首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 324 毫秒
1.
Pseudomonas (diff) spp. was isolated from a complex petrochemical sludge, using benzoate as the sole source of carbon. The organism could metabolize 3-chlorobenzoate, releasing approximately 30% of organically bound chloride. 3-Chlorodihydrodihydroxybenzoate and 3-chlorocatechol were confirmed as pathway intermediates by mass spectral and HPLC analysis. About 3-fold higher levels of catechol 1,2-oxygenase were detected in cells grown on 3-chlorobenzoate as compared to that of benzoate. 3-Chlorocatechol inhibited the catechol 1,2-oxygenase activity, when used as assay substrate. A 15-fold purified catechol 1,2-oxygenase had a Km of 0.37 mumole and Vmax of 2.3 with 3-chlorocatechol. Catechol gave Km of 0.2 mumole and Vmax of 40, suggesting that 3-chlorocatechol is not metabolised further and hence blocks the metabolic pathway for 3-chlorobenzoate degradation. In contrast catechol 1,2-oxygenase was not inhibited by 4-chlorocatechol and probably is an intermediate for the total/complete degradation of 3-chlorobenzoate (approx. 30%).  相似文献   

2.
Partially purified preparations of catechol 2,3-dioxygenase from toluene-grown cells of Pseudomonas putida catalyzed the stoichiometric oxidation of 3-methylcatechol to 2-hydroxy-6-oxohepta-2,4-dienoate. Other substrates oxidized by the enzyme preparation were catechol, 4-methylcatechol, and 4-fluorocatechol. The apparent Michaelis constants for 3-methylcatechol and catechol were 10.6 and 22.0 muM, respectively. Substitution at the 4-position decreases the affinity and activity of the enzyme for the substrate. Catechol 2,3-dioxygenase preparations did not oxidize 3-chlorocatechol. In addition, incubation of the enzyme with 3-chlorocatechol led to inactivation of the enzyme. Kinetic analyses revealed that both 3-chlorocatechol and 4-chlorocatechol were noncompetitive or mixed-type inhibitors of the enzyme. 3-Chlorocatechol (Ki = 0.14 muM) was a more potent inhibitor than 4-chlorocatechol (Ki = 50 muM). The effect of the ion-chelating agents Tiron and o-phenanthrolene were compared with that of 3-chlorocatechol on the inactivation of the enzyme. Each inhibitor appeared to remove iron from the enzyme, since inactive enzyme preparations could be fully reactivated by treatment with ferrous iron and a reducing agent.  相似文献   

3.
Liu Y  Zhang J  Zhang Z 《Biodegradation》2004,15(3):205-212
A bacterial strain ZL5, capable of growing on phenanthrene as a sole carbon and energy source but not naphthalene, was isolated by selective enrichment from crude-oil-contaminated soil of Liaohe Oil Field in China. The isolate was identified as a Sphingomonas sp. strain on the basis of 16S ribosomal DNA analysis. Strain ZL5 grown on phenanthrene exhibited catechol 2,3-dioxygenase (C23O) activity but no catechol 1,2-dioxygenase, gentisate 1,2-dioxygenase, protocatechuate 3,4-dioxygenase and protocatechuate 4,5-dioxygenase activities. This suggests that the mode of cleavage of phenanthrene by strain ZL5 could be meta via the intermediate catechol, which is different from the protocatechuate way of other two bacteria, Alcaligenes faecelis AFK2 and Nocardioides sp. strain KP7, also capable of growing on phenanthrene but not naphthalene. A resident plasmid (approximately 60 kb in size), designated as pZL, was detected from strain ZL5. Curing the plasmid with mitomycin C and transferring the plasmid to E. coli revealed that pZL was responsible for polycyclic aromatic hydrocarbons degradation. The C23O gene located on plasmid pZL was cloned and overexpressed in E. coli JM109(DE3). The ring-fission activity of the purified C23O from the recombinant E. coli on dihydroxylated aromatics was in order of catechol > 4-methylcatechol > 3-methylcatechol > 4-chlorocatechol > 3,4-dihydroxyphenanthrene > 3-chlorocatechol.  相似文献   

4.
李朔  许楹  周宁一 《微生物学通报》2017,44(7):1513-1524
【目的】研究Sphingomonas sp.YL-JM2C菌株的生长特性,确定以三氯卡班作为碳源的生长情况。挖掘菌株YL-JM2C潜在的邻苯二酚1,2-双加氧酶及邻苯二酚2,3-双加氧酶基因,在大肠杆菌(Escherichia coli)中异源表达邻苯二酚双加氧酶基因并研究其酶学性质。【方法】优化S.sp.YL-JM2C菌株以三氯卡班作为碳源时的培养条件,并利用全自动生长曲线测定仪测定菌株生长情况,绘制生长曲线。通过生物信息学方法挖掘潜在的邻苯二酚双加氧酶基因,并分别在Escherichia coli BL21(DE3)中进行异源表达,通过AKTA快速纯化系统纯化蛋白,分别以邻苯二酚、3-和4-氯邻苯二酚为底物检测重组蛋白的酶学特性。【结果】菌株在pH为7.0-7.5时生长最优。在以浓度为4-8 mg/L的三氯卡班做为底物时,菌株适宜生长。当R2A培养基仅含有0.01%酵母提取物和无机盐时,加入终浓度为4 mg/L的三氯卡班可促进菌株生长。挖掘到6个潜在的邻苯二酚双加氧酶基因stcA1、stcA2、stcA3、stcE1、stcE2和stcE3,表达并通过粗酶液分析证明其中5个基因stcA1、stcA2、stcA3、stcE1和stcE2编码的酶均具有邻苯二酚双加氧酶和氯邻苯二酚双加氧酶的活性;纯化酶的底物范围研究揭示了StcA1、StcA2和StcA3均属于Ⅱ型邻苯二酚1,2-双加氧酶,StcE1和StcE2为两个新型邻苯二酚2,3-双加氧酶;它们酶动力学分析研究证明了5个酶对邻苯二酚的亲和力和催化效率最高,4-氯邻苯二酚次之。【结论】在同一菌株中发现了5个具有功能的邻苯二酚双加氧酶基因,stcA1、stcA2和stcA3编码的酶均属于Ⅱ型邻苯二酚1,2-双加氧酶,stcE1和stcE2为两个新型邻苯二酚2,3-双加氧酶编码基因。5个酶均具有催化邻苯二酚和氯邻苯二酚开环反应的功能,这为更好地理解微生物基因组内代谢邻苯二酚及其衍生物氯代邻苯二酚基因的多样性奠定了基础。  相似文献   

5.
Pseudomonas (spp), isolated from a complex petrochemical sludge, was able to utilize 2-fluorobenzoate as its sole source of carbon and energy. At the end of the growth phase, about 42% of the organically bound fluoride was released. Catechol, 3-fluorocatechol, and 6-fluorodihydrodihydroxybenzoate were confirmed as intermediates by chromatographic and spectral analyses. During 2-fluorobenzoate metabolism, fluoride is eliminated before the aromaticity of the ring is lost. Twofold higher levels of catechol 1,2-oxygenase were detected in 2-fluorobenzoate-grown cells compared with cells grown on benzoate. When used as assay substrates, 3-chlorocatechol showed less catechol 1,2-oxygenase activity than catechol or 4-chlorocatechol. The ability to degrade 4-fluorobenzoate could be transferred toPseudomonas (spp) by the conjugal transfer of plasmid pWR1 fromPseudomonas sp. B13.  相似文献   

6.
迄今为止的研究报道表明,对氯苯胺的生物降解只能以邻位途径或修饰邻位途径进行。采用HPLC、液相色谱质谱联用技术(LC/MS)对Diaphorobacter PCA039菌株降解对氯苯胺的中间代谢产物进行了分析和鉴定,结果表明,对氯苯胺经PCA039菌株的降解形成了氯代邻苯二酚,5-氯-4草酰巴豆酸,5-氯-2-氧戊烯酸,5-氯-2-氧-4-羟戊酸,氯代乙酸等中间代谢产物,这些都是典型的间位代谢途径(meta-pathway)的中间物质,说明Diaphorobacter PCA039菌株以间位裂解途径对对氯苯胺进行降解。这对于对氯代胺的生物降解代谢研究、代谢机理及其遗传表达调控研究具有意义。  相似文献   

7.
The present research work was done with the main purpose to study early stages of interaction of carotenoids (Car) with molecular oxygen and clarify their role in the mechanism responsible for Car radiochemical stability and carotenoid ability to decrease concentration of the most active oxygen transients like superoxide anion radicals (O2.-). Alcoholic and phosphate buffer (pH 7.5) solutions of carotenoid fucoxanthin (Fx) were used for investigation of the oxygen effect on the absorption spectra in the UV-Visible range. Special analysis of time dependent reversible shifts of absorption bands of evacuated Fx solution after contact with O2 indicated existence of equilibrium between two distinct forms of Car: Fx and the labile charge transfer complex (Fx+delta...O2-delta). The velocity of the achievement of equilibrium state and a degree of reversibility depend on chemical structure of the carotenoid, oxygen content and the solvent nature. Radiation-chemical methods were used to confirm the important role of primary Car oxocomplexes in different redox processes. It appeared that the yield of radiation-chemical bleaching of Fx, G-Fx, is 0.02-0.05 molecule/100 eV in the presence of oxygen, which in hundred times less the yield achieved in anaerobic conditions. The obtained results provide the evidence of Fx high level of stability under radiation, and demonstrate the supreme importance of reversible oxocomplex (Fx+delta...O2-delta) in stabilizing carotenoids in aerobic medium. The pulse radiolysis method with spectrophotometric registration of transients was used for generation and studying of mechanism O2.- interaction with different carotenoids. Introduction of any carotenoids containing oxygen (10(-5) M) in phosphate buffer solutions (pH 7.5) caused a red-shift of absorption maximum (from 5 to 15 nm) and difference in kinetics of O2.- decay. These results prove that radiation generated esolv- are directly accepted by (Car...O2) with consequent formation of superoxocomplexes (Car...O2.-) instead of O2.-. On the base of detecting the following transformation of superoxocomplexes the peroxocomplex (Car+...O2(2-)) was identified. In case of Fx a peroxocomplex (Fx+...O2(2-)) had absorption band with lambda max at approximately 360 nm. It is very important to mention that beta-carotene does not cause the similar effect and gets easily oxydized when exposed to the air.  相似文献   

8.
Variation of tissue oxygen content is thought to be a possible factor in determining the structural diversity of hydroperoxy fatty acids. In the present study, we evaluated the structural diversity of intermediate carbon-centered radicals at lower oxygen content. When the buffered solution (pH 7.4) containing 1.0 mM alpha-linolenic acid, 1.0 muM soybean 15-lipoxygenase, and 1.0 mM nitroxyl radical [3-carbamoyl-2,2,5,5-tetramethyl-3-pyrroline-N-oxyl (CmDeltaP)], which selectively traps carbon-centered radicals, was incubated in a sealed vial, the generation of linolenate hydroperoxide was completed within 1 min. In the subsequent reaction at lower oxygen content, the production of the [LnA-H+O(2)].-CmDeltaP adduct was ascertained by liquid chromatography tandem mass spectrometry with precursor ion scanning. Furthermore, HPLC analysis with photodiode array detection showed that the adduct exhibits an absorption maximum at 278 nm, indicating a conjugated triene moiety. On the basis of these facts, the structure of the adduct was speculated to be C(2)H(5)-CH(CmDeltaP)-CH = CH-CH = CH-CH = CH-CH(OOH) -C(7)H(14)-COOH. We proposed a possible reaction pathway as follows: a linolenate 9-peroxyl radical generated in the lipoxygenase reaction might be converted into C(2)H(5)-.CH-CH = CH-CH = CH-CH = CH-CH(OOH) -C(7)H(14)-COOH through an intramolecular rearrangement. This intermediate radical may give rise to hydroperoxy fatty acids with structural diversity.  相似文献   

9.
Pseudomonas sp. Ba-0511 was isolated from soil by enrichment cultivation on a medium containing 6 mg/ml of sodium benzoate. The bacterium could grow on a medium containing 20 mg/ml of sodium benzoate by a successive enrichment culture. One hundred and twelve transpositional mutants of the bacterium produced catechol from benzoate and accumulated it outside of the cells. Among the mutants, strain BA+63 produced a maximal amount of catechol (2.3 mg/ml) from 6 mg/ml of sodium benzoate after growing for 10.5 h. The conversion rate of benzoate to catechol was 50% on a molar basis. The catechol production by the resting cells increased in the presence of glycerol, and the maximal amount of catechol produced from 6 mg/ml of sodium benzoate reached 3.3 mg/ml at the conversion rate of 72% after 5 h of incubation. The resting cells converted m-methylbenzoic acid to 3- and 4-methylcatechol and m-chlorobenzoic acid to 3- and 4-chlorocatechol.  相似文献   

10.
The hybrid pathway for chlorobenzoate metabolism was studied in WR211 and WR216, which were derived from Pseudomonas sp. B13 by acquisition of TOL plasmid pWW0 from Pseudomonas putida mt-2. Chlorobenzoates are utilized readily by these strains when meta cleavage of chlorocatechols is suppressed. When WR211 utilizes 3-chlorobenzoate (3CB), the expression of catechol 2,3-dioxygenase (C23O) and the catabolic activities for chloroaromatics via the ortho pathway coexist as a consequence of inactivation of the meta cleavage activity by 3-chlorocatechol. Utilization of 4-chlorobenzoate (4CB) by WR216 presupposes the suppression of C23O by a spontaneous mutation in the structural gene, so that 4-chlorocatechol is not misrouted into the meta pathway. Such C23O- mutants were also selected when WR211 was grown continuously on 3CB. Our data explain why the phenotypic characters 3CB+ and Mtol+ (m-toluate) are compatible, whereas 4CB+ and Mtol+ are incompatible.  相似文献   

11.
Previous studies have shown that the biodegradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45 proceeds by the reduction of nitrobenzene through nitrosobenzene and hydroxylaminobenzene, followed by rearrangement to 2-aminophenol, which then undergoes meta ring cleavage. We report here the isolation of a Comamonas sp. that uses an oxidative pathway for the complete mineralization of nitrobenzene. The isolate, designated strain JS765, uses nitrobenzene as a sole source of carbon, nitrogen, and energy. Nitrobenzene-grown cells oxidized nitrobenzene, with the stoichiometric release of nitrite. Extracts of nitrobenzene-grown JS765 showed high levels of catechol 2,3-dioxygenase activity that were not abolished by heating the cell extracts to 60(deg)C for 10 min. The ring cleavage product had an absorbance maximum at 375 nm, consistent with that of 2-hydroxymuconic semialdehyde. Both NAD-dependent dehydrogenase and NAD-independent hydrolase activities towards 2-hydroxymuconic semialdehyde were induced in extracts of nitrobenzene-grown cells. Catechol accumulated in the reaction mixture when cells preincubated with 3-chlorocatechol were incubated with nitrobenzene. Conversion of nitrobenzene to catechol by induced cells in the presence of 3-chlorocatechol and (sup18)O(inf2) demonstrated the simultaneous incorporation of two atoms of oxygen, which indicated that the initial reaction was dioxygenation. The results indicate that the catabolic pathway involves an initial dioxygenase attack on nitrobenzene with the release of nitrite and formation of catechol, which is subsequently degraded by a meta cleavage pathway.  相似文献   

12.
A catechol 2,3-dioxygenase (C23O) gene was found from Sulfolobus solfataricus strain 98/2. Heterologous thermophilic C23O expressed in Escherichia coli showed the highest activity against catechol and 4-chlorocatechol, and at neutral pH. The C23O gene located with a putative multicomponent monooxygenase (MM) gene cluster that exactly matched with the homologous region of S. solfataricus strain P2. Primary sequence comparison identified an insertion sequence (IS) element inserted into a putative MM protein A N-terminal fragment gene in strain 98/2. Both ends of the transposase gene in the IS element, ISC1234, were flanked by 19 bp inverted repeat and 4 bp direct repeat sequences which are typical features of mobile elements. Our analysis and the two geographically distant origins of strains 98/2 and P2 (USA and Italy, respectively) suggest that the two strains have evolved from a common ancestor.  相似文献   

13.
Diffusion of oxygen through aqueous solutions is of great importance in biological systems. In this work, three models for the diffusion of oxygen through aqueous salt solutions are compared. One model uses mole fraction as the driving force (Fick's Law) and another uses chemical potential. The third model uses the gradient in oxygen activity as the driving force. This new model was chosen because of the availability of oxygen electrodes which directly measure oxygen activity in aqueous solution. These models have been used to reevaluate the technique of measuring O(2) diffusivities. We show that Pick's Law diffusion coefficients do not vary strongly with salt concentration as was erroneously reported in the literature. In addition, we compare the predicted O(2) fluxes of the three models over a wide range in O(2) concentrations. For oxygen concentrations of biological interest, the three models give identical predictions of the flux.  相似文献   

14.
Enzymatic method for measuring the absolute value of oxygen concentration   总被引:1,自引:0,他引:1  
An enzymatic method for measuring the absolute concentration of oxygen in aqueous solutions, using 4-hydroxybenzoate 3-monooxygenase and glucose oxidase, is described. The monooxygenase is used for quantitative oxidation of 4-hydroxybenzoate and NADPH with oxygen into 3,4-dihydroxybenzoate and NADP+; the amount of oxygen can be measured as the amount of NADPH decreased by the reaction. The monooxygenase reaction is performed in a syringe, a closed system. After the completion of the monooxygenase reaction, glucose oxidase is added to the assay solution to consume the oxygen from the atmosphere; this enables us to measure the NADPH concentration in the solution spectrophotometrically in an open system and to check the anaerobicity of closed systems. The oxygen concentrations at 25 degrees C of oxygen-saturated and air-saturated water were 1.10 and 0.23 mM, respectively. The value for argon-bubbled water was zero within the experimental error; this justifies the assay system. Thus, it is shown that a sample containing 8 microM-1.1 mM oxygen can be measured by this method.  相似文献   

15.
The production of singlet molecular oxygen (1O2) by the photosensitizing dye merocyanine 540 (MC540) bound to phosphatidylcholine liposomes has been demonstrated by direct detection of 1O2 luminescence at 1268 nm. 1O2 phosphorescence emission was enhanced in deuterated buffer and upon saturation of the sample with oxygen and could be quenched by the addition of sodium azide to the external medium. No 1O2 luminescence was detected in nitrogen-saturated samples, in the absence of dye, or with MC540 in aqueous solution. Photobleaching of liposome-bound MC540 was also observed to be dependent on oxygen concentration. These studies are consistent with 1O2 intermediacy in the mechanism of MC540-mediated photosensitization.  相似文献   

16.
Catechol 2,3-dioxygenase (C23O), a key enzyme in the meta-cleavage pathway of catechol metabolism, was purified from cell extract of recombinant Escherichia coli JM109 harboring the C23O gene (atdB) cloned from an aniline-degrading bacterium Acinetobacter sp. YAA. SDS-polyacrylamide gel electrophoresis and gel filtration chromatography analysis suggested that the enzyme (AtdB) has a molecular mass of 35 kDa as a monomer and forms a tetrameric structure. It showed relative meta-cleavage activities for the following catechols tested: catechol (100%), 3-methylcatechol (19%), 4-methylcatechol (57%), 4-chlorocatechol (46%), and 2,3-dihydroxybiphenyl (5%). To elevate the activity, a DNA self-shuffling experiment was carried out using the atdB gene. One mutant enzyme, named AtdBE286K, was obtained. It had one amino acid substitution, E286K, and showed 2.4-fold higher C23O activity than the wild-type enzyme at 100 microM. Kinetic analysis of these enzymes revealed that the wild-type enzyme suffered from substrate inhibition at >2 microM, while the mutant enzyme loosened substrate inhibition.  相似文献   

17.
Singlet oxygen (1O2), a reactive oxygen species, has been found to be implicated in many cellular events and pathological disorders. Herein, we investigated the reactivity of 1O2 towards the anaesthetic agent propofol (PPF) encapsulated within DMPC liposomes. By time resolved luminescence, the rate constant of 1O2 quenching by PPF was evaluated, depending on the location of the sensitizer, with following values: 1.35+/-0.05x10(7) M(-1) s(-1) for deuteroporphyrin (as embedded source) and 0.8+/-0.04x10(7) M(-1) s(-1) for uroporphyrin (as external source), respectively. The nature of the oxidation product, resulting from the reaction of 1O2 with PPF, was determined using absorption and HPLC techniques. Finally, the in vitro protective effect of PPF towards the 1O2-induced neuronal cell toxicity was evaluated in terms of cell viability.  相似文献   

18.
Pseudomonas putida GJ31 contains an unusual catechol 2,3-dioxygenase that converts 3-chlorocatechol and 3-methylcatechol, which enables the organism to use both chloroaromatics and methylaromatics for growth. A 3.1-kb region of genomic DNA of strain GJ31 containing the gene for this chlorocatechol 2,3-dioxygenase (cbzE) was cloned and sequenced. The cbzE gene appeared to be plasmid localized and was found in a region that also harbors genes encoding a transposase, a ferredoxin that was homologous to XylT, an open reading frame with similarity to a protein of a meta-cleavage pathway with unknown function, and a 2-hydroxymuconic semialdehyde dehydrogenase. CbzE was most similar to catechol 2,3-dioxygenases of the 2.C subfamily of type 1 extradiol dioxygenases (L. D. Eltis and J. T. Bolin, J. Bacteriol. 178:5930–5937, 1996). The substrate range and turnover capacity with 3-chlorocatechol were determined for CbzE and four related catechol 2,3-dioxygenases. The results showed that CbzE was the only enzyme that could productively convert 3-chlorocatechol. Besides, CbzE was less susceptible to inactivation by methylated catechols. Hybrid enzymes that were made of CzbE and the catechol 2,3-dioxygenase of P. putida UCC2 (TdnC) showed that the resistance of CbzE to suicide inactivation and its substrate specificity were mainly determined by the C-terminal region of the protein.  相似文献   

19.
Isolations of 3-chlorobenzoate (3CBA)-degrading aerobic bacteria under reduced O2 partial pressures yielded organisms which metabolized 3CBA via the gentisate or the protocatechuate pathway rather than via the catechol route. The 3CBA metabolism of one of these isolates, L6, which was identified as an Alcaligenes species, was studied in more detail. Resting-cell suspensions of L6 pregrown on 3CBA oxidized all known aromatic intermediates of both the gentisate and the protocatechuate pathways. Neither growth on nor respiration of catechol could be detected. Chloride production from 3CBA by L6 was strictly oxygen dependent. Cell-free extracts of 3CBA-grown L6 cells exhibited no catechol dioxygenase activity but possessed protocatechuate 3,4-dioxygenase, gentisate dioxygenase, and maleylpyruvate isomerase activities instead. In continuous culture with 3CBA as the sole growth substrate, strain L6 demonstrated an increased oxygen affinity with decreasing steady-state oxygen concentrations.  相似文献   

20.
Cell encapsulation provides cells a three-dimensional structure to mimic physiological conditions and improve cell signaling, proliferation, and tissue organization as compared to monolayer culture. Encapsulation devices often encounter poor mass transport, especially for oxygen, where critical dissolved levels must be met to ensure both cell survival and functionality. To enhance oxygen transport, we utilized perfluorocarbon (PFC) oxygen vectors, specifically perfluorooctyl bromide (PFOB) immobilized in an alginate matrix. Metabolic activity of HepG2 liver cells encapsulated in 1% alginate/10% PFOB composite system was 47-104% higher than alginate systems lacking PFOB. A cubic model was developed to understand the oxygen transport mechanism in the alginate/PFOB composite system. The theoretical flux enhancement in alginate systems containing 10% PFOB was 18% higher than in alginate-only systems. Oxygen uptake rates (OURs) of HepG2 cells were enhanced with 10% PFOB addition under both 20% and 5% O2 boundary conditions, by 8% and 15%, respectively. Model predictions were qualitatively and quantitatively verified with direct experimental OUR measurements using both a perfusion reactor and oxygen sensing plate, demonstrating a greater OUR enhancement under physiological O2 boundary conditions (i.e., 5% O2). Inclusion of PFCs in an encapsulation matrix is a useful strategy for overcoming oxygen limitations and ensuring cell viability and functionality both for large devices (>1 mm) and over extended time periods. Although our results specifically indicate positive enhancements in metabolic activity using the model HepG2 liver system encapsulated in alginate, PFCs could be useful for improving/stabilizing oxygen supply in a wide range of cell types and hydrogels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号