首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hawlena H  Abramsky Z  Krasnov BR 《Oecologia》2005,146(2):200-208
Parasites often confront conflicting demands when evaluating and distributing themselves among host individuals, in order to attain maximum reproductive success. We tested two alternative hypotheses about host preference by fleas in relation to the age of their rodent host. The first hypothesis suggests that fleas select adult over juvenile rodents because the latter represent a better nutritional resource (the “well-fed host” hypothesis), whereas the second hypothesis suggests that fleas prefer the weaker and less resistant juveniles because they are easier to colonise and exploit (“poorly fed host” hypothesis). We sampled fleas (Synosternus cleopatrae) on the gerbil (Gerbillus andersoni) in 23 different plots in the Negev desert and found an unequal distribution of fleas between adult and juvenile hosts. Furthermore, flea distribution changed as a function of flea density—from juvenile-biased flea parasitism (the “poorly fed host” hypothesis) at low densities to adult-biased flea parasitism (the “well-fed host” hypothesis) at high densities. Other factors that influenced flea preference were soil temperature and the presence of ticks. These results suggest that host selection is not an explicit alternative choice between adults and juveniles (“well-fed host” versus “poorly fed host” hypotheses), but rather a continuum where the distribution between adults and juveniles depends on host, parasite, and environmentally related factors.  相似文献   

2.
Grooming behaviour plays various roles in the health care, reproduction, and social life of an individual vertebrate. However, the reasons for the variability in time spent grooming amongst species, populations and individuals are not fully understood. We tested the hypothesis that the main role of grooming is ectoparasite removal and thus that time spent grooming by an animal reflects the costs of parasite infestation offset against the costs of grooming. The test was conducted on a rodent, Meriones crassus, that is parasitised by a flea, Xenopsylla conformis. We monitored behaviour of juvenile and adult rodents before and after flea infestation and quantified the probability of mortality of fleas with respect to the time spent grooming in adults compared with juvenile rodents. We predicted that: (1) increased costs of flea infestation (e.g. in parasitised as opposed to flea‐free rodents and in juveniles as opposed to adults) increases time spent grooming and (2) mortality probability per flea increases with increasing time spent grooming and is higher for fleas on juveniles than for fleas on adult rodents. We were interested to discover at the expense of which activity grooming is increased. Our findings established that the major role of grooming is in flea removal, as exposure to fleas evoked grooming activity in all rodents and grooming activity explained 57–70% of the variation in flea mortality. Furthermore, we showed that the rise in grooming activity was at the expense of resting. However, we found only partial support for the predicted increase in grooming time with increasing costs of flea infestation. Flea infestation did indeed increase the time spent grooming by rodents. Nevertheless, juvenile rodents who incur higher costs of flea infestation spent less time grooming than adults and sustained similar flea densities, suggesting that these hosts are constrained by some other factors, such as feeding time.  相似文献   

3.
Host choice and fecundity are two factors that may contribute to the variation in flea counts observed when assessing the potential risk of flea-borne transmission of pathogens from rodents to humans. Using the black rat, Rattus rattus Linnaeus, as host the effects of age and sex on host choice and fecundity of the Oriental rat flea, Xenopsylla cheopis Rothschild, were examined experimentally at 25 degrees C and 80% rh. During the first two days of emergence from cocoons, female fleas dominated the sex ratio by 4:1 but from the third day onwards this switched to a male-dominated sex ratio of 4:1. The sex of the flea did not influence their host-seeking behaviour. Newly emerged fleas of both sexes were not influenced by the rat's presence and at seven days old both sexes demonstrated similar levels of attraction toward the rat host. The sex of the rat did not affect flea host-seeking behaviour. There was a 50-70% decline in the initial number of adult fleas during the first week after their release onto a rat host, and this decline was greatest on juvenile rats. Flea fecundity was also significantly lower on juvenile rat hosts but no differences due to the sex of the rat were observed. This experimental study supports the hypothesis that differences in flea count due to host sex, reported in field surveys, result from sexual differences in host behaviour and not from discriminatory host-seeking behaviour by X. cheopis. Differences in flea count due to host age may be affected by differences in X. cheopis fecundity, which may itself be mediated by host behaviour such as grooming.  相似文献   

4.
We studied age-dependent patterns of flea infestation in 7 species of rodents from Slovakia (Apodemus agrarius, A. flavicollis, A. sylvaticus, A. uralensis, Clethrionomys glareolus, Microtus arvalis, and M. subterraneus). We estimated the age of the host from its body mass and expected the host age-dependent pattern of flea abundance, the level of aggregation, and prevalence to be in agreement with theoretical predictions. We expected that the mean abundance and the level of aggregation of fleas would be lowest in hosts of smallest and largest size classes and highest in hosts of medium size classes, whereas pattern of variation of prevalence with host age would be either convex or asymptotic. In general, mean abundance and species richness of fleas increased with an increase in host age, although the pressure of flea parasitism in terms of number of fleas per unit host body surface decreased with host age. We found 2 clear patterns of the change in flea aggregation and prevalence with host age. The first pattern demonstrated a peak of flea aggregation and a trough of flea prevalence in animals of middle age classes (Apodemus species and C. glareolus). The second pattern was an increase of both flea aggregation and flea prevalence with host age (both Microtus species). Consequently, we did not find unequivocal evidence for the main role of either parasite-induced host mortality or acquired resistance in host age-dependent pattern of flea parasitism. Our results suggest that this pattern can be generated by various processes and is strongly affected by natural history parameters of a host species such as dispersal pattern, spatial distribution, and structure of shelters.  相似文献   

5.
We studied the co-occurrence of flea species in infracommunities of 16 rodents from four regions (South Africa, Tanzania, central Europe and western Siberia) using null models, and predicted that flea co-occurrences will be expressed more strongly in male than in female hosts. We examined patterns of co-occurrence (measured as the C score) in infracommunities of fleas that are parasitic on male and female hosts by comparing co-occurrence frequencies with those expected by chance. When a significant degree of nonrandomness in flea co-occurrences was detected, it indicated aggregative infracommunity structure. In Tanzanian rodents, no significant flea co-occurrences were detected in either male or female hosts. In a South African rodent, significant flea co-occurrences were not detected in males, but were found in females in some localities. In Palaearctic rodents, significant nonrandomness was detected either equally for males and females or more frequently in males than in females. Meta-analyses demonstrated that the frequency of the detection of nonrandomness in flea co-occurrences was significantly higher in male than in female hosts. The values of the standardized effect size (SES) for the C score differed significantly among host species, but not between host genders. When the Palaearctic hosts were analyzed separately, the effects of both host gender and species appeared to be significant, with the SES values for the C score in males being smaller than those in females. The strength of the gender difference in the manifestation of flea community structure increased with increasing gender difference in flea species richness, and with decreasing gender difference in flea prevalence for the Palaearctic hosts. We conclude that male hosts are the main drivers of flea infracommunity structure. However, the manifestation of gender bias in flea community structure varies among host species, and is likely determined by the pattern of species-specific spatial behavior.  相似文献   

6.
We asked if and how feeding performance of fleas on an auxiliary host is affected by the phylogenetic distance between this host and the principal host of a flea. We investigated the feeding of 2 flea species, Parapulex chephrenis and Xenopsylla ramesis, on a principal (Acomys cahirinus and Meriones crassus, respectively) and 8 auxiliary host species. We predicted that fleas would perform better (higher proportion of fleas would feed and take larger bloodmeals) on (a) a principal rather than an auxiliary host and (b) auxiliary hosts phylogenetically closer to a principal host. Although feeding performance of fleas differed among different hosts, we found that: (1) fleas did not always perform better on a principal host than on an auxiliary host; and (2) flea performance on an auxiliary host was not negatively correlated with phylogenetic distance of this host from the principal host. In some cases, fleas fed better on hosts that were phylogenetically distant from their principal host. We concluded that variation in flea feeding performance among host species results from interplay between (a) inherent species-specific host defence abilities, (b) inherent species-specific flea abilities to withstand host defences and (c) evolutionary tightness of association between a particular host species and a particular flea species.  相似文献   

7.
Host-parasite association among 58 flea species parasitizing 40 mammal species in the Great Basin Desert of the western United States was investigated. Increased flea species richness was correlated with larger geographic ranges and stable locomotion of hosts. Hosts from habitats of moderately low productivity (sage and grass) and of Peromyscus maniculatus size, 10-33 g, had the highest flea species richness. Larger hosts had fewer flea species, but fleas were more prevalent. Increased host species richness correlated with flea species eye size. Mammals clustered into 3 major and 1 minor ecological groups, and fleas clustered into 2 major groups among rodents, and 6 minor groups, forming 12 host-parasite biocenoses. Factors producing biocenoses were shared burrows of mice and rats; food chains of hares, rabbits, squirrels, and their predators; keystone mammals: Lagurus curtatus, Neotoma lepida, Ochotona princeps, and Spermophilus townsendii; keystone fleas: Megabothris abantis, and Meringis hubbardi; or host isolation, Neotoma cinerea with Oropsylla montana, Sorex vagrans with Corrodopsylla curvata, and Tadarida brasiliensis with Sternopsylla distincta. Although host relatedness accounted for flea prevalence, host sociality explained the presence or absence of mammal-flea relationships.  相似文献   

8.
We studied reproductive performance in two flea species (Parapulex chephrenis and Xenopsylla ramesis) exploiting either a principal or one of eight auxiliary host species. We predicted that fleas would produce more eggs and adult offspring when exploiting (i) a principal host than an auxiliary host and (ii) an auxiliary host phylogenetically close to a principal host than an auxiliary host phylogenetically distant from a principal host. In both flea species, egg production per female after one feeding and production of new imago after a timed period of an uninterrupted stay on a host differed significantly between host species. In general, egg and/or new imago production in fleas feeding on an auxiliary host was lower than in fleas feeding on the principal host, except for the auxiliary host that was the closest relative of the principal host. When all auxiliary host species were considered, we did not find any significant relationship between either egg or new imago production in fleas exploiting an auxiliary host and phylogenetic distance between this host and the principal host. However, when the analyses were restricted to auxiliary hosts belonging to the same family as the principal host (Muridae), new imago production (for P. chephrenis) or both egg and new imago production (for X. ramesis) in an auxiliary host decreased significantly with an increase in phylogenetic distance between the auxiliary and principal host. Our results demonstrated that a parasite achieves higher fitness in auxiliary hosts that are either the most closely related to or the most distant from its principal host. This may affect host associations of a parasite invading new areas.  相似文献   

9.
Results of analysis of the Caucasian fauna of fleas and their association with mammal and avian hosts are reported. The Caucasian fauna of potential flea hosts comprises about 130 species of mammals and about 470 species of birds. Most of the flea species in the Caucasian fauna (88 out of 155) parasitize rodents, 51 species of which are permanent hosts of different flea species; 13 flea species occur on 11 species of insectivores; 13 flea species, on 13 species of chiropterans; 14 flea species, on 20 species of carnivores. Only 2 flea species parasitize artiodactyles. 54 species of birds are permanent hosts of 23 species of fleas from 4 genera in the Caucasus. Ten types of ranges of flea species are distinguished; host associations of the Caucasian flea species from these groups are discussed. The greatest numbers of hosts from the families Cricetidae, Muridae, and Sciuridae are associated with fleas with Euro-Asian (extra-Siberian), European, Turanian, and Iranian ranges. Soricidae are known as hosts of flea species with European and Euro-Turanian ranges. Four major groups of flea taxa are represented in the Caucasian fauna. The distribution of the first group is determined by the influence of the palaeofauna of the ancient European continent in the early Cenozoic; that of the second group, by the influence of the fauna of the ancient Asian continent during the Paleogene and part of the Neogene; the third, by the influence of the fauna of southern Europe starting with the Miocene. The fourth group comprises the species which immigrated from northern Europe and Asia in the Late Neogene (2–3 mln years ago).  相似文献   

10.
We characterized the relationship between fleas and their rodent hosts in the presence of prairie dog colonies and compared them to adjacent assemblages away from colonies. We evaluated the rodent-flea relationship by quantifying prevalence, probability of infestation, flea load, and intensity of fleas on rodents. As prairie dog burrows provide refugia for fleas, we hypothesized that prevalence, flea load, and intensity would be higher for rodents that are associated with black-tailed prairie dog colonies. Rodents were trapped at off- and on-colony grids, resulting in the collection of 4,509 fleas from 1,430 rodents in six study areas. The rodent community composition varied between these study areas. Flea species richness was not different between prairie dog colonies and the surrounding grasslands (p = 0.883) but was positively correlated with rodent species richness (p = 0.055). Prairie dog colonies did not increase the prevalence of fleas (p > 0.10). Flea loads on rodents did not vary between off- and on-colony grids at three of the study areas (p > 0.10). Based on the prevalence, infestation rates, and flea loads, we identified Peromyscus maniculatus, Onychomys leucogaster, and two Neotoma species as important rodent hosts for fleas and Aetheca wagneri, Orchopeus leucopus, Peromyscopsylla hesperomys, Pleochaetis exilis, and Thrassisfotus as the most important fleas associated with these rodents. Prairie dog colonies did not seem to facilitate transmission of fleas between rodent hosts, and the few rodent-flea associations exhibited significant differences between off- and on-colony grids.  相似文献   

11.
Induced responses of nestling great tits reduce hen flea reproduction   总被引:3,自引:0,他引:3  
The dynamics of host–parasite interactions depend to a large extent on the effect of host responses on parasite fitness. Exposure to parasites may induce behavioural or physiological responses in hosts that may reduce the subsequent survival or reproductive output of the parasite. Neonate hosts may further directly obtain immunologically active substances from their mother, for instance via milk in mammals or egg yolk in birds. However, the relative importance of maternally‐derived and self‐generated responses in inducing parasite resistance is poorly understood, especially in free‐living vertebrates. Here we investigate the complementary effect of experimentally induced maternal and neonate responses in great tit (Parus major) hosts on the reproductive success of their common ectoparasite, the hen flea (Ceratophyllus gallinae). In the laboratory we measured the number of eggs and larvae produced by individual flea females collected from host nests. In addition, the total number of larvae produced by an experimentally set number of flea females in the host's nestbox was assessed under field conditions. There was no indication of maternally‐transferred parasite resistance, since exposing the mother to fleas during the laying period did not affect the reproductive rate of fleas exploiting her offspring early or late in the nestling cycle. Independent of the maternal treatment, exposure of neonates to fleas early in the nestling period reduced the reproductive output of fleas late in the nestling cycle. The effect of the induced nestling response was seasonal, reducing flea reproduction in nests of early‐breeding hosts but not in nests of late‐breeding ones. Larvae production in the nestbox and in the laboratory was positively correlated, but under natural conditions the neonate response did not affect the size of the flea larvae population. Our results indicate induced responses as a means by which neonate avian hosts resist ectoparasites. Other factors, such as the environmental temperature and density‐dependent larval competition, may be more important in determining the size of the future parasite populations.  相似文献   

12.
Parasites should make the same decisions that every animal makes regarding fitness reward. They can maximize reproductive success by selection of those habitats that guarantee the greatest fitness output. We consider the host population as a habitat of a parasite population. Consequently, hosts (=habitats) that differ quantitatively or qualitatively will support different numbers of parasites. The nature of habitat selection can be detected by isodars, lines along which habitat selection yields equivalent fitness reward. We applied this approach to study host selection of five fleas, each infesting two desert rodents. Xenopsylla conformis, Xenopsylla ramesis, Nosopsyllus iranus theodori and Stenoponia tripectinata medialis parasitize Gerbillus dasyurus and Meriones crassus. Synosternus cleopatrae pyramidis parasitizes Gerbillus andersoni allenbyi and Gerbillus pyramidum. Three fleas ( X. conformis, X. ramesis and S. c. pyramidis) were able to perceive quantitative (amount of the resource; e.g. organic matter in the nest for flea larvae) and/or qualitative (pattern of resource acquisition; e.g. host defensiveness) differences between hosts. Two other fleas did not perceive between-host differences. X. conformis was a density-dependent host selector that showed sharp selectivity at low density. X. ramesis and S. c. pyramidis were density-independent host selectors with a direct correspondence of density with habitat quality. N. i. theodori and S. t. medialis were non-selectors with no relationship at all between density and host quality. The results of the application of the isodar theory suggest that ectoparasites, like other animals, behave as if they are able to make choices and decisions that favour environments in which their reproductive benefit is maximized.  相似文献   

13.
为揭示鼠、蚤空间分布特征与变化规律,本研究以准噶尔盆地鼠疫自然疫源地为靶区,基于鼠类和蚤类的样点采集数据,计算不同地貌的鼠、蚤生态学指标并分析其相关性。基于不同行政区生态学指标计算结果,借助Moran′s I指数、重心模型、标准差椭圆等分析方法探究不同行政区鼠、蚤生态学指标的聚类特征,开展鼠、蚤的空间分布特征及变化规律的相关研究。结果表明:(1)通过对不同地貌鼠、蚤生态指标的研究,可得出鼠、蚤的物种多样性和生态优势度呈负相关,表明在物种多样性较高的群落中,鼠、蚤生态优势度表现不明显。鼠类物种多样性较高的地貌类型与蚤类物种多样性呈正相关,证实鼠类(宿主)物种数量增加,蚤类(寄生)物种的数量也在增加。低海拔地区鼠、蚤群落的相似性总体上大于中海拔地区群落相似性,且相似性系数q值与Cody指数呈相反变化趋势;(2)不同鼠、蚤指标单变量Moran′s I指数表明,鼠类数量、子午沙鼠数量、蚤类均匀度的全局Moran′s I指数大于0,且P值小于0.05,表现出空间集聚现象。单变量局部空间自相关分析结果表明,部分鼠、蚤指标存在多种聚类模式,其中最为典型的聚类模式是高—高聚类模式。不同鼠、蚤指标双变量...  相似文献   

14.
Host identity, habitat type, season, and interspecific interactions were investigated as determinants of the community structure of fleas on wild carnivores in northwestern Mexico. A total of 540 fleas belonging to seven species was collected from 64 wild carnivores belonging to eight species. We found that the abundances of some flea species are explained by season and host identity. Pulex irritans and Echidnophaga gallinacea abundances were significantly higher in spring than in fall season. Flea communities on carnivore hosts revealed three clusters with a high degree of similarity within each group that was explained by the flea dominance of E. gallinacea, P. simulans, and P. irritans across host identity. Flea abundances did not differ statistically among habitat types. Finally, we found a negative correlation between the abundances of three flea species within wild carnivore hosts. Individual hosts with high loads of P. simulans males usually had significantly lower loads of P. irritans males or tend to have lower loads of E. gallinacea fleas and vice‐versa. Additionally, the logistic regression model showed that the presence of P. simulans males is more likely to occur in wild carnivore hosts in which P. irritans males are absent and vice‐versa. These results suggest that there is an apparent competitive exclusion among fleas on wild carnivores. The study of flea community structure on wild carnivores is important to identify the potential flea vectors for infectious diseases and provide information needed to design programs for human health and wildlife conservation.  相似文献   

15.
This study set out to determine whether the sex ratio of fleas collected from host bodies is a reliable indicator of sex ratio in the entire flea population. To answer this question, previously published data on 18 flea species was used and it was tested to see whether a correlation exists between the sex ratio of fleas collected from host bodies and the sex ratio of fleas collected from host burrows. Across species, the female:male ratio of fleas on hosts correlated strongly with the female:male ratio of fleas in their burrows, with the slope of the regression overlapping 1. Controlling for flea phylogeny by independent contrasts produced similar results. It was also ascertained whether a host individual is a proportional random sampler of male and female fleas and whether the sex ratio in flea infrapopulations depends on the size of infrapopulations and on the gender and age of a host. Using field data, the sex ratio in infrapopulations of 7 flea species parasitic on 4 rodent species was analysed. Populations of 3 species (Nosopsyllus iranus, Parapulex chephrenis and Xenopsylla conformis) were significantly female-biased, whereas male bias was found in 1 species (Synosternus cleopatrae). In general, the sex ratio of fleas collected from an individual rodent did not differ significantly from the sex ratio in the entire flea population. Neither host gender, and age nor number of fleas co-occurring on a host affected (a) the sex ratio in flea infrapopulations and (b) the probability of an infrapopulation to be either female- or male-biased.  相似文献   

16.
Summary The breeding period of the Antarctic flea, Glaciopsyllus antarcticus (Smit and Dunnet), was synchronised with the breeding period of the host, Southern Fulmar (Fulmarus glacialoides Smith). Although eggs were laid in the host nest, larvae developed amongst the down (particularly on the belly) of host chicks. Larvae were blood feeders and pupated amongst the down of host chicks. The development of pupae was arrested by ambient temperatures (mean temperature of +2.5°C in January), but recommenced when pupae were warmed. Female fleas comprised 55.8% of a collection of 1988 adults. Low numbers of adult fleas were found in nests prior to host breeding and subsequent to host fledging in comparison to numbers on the host; adults are therefore presumed to overwinter on the host, remote from the nest.  相似文献   

17.
We investigated the associations between ecological (density, shelter structure), morphological (body mass, hair morphology) and physiological traits (basal metabolic rate) of small mammals and ecological (seasonality of reproduction, microhabitat preferences, abundance, host specificity) and morphological (presence and number of combs) traits of their flea parasites that shape host selection processes by fleas. We adapted the extended version of the three‐table ordination and linked species composition of flea assemblages of host species with traits and phylogenies of both hosts and fleas. Fleas with similar trait values, independent of phylogenetic affinities, were clustered on the same host species. Fleas possessing certain traits selected hosts possessing certain traits. Fleas belonging to the same phylogenetic lineage were found on the same host more often than expected by chance. Certain phylogenetic lineages of hosts harbored certain phylogenetic lineages of fleas. The process of host selection by fleas appeared to be determined by reciprocal relationships between host and flea traits, as well as between host and flea phylogenies. We concluded that the connection between host and flea phylogenies, coupled with the connection between host and flea traits, suggests that the species compositions of the host spectra of fleas were driven by the interaction between historical processes and traits.  相似文献   

18.
Outbreaks of plague, a flea‐vectored bacterial disease, occur periodically in prairie dog populations in the western United States. In order to understand the conditions that are conducive to plague outbreaks and potentially predict spatial and temporal variations in risk, it is important to understand the factors associated with flea abundance and distribution that may lead to plague outbreaks. We collected and identified 20,041 fleas from 6,542 individual prairie dogs of four different species over a 4‐year period along a latitudinal gradient from Texas to Montana. We assessed local climate and other factors associated with flea prevalence and abundance, as well as the incidence of plague outbreaks. Oropsylla hirsuta, a prairie dog specialist flea, and Pulex simulans, a generalist flea species, were the most common fleas found on our pairs. High elevation pairs in Wyoming and Utah had distinct flea communities compared with the rest of the study pairs. The incidence of prairie dogs with Yersinia pestis detections in fleas was low (n = 64 prairie dogs with positive fleas out of 5,024 samples from 4,218 individual prairie dogs). The results of our regression models indicate that many factors are associated with the presence of fleas. In general, flea abundance (number of fleas on hosts) is higher during plague outbreaks, lower when prairie dogs are more abundant, and reaches peak levels when climate and weather variables are at intermediate levels. Changing climate conditions will likely affect aspects of both flea and host communities, including population densities and species composition, which may lead to changes in plague dynamics. Our results support the hypothesis that local conditions, including host, vector, and environmental factors, influence the likelihood of plague outbreaks, and that predicting changes to plague dynamics under climate change scenarios will have to consider both host and vector responses to local factors.  相似文献   

19.
Understanding why some individuals are more prone to carry parasites and spread diseases than others is a key question in biology. Although epidemiologists and disease ecologists increasingly recognize that individuals of the same species can vary tremendously in their relative contributions to the emergence of diseases, very few empirical studies systematically assess consistent individual differences in parasite loads within populations over time. Two species of fleas (Oropsylla montana and Hoplopsyllus anomalous) and their hosts, California ground squirrels (Otospermophilus beecheyi), form a major complex for amplifying epizootic plague in the western United States. Understanding its biology is primarily of major ecological importance and is also relevant to public health. Here, we capitalize on a long-term data set to explain flea incidence on California ground squirrels at Briones Regional Park in Contra Costa County, USA. In a 7 year study, we detected 42,358 fleas from 2,759 live trapping events involving 803 unique squirrels from two free-living populations that differed in the amount of human disturbance in those areas. In general, fleas were most abundant and prevalent on adult males, on heavy squirrels, and at the pristine site, but flea distributions varied among years, with seasonal conditions (e.g., temperature, rainfall, humidity), temporally within summers, and between flea species. Although on-host abundances of the two flea species were positively correlated, each flea species occupied a distinctive ecological niche. The common flea (O. montana) occurred primarily on adults in cool, moist conditions in early summer whereas the rare flea (H. anomalous) was mainly on juveniles in hot, dry conditions in late summer. Beyond this, we uncovered significantly repeatable and persistent effects of host individual identity on flea loads, finding consistent individual differences among hosts in all parasite measures. Taken together, we reveal multiple determinants of parasites on free-living mammals, including the underappreciated potential for host heterogeneity – within populations – to structure the emergence of zoonotic diseases such as bubonic plague.  相似文献   

20.
Temporal variation in body condition and immunological variables of animals that harbor parasites may explain patterns of variation in infestation, as well as parasite impact on the host. We emulated such variability in Sundevall's jirds by manipulating food availability and flea infestation in juveniles and adults and examining how these changes affect survival of fleas on their hosts. Body condition of food-restricted jirds deteriorated, but there was no change in their immunological variables. Adult jirds were in better body condition and had higher immunocompetence than juveniles, however there were no significant effects of flea infestation on any of the variables examined. The main effects of flea infestation were a decrease in the response to phytohaemagglutinin injection, and an increase in the negative effects of food restriction on body mass. Flea survival was higher on juveniles, but fleas did not respond to temporal variability in body condition and immunocompetence of the jirds. We concluded that changes in body condition and immune responses due to growth or variability in food abundance are more important than changes caused by the fleas themselves. Flea infestation is more detrimental to jirds when they are not able to compensate for mass loss through increased food consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号