-12 solubilizes free chains of heparan sulfate but not heparan sulfate proteoglycan from either class of sites. Most of the heparan sulfate in newly formed sites occurs as a large proteoglycan excludable from Sepharose CL-6B columns under stringent dissociative conditions; however, as adhesion sites "mature", a portion of this proteoglycan appears to be converted by some unknown mechanism to free heparan sulfate chains. This process may very well weaken the close adhesive contacts between the cell and substratum mediated by fibronectin's binding to the highly multivalent heparan sulfate proteoglycans. These studies further indicate that there is considerable metabolism and changing intermolecular associations of proteoglycans within these sites during movement of fibroblasts over this model extracellular matrix.  相似文献   

13.
We have isolated and characterized the cell-associated and secreted proteoglycans synthesized by a clonal line of rat adrenal medullary PC12 pheochromocytoma cells, which have been extensively employed for the study of a wide variety of neurobiological processes. Chondroitin sulfate accounts for 70-80% of the [35S] sulfate-labeled proteoglycans present in PC12 cells and secreted into the medium. Two major chondroitin sulfate proteoglycans were detected with molecular sizes of 45,000-100,000 and 120,000-190,000, comprising 14- and 105-kDa core proteins and one or two chondroitin sulfate chains with an average molecular size of 34 kDa. In contrast to the chondroitin sulfate proteoglycans, one major heparan sulfate proteoglycan accounts for most of the remaining 20-30% of the [35S] sulfate-labeled proteoglycans present in the PC12 cells and medium. It has a molecular size of 95,000-170,000, comprising a 65-kDa core protein and two to six 16-kDa heparan sulfate chains. Both the chondroitin sulfate and heparan sulfate proteoglycans also contain O-glycosidically linked oligosaccharides (25-28% of the total oligosaccharides) and predominantly tri- and tetraantennary N-glycosidic oligosaccharides. Proteoglycans produced by the original clone of PC12 cells were compared with those of two other PC12 cell lines (B2 and F3) that differ from the original clone in morphology, adhesive properties, and response to nerve growth factor. Although the F3 cells (a mutant line derived from B2 and reported to lack a cell surface heparan sulfate proteoglycan) do not contain a large molecular size heparan sulfate proteoglycan species, there was no significant difference between the B2 and F3 cells in the percentage of total heparan sulfate released by mild trypsinization, and both the B2 and F3 cells synthesized cell-associated and secreted chondroitin sulfate and heparan sulfate proteoglycans having properties very similar to those of the original PC12 cell line but with a reversed ratio (35:65) of chondroitin sulfate to heparan sulfate.  相似文献   

14.
The murine embryonal carcinoma derived cell line M1536-B3 secretes the basement membrane components laminin and entactin and, when grown in bacteriological dishes, produces and adheres to sacs of basement membrane components. Heparan sulfate proteoglycans have been isolated from these sacs, the cells, and the medium. At least three different heparan sulfate proteoglycans are produced by these cells as determined by proteoglycan size, glycosaminoglycan chain length, and charge density. The positions of the N- and O-sulfate groups in the glycosaminoglycan chains from each proteoglycan appear to be essentially the same despite differences in the size and culture compartment locations of the heparan sulfate proteoglycan. Additionally, small quantities of chondroitin sulfate proteoglycans are found in each fraction and copurify with each heparan sulfate proteoglycan. Because this cell line appears to synthesize at least three different heparan sulfate proteoglycans which are targeted to different final locations (basement membrane, cell surface, and medium), this will be a useful system in which to study the factors which determine final heparan sulfate proteoglycan structures and culture compartment targeting and the possible effects of the protein core(s) on heparan sulfate carbohydrate chain synthesis and secretion.  相似文献   

15.
The synthesis of proteoglycans by aorta explants from rabbits with diet-induced atherosclerosis and controls was studied by 35S-incorporation. Proteoglycans were isolated under dissociative conditions from incubation medium and from arterial explants. Additionally, the tissue proteoglycans that were not extracted by 4 M guanidine-HCl were solubilized by digestion of the tissue by elastase in the presence of proteinase inhibitors. The residual tissue was hydrolyzed by papain and glycosaminoglycans were isolated. The atherosclerotic aorta tissue incorporated twice the amount of 35S into proteoglycans than observed for controls; in both groups about 70% of the label incorporated into the tissue was noted in the proteoglycans extracted by guanidine-HC;, while about 30% of the total 35S-labeled proteoglycans synthesized by the explants were found in the media. Atherosclerotic tissue incorporated 35S predominantly into chondroitin sulfate proteoglycans when compared to control tissue. The chondroitinase ABC-digestable proteoglycans that were extracted by guanidine-HCl from atherosclerotic tissues were of larger molecular size than those from control tissue, but the core proteins from these preparations were similar. The heparan sulfate proteoglycan that was obtained by dissociative extraction from atherosclerotic tissue had greater amounts of N-acetyl and lesser amounts of N-sulfate ester groups than the preparation from control tissue. Digestion of the tissue by elastase yielded heparan sulfate proteoglycan as the major constituent in both groups, although atherosclerotic tissue contained relatively small amounts of this proteoglycan. The residual tissue from both groups contained chondroitin sulfate and heparan sulfate as the major glycosaminoglycans with the latter showing a decrease with atherosclerosis. Atherosclerotic tissue secreted into the medium about two-fold more 35S-labeled proteoglycans with larger molecular size than control tissue; proteoglycans of the heparan sulfate and chondroitin sulfate types were the major constituents in the culture medium of both tissues. Thus, proteoglycans undergo both quantitative and qualitative changes in atherosclerosis, reflecting the enhanced smooth muscle cell activity. These changes are potentially important in modulating lipoprotein binding and hemostatic properties, as well as fibrillogenesis of the arterial wall.  相似文献   

16.
Glycosaminoglycan side chains of membrane proteoglycans have been claimed to be located at the outermost layer of the glycocalyx surrounding the cell. In this study measurements by surface plasmon resonance and solid-phase assay have shown that both chondroitin sulfate and keratan sulfate but not heparin associate with phosphatidylcholine under physiological conditions. Spectrophotometric measurements also showed that chondroitin sulfate restricts the lateral diffusion of phosphatidylcholine in liposomes. These findings indicate that chondroitin sulfate and/or keratan sulfate chains of membrane proteoglycans crouch on the surface of the membrane while heparan sulfate chains stretch outward from the membrane surface as postulated traditionally.  相似文献   

17.
The proteoglycans synthesized by primary chick skeletal muscle during in vitro myogenesis were compared with those of muscle-specific fibroblasts. Cultures of skeletal muscle cells and muscle fibroblasts were separately labeled using [35S] sulfate as a precursor. The proteoglycans of the cell layer and medium were separately extracted and isolated by ion-exchange chromatography on DEAE-Sephacel followed by gel filtration chromatography on Sepharose CL-2B. Two cell layer-associated proteoglycans synthesized both by skeletal muscle cells and muscle fibroblasts were identified. The first, a high molecular weight proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.07 and contained exclusively chondroitin sulfate chains with an average molecular weight greater than 50,000. The second, a relatively smaller proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.61 and contained primarily heparan sulfate chains with an average molecular weight of 16,000. Two labeled proteoglycans were also found in the medium of both skeletal muscle and muscle fibroblasts. A high molecular weight proteoglycan was found with virtually identical properties to that of the high molecular weight chondroitin sulfate proteoglycan of the cell layer. A second, smaller proteoglycan had a similar monomer size (Kav of 0.63) to the cell layer heparan sulfate proteoglycan, but differed from it in that this molecule contained primarily chondroitin sulfate chains with an average molecular weight of 32,000. Studies on the distribution of these proteoglycans in muscle cells during in vitro myogenesis demonstrated that a parallel increase in the relative amounts of the smaller proteoglycans occurred in both the cell layer and medium compared to the large chondroitin sulfate proteoglycan in each compartment. In contrast, muscle-derived fibroblasts displayed a constant ratio of the small proteoglycans of the cell layer and medium fractions, compared to the larger chondroitin sulfate proteoglycan of the respective fraction as a function of cell density. Our results support the concept that proteoglycan synthesis is under developmental regulation during skeletal myogenesis.  相似文献   

18.
Human neuroblastoma cells (Platt) were detached from tissue culture substrata with a Ca2+ chelating agent, and then the suspended cells were extracted with a sodium dodecyl sulfate (SDS)-containing buffer to maximally solubilize their sulfate-radiolabeled proteoglycans. The majority of the high-molecular-weight material in these dissociative extracts was heparan sulfate proteoglycan, which resolves into two heterodisperse size classes upon gel filtration on columns of Sepharose CL4B. After removal of SDS from these extracts by hydrophobic chromatography on Sep-Pak C18 cartridges, extracts were further fractionated on various affinity matrices. All of the sulfate-radiolabeled material eluted as one peak from DEAE-Sephadex ion-exchange columns. In contrast, affinity fractionation on Sepharose columns derivatized with the heparan sulfate-binding protein, platelet factor-4, resolved three major and one minor subsets of these components. The nonbinding fraction contained some heparan sulfate proteoglycan and some chondroitin sulfate. The weak-binding fraction contained principally heparan sulfate proteoglycan, as well as a small amount of chondroitin sulfate proteoglycan; the gel-filtration properties of these proteoglycans before or after alkaline borohydride treatment indicated that they were small in size, containing perhaps 2 to 4 glycosaminoglycan chains. The high-affinity fraction eluted from platelet factor 4-Sepharose was composed entirely of “singlechain” heparan sulfate. A portion of the heparan sulfate proteoglycan of the original extract bound to the hydrophobic affinity matrix, octyl-Sepharose, and this hydrophobic proteoglycan partitioned into the nonbinding and weak-binding fractions of the platelet factor 4-Sepharose affinity columns. These studies reveal that the majority of the proteoglycan made by these neuronal cells in culture is of the heparan sulfate class, is small in size when compared to other characterized proteoglycans, and can be resolved into several overlapping subsets when fractionated on affinity matrices.  相似文献   

19.
Biosynthesis of proteoglycans by isolated rabbit glomeruli   总被引:8,自引:0,他引:8  
Isolated rabbit glomeruli were incubated in vitro with 35SO4 in order to analyze the proteoglycans synthesized. Proteoglycans extracted with 4 M guanidine HCl from whole isolated glomeruli and from purified glomerular basement membrane (GBM) were analyzed by gel filtration chromatography. Two types of sulfated proteoglycans were found to be synthesized by rabbit glomeruli and these contained either heparan sulfate or chondroitin/dermatan sulfate glycosaminoglycan chains. These glycosaminoglycans were characterized by their sensitivity to selective degradation by nitrous acid or chondroitinase ABC, respectively. The major proteoglycan extracted from the whole glomeruli was a chondroitin/dermatan sulfate species (75%), while purified GBM contained mostly heparan sulfate (70%). The glycosaminoglycan chains were estimated to be about 12,000 molecular weight which is consistent with previous estimates for similar molecules extracted from the rat GBM.  相似文献   

20.
Abstract: The binding of the amyloid protein precursor (APP) to heparan sulfate proteoglycans has been shown to stimulate the neurite-promoting activity of APP. In this study, proteoglycans that bind with high affinity to APP were characterized. Conditioned medium from cultures of postnatal day 3 mouse brain cells was applied to an affinity column containing a peptide homologous to a heparin-binding domain of APP. A fraction 17-fold enriched in proteoglycans was recovered by elution with a salt gradient. APP bound saturably and with high affinity to the affinity-purified proteoglycan fraction. Scatchard analysis of the binding showed that APP bound to high- and low-affinity sites with equilibrium dissociation constants of 1.4 × 10−11 and 6.5 × 10−10 M , respectively. APP, in conjunction with the affinity-purified proteoglycan fraction, promoted neurite outgrowth. The affinity-purified proteoglycan fraction contained a heparan sulfate proteoglycan and a chondroitin sulfate proteoglycan. Digestion of the affinity-purified fraction with heparitinase I revealed a core protein of 63–69-kDa molecular mass, whereas digestion with chondroitinase ABC revealed a core protein of 100–110 kDa. The results suggest that expression of specific APP-binding proteoglycans may be an important step in the regulation of the neurite outgrowth-promoting activity of APP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号