首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The turning point between apoptosis and necrosis induced by hydrogen peroxide (H2O2) have been investigated using human T-lymphoma Jurkat cells. Cells treated with 50 μM H2O2 exhibited caspase-9 and caspase-3 activation, finally leading to apoptotic cell death. Treatment with 500 μM H2O2 did not exhibit caspase activation and changed the mode of death to necrosis. On the other hand, the release of cytochrome c from the mitochondria was observed under both conditions. Treatment with 500 μM H2O2, but not with 50 μM H2O2, caused a marked decrease in the intracellular ATP level; this is essential for apoptosome formation. H2O2-reducing enzymes such as cellular glutathione peroxidase (cGPx) and catalase, which are important for the activation of caspases, were active under the 500 μM H2O2 condition. Prevention of intracellular ATP loss, which did not influence cytochrome c release, significantly activated caspases, changing the mode of cell death from necrosis to apoptosis. These results suggest that ATP-dependent apoptosome formation determines whether H2O2-induced cell death is due to apoptosis or necrosis.  相似文献   

2.
3.
The purpose of this study was to quantify the effects of extracellularly generated partially reduced oxygen species on active sodium (NA+) transport across the ventral toad skin, a well-studied epithelium. Sections of skin from decapitated toads were mounted in an Ussing chamber, bathed on both sides with electrolyte solution containing 500 μM xanthine and bubbled continuously with room air. The tissues were short-circuited, and short circuit current (Isc) and tissue resistance (Rt were monitored continuously with an automatic voltage clamp apparatus. Fifteen mU/ml of xanthine oxidase (XO), either purchased from Calbiochem or purified from cream, were instilled in either the apical (mucosal) or basolateral (serosal) baths at t = 0 and T = 10 min. Hydrogen peroxide (H2O2) concentrations increased to 200 μM within the first 20 min and then decreased, reaching a value of 40 μM by 60 min. Mean [H2O2] was 90 μM. Instillation of XO in the apical bath resulted in a large decrease in Isc and an increase in Rt, their values being 43% and 160% of their corresponding controls 85 min after the first instillation. Addition of superoxide dismutase and catalase completely prevented these changes. Instillation of XO in the basolateral bath had no effect. Similar physiological responses were obtained using the Calbiochem XO or the purified XO, which contained no measurable protease activity. It was concluded that extracellularly generated partially reduced oxygen species may interfere with active Na+ transport by possibly damaging apical Na+ channel proteins.  相似文献   

4.
Vanadate solutions as ‘metavanadate’ (containing ortho and metavanadate species) and ‘decavanadate’ (containing manly decameric species) (5 mM; 1 mg/kg) were injected intraperitoneously in Halobatrachus didactylus (toadfish), in order to evaluate the contribution of decameric vanadate species to vanadium (V) intoxication on the cardiac tissue. Following short-term exposure (1 and 7 days), different changes on antioxidant enzyme activities—superoxide dismutase (SOD), catalase (CAT), selenium-glutathione peroxidase (Se-GPx), total glutathione peroxidase (GPx), lipid peroxidation and subcellular vanadium distribution were observed in mitochondrial and cytosolic fractions of heart ventricle toadfish. After 1 day of vanadium intoxication, SOD, CAT and Se-GPx activities were decreased up to 25%, by both vanadate solutions, except mitochondrial CAT activity that increased (+23%) upon decavanadate administration. After 7 days of exposure, decavanadate versus metavanadate solutions promoted different effects mainly on cytosolic CAT activity (−56% versus −5%), mitochondrial CAT activity (−10% versus +10%) and total GPx activity (+1% versus −35%), whereas lipid peroxidation products were significantly increased (+82%) upon 500 μM decavanadate intoxication. Accumulation of vanadium in total (0.137±0.011 μg/g) and mitochondrial (0.022±0.001 μg/g) fractions was observed upon 7 days of metavanadate exposure, whereas for decavanadate, the concentration of vanadium increased in cytosolic (0.020±0.005 μg/g) and mitochondrial (0.021±0.009 μg/g) fractions. It is concluded that decameric vanadate species are responsible for a strong increase on lipid peroxidation and a decrease in cytosolic catalase activity thus contributing to oxidative stress responses upon vanadate intoxication, in the toadfish heart.  相似文献   

5.
Intracellular levels of H2O2 in BHK-21 cells are not static but decline progressively with cell growth. Exposure of cells to inhibitors of catalase, or glutathione peroxidase, not only diminishes this decline but also depresses rates of cell proliferation, suggesting important growth regulatory roles for those antioxidant enzymes. Other agents which also diminish the growth-associated decline in intracellular levels of H2O2, such as the superoxide dismutase mimic, copper II—(3,5-diisopropylsalicylate)2, or docosahexaenoic acid, also reduced cell proliferation. In contrast, proliferation can be stimulated by the addition of 1 μM exogenous H2O2 to the culture medium. Under these conditions, however, intracellular levels of H2O2 are unaffected, whereas there is a reduction in intracellular levels of glutathione. It is argued that critical balances between intracellular levels of both H2O2 and glutathione are of significance in relation both to growth stimulation and inhibition. In addition growth stimulatory concentrations of H2O2, whilst initially leading to increased intracellular levels of lipid peroxidation breakdown products, appear to “trigger” their metabolism, possibly through aldehyde dehydrogenase, whose activity is also stimulated by H2O2  相似文献   

6.
Redox reactions were studied in more than 90% pure tonoplast and plasma membranes isolated by free-flow electrophoresis from soybean (Glycine max) hypocotyls. Both types of membrane contained a b-type cytochrome (max = 561 nm) and a noncovalently bound flavin, two possible components of a transmembrane electron-transport chain. Isolated tonoplast and plasma membranes reduced ferricyanide, indophenol and various iron complexes with NADH or NADPH as electron donors. The redox activity was inhibited in tonoplast membranes by about 60% by 10 μM p-chloromercuribenzene sulfonate, 8% by 500 μM lanthanum nitrate and 10% by 100 μM nitrophenyl acetate. In contrast, the redox activity of isolated plasma membranes was inhibited by about 60% by 500 μM lanthanum nitrate or 100 μM nitrophenyl acetate, but only 25% by 10 μM p-chloromercuribenzene sulfonate. The results show that both tonoplast and plasma membranes of soybean contain active electron-transport systems, but that the two systems respond differently to inhibitors.  相似文献   

7.
The aim of this work was to investigate the response of the antioxidant defense system to two oxidative stressors, hydrogen peroxide and tert-butyl hydroperoxide, in HepG2 cells in culture. The parameters evaluated included enzyme activity and gene expression of superoxide dismutase, catalase, glutathione peroxidase, and activity of glutathione reductase. Besides, markers of the cell damage and oxidative stress evoked by the stressors such as cell viability, intracellular reactive oxygen species generation, malondialdehyde levels, and reduced glutathione concentration were evaluated. Both stressors, hydrogen peroxide and tert-butyl hydroperoxide, enhanced cell damage and reactive oxygen species generation at doses above 50 microM. The concentration of reduced glutathione decreased, and levels of malondialdehyde and activity of the antioxidant enzymes consistently increased only when HepG2 cells were treated with tert-butyl hydroperoxide but not when hydrogen peroxide was used. A slight increase in the gene expression of Cu/Zn superoxide dismutase and catalase with 500 microM tert-butyl hydroperoxide and of catalase with 200 microM hydrogen peroxide was observed. The response of the components of the antioxidant defense system evaluated in this study indicates that tert-butyl hydroperoxide evokes a consistent cellular stress in HepG2.  相似文献   

8.
The protective effects of resveratrol and 4-hexylresorcinol against oxidative DNA damage in human lymphocytes induced by hydrogen peroxide were investigated. Resveratrol and 4-hexylresorcinol showed no cytotoxicity to human lymphocytes at the tested concentration (10-100 μM). In addition, DNA damage in human lymphocytes induced by H 2 O 2 was inhibited by resveratrol and 4-hexylresorcinol. Resveratrol and 4-hexylresorcinol at concentrations of 10-100 μM induced an increase in glutathione (GSH) levels in a concentration-dependent manner. Moreover, these two compounds also induced activity of glutathione peroxidase (GPX) and glutathione reductase (GR). The activity of glutathione-S-transferase (GST) in human lymphocytes was induced by resveratrol. Resveratrol and 4-hexylresorcinol inhibited the activity of catalase (CAT). These data indicate that the inhibition of resveratrol and 4-hexylresorcinol on oxidative DNA damage in human lymphocytes induced by H 2 O 2 might be attributed to increase levels of GSH and modulation of antioxidant enzymes (GPX, GR and GST).  相似文献   

9.
Hydrogen peroxide (H2O2) is known to both induce and inhibit apoptosis, however the mechanisms are unclear. We found that H2O2 inhibited the activity of recombinant caspase-3 and caspase-8, half-inhibition occurring at about 17 μM H2O2. This inhibition was both prevented and reversed by dithiothreitol while glutathione had little protective effect. 100–200 μM H2O2 added to macrophages after induction of caspase activation by nitric oxide or serum withdrawal substantially inhibited caspase activity. Activation of H2O2-producing NADPH oxidase in macrophages also caused catalase-sensitive inactivation of cellular caspases. The data suggest that the activity of caspases in cells can be directly but reversibly inhibited by H2O2.  相似文献   

10.
The cytotoxicity of hydrogen peroxide is, at least partly, mediated by the induction of intralysosomal iron-catalyzed oxidative reactions with damage to lysosomal membranes and leakage of destructive contents. We hypothesize that minor such leakage may be nonlethal, and the ensuing cellular degeneration repairable. Consequently, we investigated, using a model system of cultured J-774 cells, the effects of hydrogen peroxide in moderate concentrations on cellular viability, lysosomal membrane integrity, morphology, and ATP and reduced glutathione concentrations. These parameters were initially estimated directly after a 30 min exposure to a bolus dose of hydrogen peroxide in phosphate buffered saline at 37°C, and then again following subsequent recovery periods of different lengths under ordinary culture conditions. All cells survived an exposure to 250 μM hydrogen peroxide for 30 min, whereas 350 and 500 μM exposure was lethal to a small fraction of cells. The oxidative stress caused early, time- and dose-dependent, partial relocalization of the lysosomotropic weak base acridine orange from the lysosomal compartment to the cytosol. This phenomenon is known to parallel leakage of damaging lysosomal contents such as hydrolytic enzymes. There were also signs of cellular damage in the form of surface blebbing and increased autophagocytosis, more marked with the higher doses of hydrogen peroxide. Also found was a rapid depletion of ATP and GSH. These alterations were all reversible, as long as cells were exposed to nonlethal amounts of hydrogen peroxide. Based on these and previous findings, we suggest that lysosomes are less stable organelles than has hitherto been assumed. Restricted lysosomal leakage might be a common event, for example, during sublethal oxidative stress, causing reversible, degenerative alterations, which are repaired by autophagocytosis.  相似文献   

11.
The effect of menadione (MQ; 2-methyl-1,4-naphtoquinone) superoxide generating agent on the biological activity of two strains of white-rot fungi, Fomes fomentarius and Tyromyces pubescens, was determined. In this study 1 mM of MQ solution was added to 10-day-old idiophasic cultures. The application of MQ to F. fomentarius and T. pubescens cultures stimulated extracellular laccase (LAC) and manganese-dependent peroxidase (MnP) activities in comparison to the control values (without MQ). In the presence of MQ the concentration of oxalic acid in the medium of both fungi was dramatically decreased. MQ treatment also caused an increase of intracellular superoxide dismutase activity, formaldehyde and glutathione disulfide level in both strains. In the case of F. fomentarius, addition of MQ enhanced catalase activity. The rate of intra- and extracellular proteolysis decreased in F. fomentarius and increased in T. pubescens MQ treated cultures.  相似文献   

12.
Recent intervention studies revealed that supplementation with retinoids resulted in a higher incidence of lung cancer. Recently the causal mechanism has begun to be clarified. We report here that retinol caused cellular oxidative stress and modulated superoxide dismutase, catalase and glutathione peroxidase activities. Retinol (7 μM) significantly increased TBARS, conjugated dienes, and hydroperoxide-initiated chemiluminescence in cultured Sertoli cells. In response to retinol treatment superoxide dismutase, catalase and glutathione peroxidase activities increased. TBARS content and catalase activities were decreased by a free radical scavenger. These findings suggest that retinol may induce oxidative stress and modulate antioxidant enzyme activities in Sertoli cells.  相似文献   

13.
4-Hydroxynonenal (HNE) is one of the major end products of lipid peroxidation and may have either physiological or pathological significance regulating cell proliferation. We studied some biochemical effects of HNE, at various concentrations (0.1-100 μM), on Jurkat T cells incubated thereafter for 24, 48 and 72 h. HNE at low concentrations significantly enhanced the proliferation index, whereas at higher concentrations progressively blocked cell proliferation. Caspase 3 activity increased significantly at HNE concentrations between 1 and 10 μM and decreased at higher concentrations. Superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-Rd) increased progressively with HNE concentrations, particularly GSH-Px. Glucose-6-phosphate dehydrogenase (G6PDH) showed a different pattern, increasing at low HNE (1-5 μM) concentrations and rapidly declined thereafter. These results show that HNE may induce growth inhibition of Jurkat T cells and regulate the activity of typical antioxidant enzymes. Furthermore, the protective effect of doubling the foetal calf serum still points out the risk that cultured cells undergo oxidative stress during incubation.  相似文献   

14.
Hamamelitannin, which is a component of bark extract of hamamelis (Hamamelis virginior L.), was found to be a potent scavenger of superoxide anion radicals. Superoxide anion scavenging activity of the compound was evaluated by ESR-spin trap method using DMPO (5,5'-dimethyl-1-pyrroline-N-oxide) as a spin trapping agent. The IC50 value (the concentration producing 50% inhibition of superoxide anion radicals) of hamamelitannin was found to be 1.38 ± 0.06 μM much lower than that of ascorbic acid (23.31 ± 2.23 μM). Supporting the superoxide scavenging activity of hamamelitannin, the compound showed both suppresive ability against depolymelization of hyaluronic acid and protective ability against cytotoxicity induced by superoxide anion radicals. Hamamelitannin increased the survival rate of fibroblast to 85.5 ± 3.3%, compared with that of control (27.2 ± 4.3%).  相似文献   

15.
The effects of hydrogen peroxide on cell viability and, in particular, on lysosomal integrity were investigated in a model system of cultured, established, macrophage-like J-774 cells. The cells were found to rapidly degrade added hydrogen peroxide, withstanding concentrations 250μM without cell death; however, all tested concentrations (100-500/μM) substantially decreased cellular ATP to approximately the same degree. Concentrations of hydrogen peroxide 500/μM resulted in a pronounced and rapid decrease in cell viability preceded by the loss of lysosomal integrity, as judged by the relocalization of acridine orange, a lysosomotropic weak base, in pre-labelled cells. Hydrogen peroxide-induced relocalization of acridine orange and cell death were either enhanced or much prevented, according to if the cells were initially allowed to endocytose ferric iron or the specific iron-chelator deferoxamine, respectively. Depletion of ATP, however, was not associated with the loss of lysosomal integrity and viability regardless of iron or deferoxamine pretreatment. Pre-exposure to E-64, an inhibitor of lysosomal thiol proteases, resulted in the reduction of both lysosomal membrane damage and cell death. The results are interpreted as indicating (i) generation of hydroxyl radicals within the secondary lysosomal compartment due to the occurrence of reactive ferrous iron, leading to (ii) peroxidative alterations of the lysosomal membrane resulting in (iii) loss of lysosomal membrane integrity with dissipation of the proton gradient and leakage of lysosomal contents, including hydrolytic enzymes, into the cell sap. The partial protection by E-64 may result from hydroxyl radical scavening by accumulated non-degraded autophagocytosed lysosomal material, and/or decreased availability of reactive redox-cycling iron due to decreased enzymatic digestion of autophagocytosed iron-containing metalloproteins. Moreover, our results show that the normal lysosomal content of iron, capable of redox cycling, of the cell line under study is enough to induce oxidative damage leading to loss of lysosomal integrity. It is suggested that lysosomal damage may be an important cause of cell degeneration under conditions of increased intra- or extracellular hydrogen peroxide-formation.  相似文献   

16.
Lee YS  Jin DQ  Park SH  Han SY  Kim HS  Jeong TC  Huh K  Kim JA 《Free radical research》2002,36(12):1283-1289
Oxidative stress has been known to be involved in the mechanism of toxic effects of various agents on many cellular systems. In this study we investigated the role of reactive oxygen species (ROS) in 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD)-induced neuronal cell toxicity using SK-N-SH human neuroblastoma cells. TCDD inhibited proliferation of the cells in a dose-dependent manner, which was revealed by MTT staining, counting of cells stained with trypan blue and [ 3 H]thymidine uptake assay. TCDD also suppressed the basal generation of ROS in a time- and concentration-dependent manner assessed by 2',7'-dichlorofluorescein fluorescence. In addition, TCDD induced a dose-dependent inhibition of lipid peroxidation, a biomarker of oxidative stress, whereas it significantly increased the level of glutathione (GSH), an intracellular free radical scavenger in the cells. Moreover, TCDD altered the activities of major antioxidant enzymes; increase in superoxide dismutase (SOD) and catalase, but decrease in glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-Red). Pretreatment with l -buthionine- S , R -sulfoximine (BSO, 50 μM), an inhibitor of GSH synthesis, significantly prevented the TCDD-induced reduction in lipid peroxidation and cell proliferation. Interestingly, exogenous application of an oxidant, H 2 O 2 (50 μM) markedly restored the inhibited cell proliferation induced by TCDD. Taken together, these results suggest that alteration of cellular redox balance may mediate the TCDD-induced inhibition of proliferation in human neuronal cells.  相似文献   

17.
Metabolic responses of mammalian cells toward declining oxygen concentration are generally thought to occur when oxygen limits mitochondrial ATP production. However, at oxygen concentrations markedly above those limiting to mitochondria, several mammalian cell types display reduced rates of oxygen consumption without energy stress or compensatory increases in glycolytic ATP production. We used mammalian Jurkat T cells as a model system to identify mechanisms responsible for these changes in metabolic rate. Oxygen consumption was 31% greater at high oxygen (150–200 μM) compared to low oxygen (5–10 μM). Hydrogen peroxide was implicated in the response as catalase prevented the increase in oxygen consumption normally associated with high oxygen. Cell-derived hydrogen peroxide, predominately from the mitochondria, was elevated with high oxygen. Oxygen consumption related to intracellular calcium turnover was shown, through EDTA chelation and dantrolene antagonism of the ryanodine receptor, to account for 70% of the response. Oligomycin inhibition of oxygen consumption indicated that mitochondrial proton leak was also sensitive to changes in oxygen concentration. Our results point toward a mechanism in which changes in oxygen concentration influence the rate of hydrogen peroxide production by mitochondria, which, in turn, alters cellular ATP use associated with intracellular calcium turnover and energy wastage through mitochondrial proton leak.  相似文献   

18.
Menadione (MQ), a quinone used with cancer chemotherapeutic agents, causes cytotoxicity to endothelial cells (EC). Previous studies have suggested that MQ induces an oxidative stress and dysfunction in EC by either increasing hydrogen peroxide (H(2)O(2)) production or depleting intracellular glutathione (GSH), the main intracellular antioxidant. Since a primary function of EC is to form a barrier to fluid movement into tissues, protecting organs from edema formation and dysfunction, our aim was to see if MQ would cause a barrier dysfunction and to ascertain the mechanism. Using diffusional permeability to fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) as a measure of barrier function, we found that 15 micro M MQ incubated with a bovine pulmonary artery EC (BPAEC) monolayer for 4 h produced a profound barrier failure ( approximately 7-fold increase in permeability) with a parallel fall in glutathione, almost to depletion. These two events were highly correlated. Immunofluorescent imaging showed formation of paracellular holes consistent with a loss or rearrangement of cell-cell and cell-matrix adhesion molecules. H(2)O(2) (100 micro M), a concentration which gave about the same increase in permeability as MQ, only slightly decreased GSH concentration. Antioxidants, such as catalase (CAT) and dimethylthiourea (DMTU), which were able to block the H(2)O(2)-induced changes, had no effect on the MQ-induced permeability and GSH changes, suggesting that H(2)O(2) was not involved in MQ-induced effects. MQ caused a severe EC cytotoxicity as judged by lactate dehydrogenase (LDH) leakage from the EC, whereas H(2)O(2) caused only a minor increase. Also, MQ profoundly inhibited the activities of glucose-6-phosphate dehydrogenase (G6PDH) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), key thiol enzymes involved in glutathione and ATP metabolism, whereas H(2)O(2) produced only a slight decrease in these activities. We conclude that the cytotoxicity of MQ and resulting barrier dysfunction correlate with GSH depletion and inactivation of key metabolic enzymes, compromising antioxidant defenses, rather than being consistent with H(2)O(2)-mediated oxidative stress.  相似文献   

19.
Platelet-activated factor (PAF) ( ), formyl-methionyl-leucyl-phenylalanine (fMPL) ( ), phorbol 12-myristate 13 acetate (PMA) ( ), opsonized zymosan (OPZ) (0.01–1 mg/ml) were potent stimuli to superoxide generated by guinea-pig peritoneal macrophages. Superoxide generation by low (≤ −8M) concentrations but not high (≥−7M) concentrations of PAF or fMLP were attenuated by rolipram (100 μM) in the presence of 1 μM prostaglandin E2 (PGE2). That stimulated by PMA or OPZ, however, was unaffected. At 1μM, staurosporine was a potent inhibitor of superoxide generation stimulated by both fMLP and PAF but was without effect on that stimulated by OPZ. Superoxide generation stimulated by fMLP, PAF and OPZ was inhibited by 100 μM mepacrine. We conclude that superoxide generation stimulated by the chemoattractants fMLP and PAF involves a cyclic AMP regulated and cyclic AMP independent process. The cyclic AMP independent process is mediated by protein kinase C. Although protein kinase C seems a central element in the respiratory burst stimulated by fMLP, PAF and PMA that stimulated by OPZ bypasses this mechanism. Phospholipase A2 however, represents a common stage in the signal transduction pathway.  相似文献   

20.
The activities of reactive oxygen species scavenging enzymes, superoxide dismutases (SODs) and catalase (in cells of two melanomas (mouse B16 and human SK23) and in Chinese hamster ovary (CHO) cells were examined. Melanoma cells are relatively depleted in activities of superoxide dismutases and catalase as compared to CHO cells. Short equitoxic (500μM for CHO and B16 cells and 5 μM for SK23 cells) paraquat treatment (15 min before the X-irradiation, 45 min in postirradiation period - the total time of treatment was 1 h) caused an increase in radiation resistance, measured as colony forming ability, in two of the three lines examined.

It is proposed that PQ may exert its radioprotective effect by induction of antioxidant enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号