首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kang YN  Tran A  White RH  Ealick SE 《Biochemistry》2007,46(17):5050-5062
Inosine 5'-monophosphate (IMP) cyclohydrolase catalyzes the cyclization of 5-formaminoimidazole-4-carboxamide ribonucleotide (FAICAR) to IMP in the final step of de novo purine biosynthesis. Two major types of this enzyme have been discovered to date: PurH in Bacteria and Eukarya and PurO in Archaea. The structure of the MTH1020 gene product from Methanothermobacter thermoautotrophicus was previously solved without functional annotation but shows high amino acid sequence similarity to other PurOs. We determined the crystal structure of the MTH1020 gene product in complex with either IMP or 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) at 2.0 and 2.6 A resolution, respectively. On the basis of the sequence analysis, ligand-bound structures, and biochemical data, MTH1020 is confirmed as an archaeal IMP cyclohydrolase, thus designated as MthPurO. MthPurO has a four-layered alphabeta betaalpha core structure, showing an N-terminal nucleophile (NTN) hydrolase fold. The active site is located at the deep pocket between two central beta-sheets and contains residues strictly conserved within PurOs. Comparisons of the two types of IMP cyclohydrolase, PurO and PurH, revealed that there are no similarities in sequence, structure, or the active site architecture, suggesting that they are evolutionarily not related to each other. The MjR31K mutant of PurO from Methanocaldococcus jannaschii showed 76% decreased activity and the MjE102Q mutation completely abolished enzymatic activity, suggesting that these highly conserved residues play critical roles in catalysis. Interestingly, green fluorescent protein (GFP), which has no structural homology to either PurO or PurH but catalyzes a similar intramolecular cyclohydrolase reaction required for chromophore maturation, utilizes Arg96 and Glu222 in a mechanism analogous to that of PurO.  相似文献   

2.
We have identified and characterized a new member of the ATP-grasp enzyme family that catalyzes the ATP- and formate-dependent formylation of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate (AICAR) to 5-formaminoimidazole-4-carboxamide-1-beta-D-ribofuranosyl 5'-monophosphate (FAICAR) in the absence of folates. The enzyme, which we designate as PurP, is the product of the Methanocaldococcus jannaschii purP gene (MJ0136), which is a signature gene for Archaea. As is characteristic of reactions catalyzed by this family of enzymes, the other products of the reaction, ADP and P(i), were produced stoichiometrically with the amount of ATP, formate, and AICAR used. Formyl phosphate was found to substitute for ATP and formate in the reaction, yet the methylene analog, phosphonoacetaldehyde, was not an inhibitor or substrate for the reaction. The enzyme, along with PurO, which catalyzes the cyclization of FAICAR to inosine 5'-monophosphate, catalyzes the same overall transformation in purine biosynthesis as is accomplished by PurH in bacteria and eukaryotes. No homology exists between PurH and either PurO or PurP. 1H NMR and gas chromatography-mass spectrometry analysis of an M. jannaschii cell extract showed the presence of free formate that can be used by the enzyme for purine biosynthesis. This formate arises by the reduction of CO2 with hydrogen; this was demonstrated by incorporating 13C into the formate when M. jannaschii cell extracts were incubated with H13CO3- and hydrogen gas. The presence of this signature gene in all of the Archaea indicates the presence of a purine biosynthetic pathway proceeding in the absence of folate coenzymes.  相似文献   

3.
The enzyme responsible for observed IMP cyclohydrolase activity in Methanococcus jannaschii was purified and sequenced: its genetic locus was found to correspond to gene MJ0626. The MJ0626 gene was cloned, and its protein product was expressed in Escherichia coli and shown to catalyze the cyclization of 5-formylamidoimidazole-4-carboxamide ribonucleotide to IMP. The enzyme has no sequence similarity to known enzymes, and its catalytic properties appear distinct from any characterized IMP cyclohydrolase. The purO gene for the enzyme is currently found only in the domain ARCHAEA:  相似文献   

4.
Within de novo purine biosynthesis, the AICAR transformylase and IMP cyclohydrolase activities of the bifunctional enzyme ATIC convert the intermediate AICAR to the final product of the pathway, IMP. Identification of the AICAR transformylase active site and a proposed formyl transfer mechanism have already resulted from analysis of crystal structures of avian ATIC in complex with substrate and/or inhibitors. Herein, we focus on the IMPCH active site and the cyclohydrolase mechanism through comparison of crystal structures of XMP inhibitor complexes of human ATIC at 1.9 A resolution with the previously determined avian enzyme. This first human ATIC structure was also determined to ascertain whether any subtle structural differences, compared to the homologous avian enzyme, should be taken into account for structure-based inhibitor design. These structural comparisons, as well as comparative analyses with other IMP and XMP binding proteins, have enabled a catalytic mechanism to be formulated. The primary role of the IMPCH active site appears to be to induce a reconfiguration of the substrate FAICAR to a less energetically favorable, but more reactive, conformer. Backbone (Arg64 and Lys66) and side chain interactions (Thr67) in the IMPCH active site reorient the 4-carboxamide from the preferred conformer that binds to the AICAR Tfase active site to one that promotes intramolecular cyclization. Other backbone amides (Ile126 and Gly127) create an oxyanion hole that helps orient the formyl group for nucleophilic attack by the 4-carboxamide amine and then stabilize the anionic intermediate. Several other residues, including Lys66, Tyr104, Asp125, and Lys137', provide substrate specificity and likely enhance the catalytic rate through contributions to acid-base catalysis.  相似文献   

5.
Vergis JM  Beardsley GP 《Biochemistry》2004,43(5):1184-1192
The bifunctional enzyme aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is responsible for catalysis of the last two steps in the de novo purine pathway. Using recently determined crystal structures of ATIC as a guide, four candidate residues, Lys66, Tyr104, Asp125, and Lys137, were identified for site-directed mutagenesis to study the cyclohydrolase activity of this bifunctional enzyme. Steady-state kinetic experiments on these mutants have shown that none of these residues are absolutely required for catalytic activity; however, they strongly influence the efficiency of the reaction. Since the FAICAR binding site is made up mostly of backbone interactions with highly conserved residues, we postulate that these conserved interactions orient FAICAR in the active site to favor the intramolecular ring closure reaction and that this reaction may be catalyzed by an orbital steering mechanism. Furthermore, it was shown that Lys137 is responsible for the increase in cyclohydrolase activity for dimeric ATIC, which was reported previously by our laboratory. From the experiments presented here, a catalytic mechanism for the cyclohydrolase activity is postulated.  相似文献   

6.
The de novo purine biosynthetic enzymes 5-amino-4-imidazolecarboxamide-ribonucleotide (AICAR) transformylase (EC 2.1.2.3), IMP cyclohydrolase (EC 3.5.4.10) and glycineamide-ribonucleotide (GAR) synthetase (EC 2.1.2.2) are encoded by the purHD locus of Escherichia coli. The DNA sequence of this locus revealed two open reading frames encoding polypeptides of Mr 57,335 and 45,945 (GAR synthetase), respectively, that formed an operon. The DNA sequence, maxicell and complementation analyses all supported the concept that the Mr 57,335 polypeptide is the product of the purH gene and encodes a bifunctional protein containing both AICAR transformylase and IMP cyclohydrolase activities. The 5' end of the purHD mRNA was determined by primer extension mapping and contains two regions of dyad symmetry capable of forming 'hairpin' loops where the formation of the one would prevent the formation of the other but not vice versa. Regulation by the purR gene product was explained by the discovery of a purR binding site in the purHD control region.  相似文献   

7.
Wall M  Shim JH  Benkovic SJ 《Biochemistry》2000,39(37):11303-11311
We have prepared 4-substituted analogues of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) to investigate the specificity and mechanism of AICAR transformylase (AICAR Tfase). Of the nine analogues of AICAR studied, only one analogue, 5-aminoimidazole-4-thiocarboxamide ribonucleotide, was a substrate, and it was converted to 6-mercaptopurine ribonucleotide. The other analogues either did not bind or were competitive inhibitors, the most potent being 5-amino-4-nitroimidazole ribonucleotide with a K(i) of 0.7 +/- 0.5 microM. The results show that the 4-carboxamide of AICAR is essential for catalysis, and it is proposed to assist in mediating proton transfer, catalyzing the reaction by trapping of the addition compound. AICAR analogues where the nitrogen of the 4-carboxamide was derivatized with a methyl or an allylic group did not bind AICAR Tfase, as determined by pre-steady-state burst kinetics; however, these compounds were potent inhibitors of IMP cyclohydrolase (IMP CHase), a second activity of the bifunctional mammalian enzyme (K(i) = 0.05 +/- 0.02 microM for 4-N-allyl-AlCAR). It is proposed that the conformation of the carboxamide moiety required for binding to AICAR Tfase is different than the conformation required for binding to IMP CHase, which is supported by inhibition studies of purine ribonucleotides. It is shown that 5-formyl-AICAR (FAICAR) is a product inhibitor of AICAR Tfase with K(i) of 0.4 +/- 0.1 microM. We have determined the equilibrium constant of the transformylase reaction to be 0.024 +/- 0.001, showing that the reaction strongly favors AICAR and the 10-formyl-folate cofactor. The coupling of the AICAR Tfase and IMP CHase activities on a single polypeptide allows the overall conversion of AICAR to IMP to be favorable by coupling the unfavorable formation of FAICAR with the highly favorable cyclization reaction. The current kinetic studies have also indicated that the release of FAICAR is the rate-limiting step, under steady-state conditions, in the bifunctional enzyme and channeling is not observed between AICAR Tfase and IMP CHase.  相似文献   

8.
早期的遗传分析表明鼠伤寒沙门氏菌嘌呤核苷酸从头合成途径中AICAI Transformylase、IMP Cyclohydrolase和GAR合成酶分别由三个结构基因purJ、purH和purD编码。这三个结构基因构成一个操纵子,定位于遗传图90分钟”,2J。但最近对大肠杆菌这一操纵子的核苷酸序列测定及其编码产物的研究,发现在大肠杆菌中为上述三个酶编码的结构基因只有purH和purD,并不存在purJ结构基因。新近Chopra报道了鼠伤寒沙门氏菌位于purH内的EcoRI切点下游直至purD终止密码的核苷酸序列,同源性比较分析显示鼠伤寒沙门氏菌这部分序列分别与大肠杆菌的purH和purD有85%和88%的同源性。尽管如此,对鼠伤寒沙门氏菌中究竟有无purJ  相似文献   

9.
Genetic and enzymatic analyses were made with the purH mutants of Salmonella typhimurium. These mutants are purine auxotrophs which are deficient in the conversion of phosphoribosyl-aminoimidazolecarboxamide (AIC) to inosine-5'-monophosphate (IMP). Two steps are required for this process: phosphoribosyl-AIC transformylase (EC 2.1.2.3) and IMP cyclohydrolase (EC 3.5.4.10). Genetic analysis identified two complementation groups, I and II, and a third group of noncomplementing mutants (I-II). Mutations in gene I lead to complete loss of transformylase activity and no loss of cyclohydrolase activity if the mutation is of the missense type, but partial loss if it is of the chain-terminating type (nonsense or frameshift). Gene II mutants are all of the missense type and show normal transformylase activity but no cyclohydrolase activity. The noncomplementing mutants (I-II) are all of the chain-terminating type and are completely deficient in both activities. The results are explained and discussed in terms of subunit interactions of a stable enzyme complex.  相似文献   

10.
Graham DE  Xu H  White RH 《Biochemistry》2002,41(50):15074-15084
The hyperthermophilic euryarchaeon Methanococcus jannaschii has no recognizable homologues of the canonical GTP cyclohydrolase enzymes that are required for riboflavin and pteridine biosyntheses. Instead, it uses a new type of thermostable GTP cyclohydrolase enzyme that produces 2-amino-5-formylamino-6-ribofuranosylamino-4(3H)-pyrimidinone ribonucleotide monophosphate and inorganic phosphate. Whereas canonical GTP cyclohydrolases produce this formylamino-pyrimidine nucleotide as a reaction intermediate, this compound is shown to be an end product of the purified recombinant M.jannaschii enzyme. Unlike other enzymes that hydrolyze the alpha-beta phosphate anhydride bond of GTP, this new enzyme completely hydrolyzes pyrophosphate to inorganic phosphate. As a result, the enzyme has a steady-state turnover of 21 min(-)(1), which is much faster than those of canonical GTP cyclohydrolase enzymes. The effects of substrate analogues and inhibitors suggest that the GTP cyclohydrolase and pyrophosphate phosphohydrolase activities occur at independent sites, although both activities depend on Mg(2+).  相似文献   

11.
Acetyl coenzyme A (CoA) synthetase (ADP forming) (ACD) represents a novel enzyme of acetate formation and energy conservation (acetyl-CoA + ADP + P(i) right harpoon over left harpoon acetate + ATP + CoA) in Archaea and eukaryotic protists. The only characterized ACD in archaea, two isoenzymes from the hyperthermophile Pyrococcus furiosus, constitute 145-kDa heterotetramers (alpha(2), beta(2)). The coding genes for the alpha and beta subunits are located at different sites in the P. furiosus chromosome. Based on significant sequence similarity of the P. furiosus genes, five open reading frames (ORFs) encoding putative ACD were identified in the genome of the hyperthermophilic sulfate-reducing archaeon Archaeoglobus fulgidus and one ORF was identified in the hyperthermophilic methanogen Methanococcus jannaschii. The ORFs constitute fusions of the homologous P. furiosus genes encoding the alpha and beta subunits. Two ORFs, AF1211 and AF1938, of A. fulgidus and ORF MJ0590 of M. jannaschii were cloned and functionally overexpressed in Escherichia coli. The purified recombinant proteins were characterized as distinctive isoenzymes of ACD with different substrate specificities. In contrast to the Pyrococcus ACD, the ACDs of Archaeoglobus and Methanococcus constitute homodimers of about 140 kDa composed of two identical 70-kDa subunits, which represent fusions of the homologous P. furiosus alpha and beta subunits in an alphabeta (AF1211 and MJ0590) or betaalpha (AF1938) orientation. The data indicate that A. fulgidus and M. jannaschii contains a novel type of ADP-forming acetyl-CoA synthetase in Archaea, in which the subunit polypeptides and their coding genes are fused.  相似文献   

12.
13.
Lipman RS  Sowers KR  Hou YM 《Biochemistry》2000,39(26):7792-7798
Synthesis of cysteinyl-tRNA(Cys) by cysteine-tRNA synthetase is required for decoding cysteine codons in all known organisms. The genome of the archaeon Methanococcus jannaschii lacks the gene for a normal cysteine-tRNA synthetase. The activity of the enzyme, however, was identified recently, and it allowed the purification of the enzyme and cloning of its gene. Sequence analysis of the gene showed that it encodes proline-tRNA synthetase and, thus, raised the possibility of dual activities in a single aminoacyl-tRNA synthetase. Assays of aminoacyl-adenylate synthesis confirmed the ability of the enzyme to activate proline and cysteine and showed that both activities were independent of tRNA. Assays of tRNA aminoacylation established the specific attachment of proline to tRNA(Pro) and cysteine to tRNA(Cys). However, in contrast to a recent report of comparable activities with cysteine and proline, results here indicate that the adenylate synthesis and aminoacylation activities with cysteine are significantly lower than the respective activity with proline. In addition, there is evidence of overlapping amino acid-binding sites and tRNA-binding sites. These considerations, among others, raised the distinct possibility that the M. jannaschii proline-tRNA synthetase may recruit additional protein or RNA factors to facilitate the synthesis of cysteinyl-tRNA(Cys).  相似文献   

14.
ATIC encompasses both AICAR transformylase and IMP cyclohydrolase activities that are responsible for the catalysis of the penultimate and final steps of the purine de novo synthesis pathway. The formyl transfer reaction catalyzed by the AICAR Tfase domain is substantially more demanding than that catalyzed by the other folate-dependent enzyme of the purine biosynthesis pathway, GAR transformylase. Identification of the AICAR Tfase active site and key catalytic residues is essential to elucidate how the non-nucleophilic AICAR amino group is activated for formyl transfer. Hence, the crystal structure of dimeric avian ATIC was determined as a complex with the AICAR Tfase substrate AICAR, as well as with an IMP cyclohydrolase inhibitor, XMP, to 1.93 A resolution. AICAR is bound at the dimer interface of the transformylase domains and forms an extensive hydrogen bonding network with a multitude of active site residues. The crystal structure suggests that the conformation of the 4-carboxamide of AICAR is poised to increase the nucleophilicity of the C5 amine, while proton abstraction occurs via His(268) concomitant with formyl transfer. Lys(267) is likely to be involved in the stabilization of the anionic formyl transfer transition state and in subsequent protonation of the THF leaving group.  相似文献   

15.
Aminoimidazole-4-carboxamide ribonucleotide (AICAR) transformylase/IMP cyclohydrolase (ATIC) is a bifunctional enzyme with folate-dependent AICAR transformylase and IMP cyclohydrolase activities that catalyzes the last two steps of purine biosynthesis. The AICAR transformylase inhibitors BW1540 and BW2315 are sulfamido-bridged 5,8-dideazafolate analogs with remarkably potent K(i) values of 8 and 6 nm, respectively, compared with most other antifolates. Crystal structures of ATIC at 2.55 and 2.60 A with each inhibitor, in the presence of substrate AICAR, revealed that the sulfonyl groups dominate inhibitor binding and orientation through interaction with the proposed oxyanion hole. These agents then appear to mimic the anionic transition state and now implicate Asn(431') in the reaction mechanism along with previously identified key catalytic residues Lys(266) and His(267). Potent and selective inhibition of the AICAR transformylase active site, compared with other folate-dependent enzymes, should therefore be pursued by further design of sulfonyl-containing antifolates.  相似文献   

16.
C1-Tetrahydrofolate synthase is a trifunctional polypeptide found in eukaryotic organisms that catalyzes 10-formyltetrahydrofolate synthetase (EC 6.3.4.3), 5,10-methenyltetrahydrofolate cyclohydrolase (EC 3.5.4.9), and 5,10-methylenetetrahydrofolate dehydrogenase (EC 1.5.1.5) activities. In Saccharomyces cerevisiae, C1-tetrahydrofolate synthase is encoded by the ADE3 locus, yet ade3 mutants have low but detectable levels of these enzyme activities. Synthetase, cyclohydrolase, and dehydrogenase activities in an ade3 deletion strain co-purify 4,000-fold to yield a single protein species as seen on sodium dodecyl sulfate-polyacrylamide gels. The native molecular weight of the isozyme (Mr = 200,000 by gel exclusion chromatography) and the size of its subunits (Mr = 100,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are similar to those of C1-tetrahydrofolate synthase. Cell fractionation experiments show that the isozyme, but not C1-tetrahydrofolate synthase, is localized in the mitochondria. Genetic studies indicate that the isozyme is encoded in the nuclear genome. Peptide mapping experiments show that C1-tetrahydrofolate synthase and the isozyme are not structurally identical. However, immunotitration experiments and amino acid sequence analysis suggest that C1-tetrahydrofolate synthase and the isozyme are structurally related. We propose to call the isozyme "mitochondrial C1-tetrahydrofolate synthase."  相似文献   

17.
Mehrotra S  Balaram H 《Biochemistry》2007,46(44):12821-12832
Adenylosuccinate synthetase (AdSS) catalyzes the Mg2+ dependent condensation of a molecule of IMP with aspartate to form adenylosuccinate, in a reaction driven by the hydrolysis of GTP to GDP. AdSS from the thermophilic archaea, Methanocaldococcus jannaschii (MjAdSS) is 345 amino acids long against an average length of 430-457 amino acids for most mesophilic AdSS. This short AdSS has two large deletions that map to the middle and C-terminus of the protein. This article discusses the detailed kinetic characterization of MjAdSS. Initial velocity and product inhibition studies, carried out at 70 degrees C, suggest a rapid equilibrium random AB steady-state ordered C kinetic mechanism for the MjAdSS catalyzed reaction. AdSS are known to exhibit monomer-dimer equilibrium with the dimer being implicated in catalysis. In contrast, our studies show that MjAdSS is an equilibrium mixture of dimers and tetramers with the tetramer being the catalytically active form. The tetramer dissociates into dimers with a minor increase in ionic strength of the buffer, while the dimer is extremely stable and does not dissociate even at 1.2 M NaCl. Phosphate, a product of the reaction, was found to be a potent inhibitor of MjAdSS showing biphasic inhibition of enzyme activity. The inhibition was competitive with IMP and noncompetitive with GTP. MjAdSS, like the mouse acidic isozyme, exhibits substrate inhibition, with IMP inhibiting enzyme activity at subsaturating GTP concentrations. Regulation of enzyme activity by the glycolytic intermediate, fructose 1,6 bisphosphate, was also observed with the inhibition being competitive with IMP and noncompetitive against GTP.  相似文献   

18.
The argJ gene coding for N2-acetyl-L-ornithine: L-glutamate N-acetyltransferase, the key enzyme involved in the acetyl cycle of L-arginine biosynthesis, has been cloned from thermophilic procaryotes: the archaeon Methanoccocus jannaschii, and the bacteria Thermotoga neapolitana and Bacillus stearothermophilus. Archaeal argJ only complements an Escherichia coli argE mutant (deficient in acetylornithinase, which catalyzes the fifth step in the linear biosynthetic pathway), whereas bacterial genes additionally complement an argA mutant (deficient in N-acetylglutamate synthetase, the first enzyme of the pathway). In keeping with these in vivo data the purified His-tagged ArgJ enzyme of M. jannaschii only catalyzes N2-acetylornithine conversion to ornithine, whereas T. neapolitana and B. stearothermophilus ArgJ also catalyze the conversion of glutamate to N-acetylglutamate using acetylCoA as the acetyl donor. M. jannaschii ArgJ is therefore a monofunctional enzyme, whereas T. neapolitana and B. stearothermophilus encoded ArgJ are bifunctional. Kinetic data demonstrate that in all three thermophilic organisms ArgJ-mediated catalysis follows ping-pong bi-bi kinetic mechanism. Acetylated ArgJ intermediates were detected in semireactions using [14C]acetylCoA or [14C]N2-acetyl-L-glutamate as acetyl donors. In this catalysis L-ornithine acts as an inhibitor; this amino acid therefore appears to be a key regulatory molecule in the acetyl cycle of L-arginine synthesis. Thermophilic ArgJ are synthesized as protein precursors undergoing internal cleavage to generate alpha and beta subunits which appear to assemble to alpha2beta2 heterotetramers in E. coli. The cleavage occurs between alanine and threonine residues within the highly conserved PXM-ATML motif detected in all available ArgJ sequences.  相似文献   

19.
The genes from the thermophilic archaeabacterium Methanococcus jannaschii that code for the putative catalytic and regulatory chains of aspartate transcarbamoylase were expressed at high levels in Escherichia coli. Only the M. jannaschii PyrB (Mj-PyrB) gene product exhibited catalytic activity. A purification protocol was devised for the Mj-PyrB and M. jannaschii PyrI (Mj-PyrI) gene products. Molecular weight measurements of the Mj-PyrB and Mj-PyrI gene products revealed that the Mj-PyrB gene product is a trimer and the Mj-PyrI gene product is a dimer. Preliminary characterization of the aspartate transcarbamoylase from M. jannaschii cell-free extract revealed that the enzyme has a similar molecular weight to that of the E. coli holoenzyme. Kinetic analysis of the M. jannaschii aspartate transcarbamoylase from the cell-free extract indicates that the enzyme exhibited limited homotropic cooperativity and little if any regulatory properties. The purified Mj-catalytic trimer exhibited hyperbolic kinetics, with an activation energy similar to that observed for the E. coli catalytic trimer. Homology models of the Mj-PyrB and Mj-PyrI gene products were constructed based on the three-dimensional structures of the homologous E. coli proteins. The residues known to be critical for catalysis, regulation, and formation of the quaternary structure from the well characterized E. coli aspartate transcarbamoylase were compared.  相似文献   

20.
C1-Tetrahydrofolate synthase is a multifunctional enzyme which catalyzes three reactions in 1-carbon metabolism: 10-formyltetrahydrofolate synthetase; 5,10-methenyltetrahydrofolate cyclohydrolase; 5,10-methylenetetrahydrofolate dehydrogenase. A rapid 1-day purification procedure has been developed which gives 40 mg of pure enzyme from 10 rabbit livers. The 10-formyltetrahydrofolate synthetase activity of this trifunctional enzyme has a specific activity that is 4-fold higher than the enzyme previously purified from rabbit liver. Conditions have been developed for the rapid isolation of a tryptic fragment of the enzyme which contains the methylenetetrahydrofolate dehydrogenase and methenyltetrahydrofolate cyclohydrolase activities. This fragment is a monomer exhibiting a subunit and native molecular weight of 36,000 in most buffers. However, in phosphate buffers the native molecular weight suggests that the fragment is a dimer. Conditions are also given whereby chymotryptic digestion allows the simultaneous isolation from the native enzyme of a large fragment containing the 10-formyltetrahydrofolate synthetase activity and a smaller fragment containing the dehydrogenase and cyclohydrolase activities. The large fragment is a dimer with a subunit molecular weight of 66,000. The small fragment retains all of the dehydrogenase and cyclohydrolase activities of the native enzyme. The large fragment is unstable but retains most of the 10-formyltetrahydrofolate synthetase activity. Km values of substrates for the two fragments are the same as the values for the native enzyme. The 10-formyltetrahydrofolate synthetase activity of the native enzyme requires ammonium or potassium ions for expression of full catalytic activity. The effect of these two ions on the catalytic activity of the large chymotryptic fragment is the same as with the native enzyme. We have shown by differential scanning calorimetry that the native enzyme contains two protein domains which show thermal transitions at 47 and 60 degrees C. Evidence is presented that the two domains are related to the two protein fragments generated by proteolysis of the native enzyme. The larger of the two domains contains the active site for the 10-formyltetrahydrofolate synthetase activity while the smaller domain contains the active site which catalyzes the dehydrogenase and cyclohydrolase reactions. Replacement of sodium ion buffers with either ammonium or potassium ions results in an increase in stability of the large domain of the native enzyme. This change in stability is not accompanied by a change in the quaternary structure of the enzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号