首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of plastids in the root cap of cress and maize was studied by low- and high-voltage electron microscopy after staining their membranes with a mixture of zinc iodide and osmium tetroxide. In plastids of both species electron-opaque membranes were found in the plastid interior while membranes of lesser electron-opacity comprised the outer envelope and vesicles and cisternae underlying it. Electron-opaque tubules, often in groups attached to the inner membrane of the amyloplast envelope, were found in cress but not in maize. The internal, less-opaque membranes were often found associated with the starch grains. No specific association could be seen between amyloplasts and endoplasmic reticulum (ER); their surfaces showed no regular contact or connexion, though the amyloplasts clearly indented the underlying ER. The ER in statocytes was predominantly tubular in cress but predominantly cisternal in maize.Abbreviations ER endoplasmic reticulum - ZIO zinc iodideosmium tetroxide  相似文献   

2.
Summary The process of chloroplast division in young leaves of four species (bean, spinach, wheat, and maize) was investigated by light and electron microscopy. Two types of division, i.e., by fission, and by partition were observed.Chloroplast division by fission prevailed in the plant species examined, as shown by the relative abundance of dumbbell-shaped plastids, the characteristic stage in this type of division. Electron dense material, most commonly in the shape of a ring structure in the isthmus of the dividing plastid, was nearly always present in wheat and maize. Similar, but less distinct structures were usually observed in the neck region of constricted bean and spinach chloroplasts.Chloroplast division by partition was found in young leaf tissues of bean and spinach, but was not observed in wheat and maize. The main indication of this type of division is a centripetal invagination of the inner limiting membrane of the plastid envelope which progressively divides the chloroplast stroma into two, nearly equal, parts. Specific membraneous structures resembling myelin figures were usually found close to a dividing chloroplast and may participate in chloroplastokinesis.  相似文献   

3.
Protophloem sieve element differentiation in the minor veins of the maize ( Zea mays L. ) leaves was first evidenced as an increase of the wall thickness, which began in the comers of the cell and then extended to other parts of the wall, and the appearance of long rough endoplasmic reticulum cistemae distributed throughout the cytoplasm, and then the presence of characteristic crystalloid inclusions within the plastids. As differentiation progressed, long cisternae of rough endoplasmic reticulum appeared to transform into shorter forms and eventually aggregated into small stacks, losing their ribosomes during the process. The nuclei degenerated, although frequently persisted until very late in differentiation the stages of maturation, as darkly stained amorphous aggregates surrounded by double nuclear envelope or only inner membrane of nuclear envelope. Subsequently, the nuclear envelope collapsed and became discontinuous. At the beginning of nuclear degeneration the perinuclear spaces were partly dilated and sometimes the outer nuclear envelope in the dilated portions then ruptured, and was accompanied by the disappearance of the cytoplasmic portion near it. During the peried of nuclear degeneration, in addition to the endoplasmic reticulum, plastids and mitochondria underwent structural modification, while components such as ribosomes, cytoplasmic ground substances, vacuoles and dictyosomes disintegrated and disappeared. At maturity, the surviving protoplasmic components, including plasmalemma, mitochondria, small stacked smooth endoplasmic reticulum and P-type plastids with crystalloids, became parietal in position. As differentiation of adjacent metaphloem sieve elements proceeded, the protoplasmic components of the mature protophloem sieve elements progresively degenerated and finally obliterated.  相似文献   

4.
H. Hashimoto 《Protoplasma》1986,135(2-3):166-172
Summary Ultrastructure of the constricting neck of dividing proplastids and young chloroplasts in the first leaves ofAvena sativa was examined by electron microscopy. An electron-dense, double ring structure (plastid-dividing ring doublet; PD ring doublet) with a width of 15–40 nm was revealed around the narrow neck of the constricted and dividing plastids by serial section technique. The inner and outer ring of the doublet coated the inside (stromal side) of the inner envelope membrane and the outside (cytoplasmic side) of the outer envelope membrane, respectively. However, electron-dense materials were not observed within the lumen between the outer and inner envelope membranes.Although the PD ring doublet was commonly observed in the constricted plastids with a 70–140 nm wide neck, they could be scarcely observed in the constricted plastids with a 160 or more nm wide neck. The components of the PD ring were assumed not to be concentrated enough to identify by electron microscopy in the early stage of constriction and the PD ring may be formed and recognized at the final stage.The significance of the formation of the PD ring and its role in plastokinesis (plastid kinesis) were discussed.  相似文献   

5.
Summary The donor and acceptor specificity of cell-free transfer of radiolabeled membrane constituents, chiefly lipids, was examined using purified fractions of endoplasmic reticulum, Golgi apparatus, nuclei, plasma membrane, tonoplast, mitochondria, and chloroplasts prepared from green leaves of spinach. Donor membranes were radiolabeled with [14C]acetate. Acceptor membranes were unlabeled and immobilized on nitrocellulose filters. The assay was designed to measure membrane transfer resulting from ATP-and temperature-dependent formation of transfer vesicles by the donor fraction in solution and subsequent attachment and/or fusion of the transfer vesicles with the immobilized acceptor. When applied to the analysis of spinach fractions, significant ATP-dependent transfer in the presence of cytosol was observed only with endoplasmic reticulum as donor and Golgi apparatus as acceptor. Transfer in the reverse direction, from Golgi apparatus to endoplasmic reticulum, was only 0.2 to 0.3 that from endoplasmic reticulum to Golgi apparatus. ATP-dependent transfers also were indicated between nuclei and Golgi apparatus from regression analysis of transfer kinetics. Specific transfer between Golgi apparatus and plasma membrane and, to a lesser extent, from plasma membrane to Golgi apparatus was observed at 25°C compared to 4°C but was not ATP plus cytosol-dependent. All other combinations of organelles and membranes exhibited no ATP plus cytosol-dependent transfer and only small increments of specific transfer comparing transfer at 37°C to transfer at 4°C. Thus, the only combinations of membranes capable of significant cell-free transfer in vitro were those observed by electron microscopy of cells and tissues to be involved in vesicular transport in vivo (endoplasmic reticulum, Golgi apparatus, plasma membrane, nuclear envelope). Of these, only with endoplasmic reticulum (or nuclear envelope) and Golgi apparatus, where transfer in situ is via 50 to 70 nm transition vesicles, was temperature-and ATP-dependent transfer of acetatelabeled membrane reproduced in vitro. Lipids transferred included phospholipids, mono-and diacylglycerols, and sterols but not triacylglycerols or steryl esters, raising the possibility of lipid sorting or processing to exclude transfer of triacylglycerols and steryl esters at the endoplasmic reticulum to Golgi apparatus step.  相似文献   

6.
We have developed a reliable procedure for the purification of envelope membranes from cauliflower (Brassica oleracea L.) bud plastids and sycamore (Acer pseudoplatanus L.) cell amyloplasts. After disruption of purified intact plastids, separation of envelope membranes was achieved by centrifugation on a linear sucrose gradient. A membrane fraction, having a density of 1.122 grams per cubic centimeter and containing carotenoids, was identified as the plastid envelope by the presence of monogalactosyldiacylglycerol synthase. Using antibodies raised against spinach chloroplast envelope polypeptides E24 and E30, we have demonstrated that both the outer and the inner envelope membranes were present in this envelope fraction. The major polypeptide in the envelope fractions from sycamore and cauliflower plastids was identified immunologically as the phosphate translocator. In the envelope membranes from cauliflower and sycamore plastids, the major glycerolipids were monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and phosphatidylcholine. Purified envelope membranes from cauliflower bud plastids and sycamore amyloplasts also contained a galactolipid:galactolipid galactosyltransferase, enzymes for phosphatidic acid and diacylglycerol biosynthesis, acyl-coenzyme A thioesterase, and acyl-coenzyme A synthetase. These results demonstrate that envelope membranes from nongreen plastids present a high level of homology with chloroplasts envelope membranes.  相似文献   

7.
Sahu SK  Gummadi SN 《Biochemistry》2008,47(39):10481-10490
Phospholipid translocation (flip-flop) in biogenic (self-synthesizing) membranes such as the endoplasmic reticulum of eukaryotic cells (rat liver) and bacterial cytoplasmic membranes is a fundamental step in membrane biogenesis. It is known that flip-flop in these membranes occurs without a metabolic energy requirement, bidirectionally with no specificity for phospholipid headgroup. In this study, we demonstrate for the first time ATP-independent flippase activity in endoplasmic reticulum membranes of plants using spinach as a model system. For this, we generated proteoliposomes from a Triton X-100 extract of endoplasmic reticulum membranes of spinach and assayed them for flippase activity using fluorescently labeled phospholipids. The half-time for flipping was found to be 0.7-1.0 min. We also show that (a) proteoliposomes can flip fluorescently labeled analogues of phosphatidylcholine and phosphatidylethanolamine, (b) flipping activity is protein-mediated, (c) more than one class of lipid translocator (flippase) is present in spinach membranes, based on the sensitivity to protease and protein-modifying reagents, and (d) translocation of PC and PE is affected differently upon treatment with protease and protein-modifying reagents. Ca (2+)-dependent scrambling activity was not observed in the vesicles reconstituted from plant ER membranes, ruling out the possibility of the involvement of scramblase in translocation of phospholipids. These results suggest the existence of biogenic membrane flippases in plants and that the mechanism of membrane biogenesis is similar to that found in animals.  相似文献   

8.
CAMPBELL  R. 《Annals of botany》1972,36(4):711-720
Pine needles were sampled at intervals throughout their firstgrowing season and fixed for electron microscopy with potassiumpermanganate, glutaraldehyde/acrolein, and glutaraldehyde/formaldehyde.Mesophyll cells had electron-opaque tannin deposits and invaginatedwalls. Resin-canal cells contained characteristic plastids sheathedin endoplasmic reticulum; resin production was limited to theyoung needles. No distinct Casparian strip was visible in theendodermis. By varying degrees of wall thickening and vacuolationmeristematic transfusion tissue developed into tracheids, parenchyma,or albuminous cells. The xylem had the usual structure but thephloem sieve cells had very thick fibrous walls. The cambiumwas inactive outside the fascicular sheath.  相似文献   

9.
Using antibodies raised against E37, one of the major polypeptides of the inner membrane from the chloroplast envelope, it has been demonstrated that a single immunologically related polypeptide was present in total protein extracts from various higher plants (monocots and dicots), in photosynthetic and non-photosynthetic tissues from young spinach plantlets, as well as in the cytoplasmic membrane from the cyanobacteria Synechococcus . This ubiquitous distribution of E37 strongly suggests that this protein plays an envelope-specific function common to all types of plastids. Comparison of tobacco and spinach E37 amino acid sequences deduced from the corresponding cDNA demonstrates that consensus motifs for S-adenosyl methionine-dependent methyltransferases are located in both sequences. This hypothesis was confirmed using a biochemical approach. It was demonstrated that E37, together with two minor spinach chloroplast envelope polypeptides of 32 and 39 kDa, can be specifically photolabeled with [3H]-S-adenosyl methionine upon UV-irradiation. Identification of E37 as a photolabeled polypeptide was established by immunoprecipitation. Furthermore, photolabeling of the three envelope polypeptides was specifically inhibited by very low concentration of S-adenosyl homocysteine, thus providing evidence for the presence within these proteins of S-adenosyl methionine- and S-adenosyl homocysteine-binding sites that were closely associated. Taken as a whole these results strongly suggest that E37 is an ubiquitous plastid envelope protein that probably has an S-adenosyl methionine-dependent methyltransferase activity. The 32 and 39 kDa envelope polypeptides probably have a similar methyltransferase activity.  相似文献   

10.
Diatoms and related algae have plastids that are surrounded by four membranes. The outer two membranes are continuous with the endoplasmic reticulum and the inner two membranes are analogous to the plastid envelope membranes of higher plants and green algae. Thus the plastids are completely compartmentalized within the ER membranes. The targeting presequences for nuclear-encoded plastid proteins have two recognizable domains. The first domain is a classic signal sequence, which presumably targets the proteins to the endoplasmic reticulum. The second domain has characteristics of a transit peptide, which targets proteins to the plastids of higher plants. To characterize these targeting domains, the presequence from the nuclear-encoded plastid protein AtpC was utilized. A series of deletions of this presequence were fused to Green Fluorescent Protein (GFP) and transformed into cells of the diatom, Phaeodactylum tricornutum. The intracelluar localization of GFP was visualized by fluorescence microscopy. This work demonstrates that the first domain of the presequence is responsible for targeting proteins to the ER lumen and is the essential first step in the plastid protein import process. The second domain is responsible to directing proteins from the ER and through the plastid envelope and only a short portion of the transit peptide-like domain is necessary to complete this second processing step. In vivo data generated from this study in a fully homologous transformation system has confirmed Gibbs' hypothesis regarding a multistep import process for plastid proteins in chromophytic algae.  相似文献   

11.
Summary Phosphatase activity was studied in the cambium and differentiating vascular cells of beech by using a modified Washstein and Meisel method. After fixation in glutaraldehyde or crotonaldehyde and incubation in a medium containing ATP and lead nitrate at pH 7.2, a deposit of electron-opaque granules was found in the nucleoli, nucleoplasm, nuclear envelope, endoplasmic reticulum, plastids, mitochondria, and at the plasmalemma. Although located at these different sites, the distribution varied both inter- and intra-cellularly. This is thought to be a true reflection of the variation in activity between closely adjacent cells in this part of the stem.Some reaction was obtained when ADP replaced ATP in the reaction mixture, but there was no reaction at all when both ATP and ADP were omitted. Fixation in hydroxyadipaldehyde, or incubation at pH 6.4 both produced very little reaction.  相似文献   

12.
G. Wanner  H. Formanek  R. R. Theimer 《Planta》1981,151(2):109-123
Maturing embryos of 16 oil plants, anise suspension culture cells, and Neurospora crassa cells were prepared for electron microscopy at different stages during massive lipid accumulation. Lipid-rich structures of certain species were best preserved by dehydration of fixed tissues in ethanol without propylene oxide, embedding in Spurr's Medium, and polymerization at room temperature. In all cells examined, spherical lipid bodies (spherosomes) showed a moderately osmiophilic, amorphous matrix and displayed a delimiting half-unit membrane when sectioned medially. Associations with the endoplasmic reticulum (ER) were viewed at any stage during lipid body development but with different frequency in the different plant species. Plastids of fat-storing cells exhibited conspicuously undulate outer and inner envelope membranes that formed multiple contact sites with each other and protuberances into both cytoplasm and stroma. Some species, e.g., Linum, have plastids with tubular structures that connect the inner membrane to the thylakoid system; in addition, in the stroma vesicles fusing with or apparently passing through the envelope were observed. The outer envelope membrane may be associated with ER-like cytoplasmic membrane structures. In addition, lipid bodies of various sizes were found in contact with the plastid envelope. The ultrastructural observations are interpreted to match the published biochemical evidence, indicating that both plastids and ER may be involved in the synthesis of storage lipids and lipid body production.  相似文献   

13.
Oocytes in primordial ("resting") follicles in adult human ovaries contain a complex paranuclear structure identified by light microscopists as Balbiani's vitelline body. By electron microscopy this structure is composed of a mass of mitochondria with associated endoplasmic reticulum, multiple compound aggregates which form a ring around the cytocentrum, and a single stack or coil of annulate lamellae either attached to the nuclear membrane or free in the cytoplasm. The compound aggregates contain vacuoles and finely divided electron-opaque material. Evidence is presented for the probable transport of this material between the oocyte and its environment. The cytocentrum contains a central aggregate of amorphous electron-opaque deposits which appear to become periodically aligned on fine fibrils to form the long coarse fibers at the periphery of the cytocentrum. The apparent prevalence of annulate lamellae attached or adjacent to the nuclear membrane of oocytes in ovaries removed during the mid-follicular (estrogenic) phase of the cycle indicates the need for further study of a possible hormonal influence on the resting oocyte. By light microscopy phosphatases were not found within the oocyte, but adenosine-monophosphatase activity is present in the cortical cells surrounding primordial follicles, and also at the periphery of each primitive follicle cell, most prominently at the oocyte side. Glucose-6-phosphate dehydrogenase activity is present within the oocyte cytoplasm.  相似文献   

14.
Postfixation of plant tissues with a mixture of osmium tetroxide and potassium ferricyanide (OsFeCN) yields a selective staining of the endoplasmic reticulum (ER) and nuclear envelope (NE). The other cytoplasmic organelles and inclusions are evident, but by comparison with the NE-ER they are weakly contrasted. Demarcation of the NE-ER results from the enhanced deposition of an electron-opaque reaction product on the inner leaflet of the membrane that extends into the cisternal space. The procedure thus renders the NE-ER readily apparent even when the elements are sectioned parallel to their surface and makes it possible to easily visualize their cellular pattern. Ultrastructural studies reveal with clarity tubular reticula and fenestrated lamellae that are extensively interconnected into one continuous membrane system. Problems with the OsFeCN procedure include the inability of the reagent to stain the NE-ER in all cells of a tissue, the occasional staining of non-ER such as dictyosomal cisternae and plastids, and the failure to selectively stain the NE-ER in protoplasts or single wall-less cells. Results obtained with OsFeCN are compared with other ER fixatives and stains including potassium permanganate and zinc iodide-osmium tetroxide. Despite its problems, under optimal circumstances OsFeCN is judged to be superior to other stain-fixatives for selectively contrasting the NE-ER compartment and is recommended generally for ultrastructural investigations.  相似文献   

15.
Diatoms and related algae have plastids that are surrounded by four membranes. The outer two membranes are continuous with the endoplasmic reticulum and the inner two membranes are analogous to the plastid envelope membranes of higher plants and green algae. Thus the plastids are completely compartmentalized within the ER membranes. The targeting presequences for nuclear‐encoded plastid proteins have two recognizable domains. The first domain is a classic signal sequence, which presumably targets the proteins to the endoplasmic reticulum. The second domain has characteristics of a transit peptide, which targets proteins to the plastids of higher plants. To characterize these targeting domains, the presequence from the nuclear‐encoded plastid protein AtpC was utilized. A series of deletions of this presequence were fused to Green Fluorescent Protein (GFP) and transformed into cells of the diatom, Phaeodactylum tricornutum. The intracelluar localization of GFP was visualized by fluorescence microscopy. This work demonstrates that the first domain of the presequence is responsible for targeting proteins to the ER lumen and is the essential first step in the plastid protein import process. The second domain is responsible to directing proteins from the ER and through the plastid envelope and only a short portion of the transit peptide‐like domain is necessary to complete this second processing step. In vivo data generated from this study in a fully homologous transformation system has confirmed Gibbs' hypothesis regarding a multistep import process for plastid proteins in chromophytic algae.  相似文献   

16.
OVARIAN STEROID CELLS : II. The Lutein Cell   总被引:4,自引:2,他引:2       下载免费PDF全文
The lutein cells of the rabbit exhibit fine structural variations during their life-span of 28 to 30 days. A systematic examination of the corpus luteum reveals that cellular distinctions may be recognized during the first, second, and third stages of pregnancy. The agranular endoplasmic reticulum reveals vesicular, tubular, and cisternal profiles after fixation with each of the following fixatives: glutaraldehyde, osmium tetroxide, and permanganate. The osmolality of the fixing solutions was varied with sucrose and recorded with an osmometer in order to determine the effect of osmotic concentration on the intracellular membranous profiles. It was determined that vesicles and short, branched tubules of similar structure are present in the agranular reticulum when the osmolalities are 300 to 800 milliosmols (iso-osmotic considered 300 milliosmols). At 900 milliosmols, the vesicular or tubular lumen is obliterated. Intracellular membrane profiles do not exhibit interconversions due to hyperosmotic fixative solutions. The agranular endoplasmic reticulum is randomly distributed as short tubular profiles during the first third of pregnancy. A continuity between these membranes and irregular, electron-opaque lipid masses is evident. When physiological and histochemical data indicate that the lutein cell may be storing sterol precursors, cytological observations show that the agranular endoplasmic reticulum exists in a more organized pattern within the cytoplasmic matrix. Vesicular and short tubular, circular aggregations as well as whorled cisternal patterns surround the larger, less electron-opaque lipid droplets. Surface views of cisternal agranular endoplasmic reticulum exhibit tubular extensions, accentuating the continuity between these two profiles. During the progress of pregnancy, the lutein cell increases in diameter, and accumulates both lipid inclusions and aggregations of intracellular membranes. The agranular endoplasmic reticulum may be peripherally packed and arranged parallel to the cell surface during later stages. In the postpartum, degenerating lutein cell, large myelin figures are present which form from the agranular endoplasmic reticulum. These cellular events are discussed in relation to lutein cell activity, including both secretion of product and storage of precursors.  相似文献   

17.
A study was made of seasonal changes in plastids of ground tissue cells of bulb scales in early-spring ephemeroid Scilla sibirica L. In summer, plastids are represented by typical amyloplasts, with their main volume (97.0 +/- 4.3%) being occupied by one large starch grain. The volume fraction of plastid stroma is at its minimum. The stroma contains small plastoglobuli and no thylakoids. The same structure is characteristic of plastids in October. However, no starch is found in December, when some thylakoids are seen at the plastid periphery. In the early spring (March), when leaves still remain below the ground, the volume fraction of starch grains is 53.0 +/- 2.2%. In the stroma some structures superficially similar to those of microtubuli are revealed. The thylakoid system is fairly well developed, some of thylakoids being concentrically arranged. Some electron-opaque material is seen in the thylakoid lumen. Many plastids are sheathed with elements of the smooth endoplasmic reticulum. Based on the analysis of these and literature data, a conclusion is made that plastids of bulb scales not only store starch, but also seemingly participate in phytohormone biosynthesis.  相似文献   

18.
The outer nuclear membrane is morphologically similar to rough endoplasmic reticulum. The presence of ribosomes bound to its cytoplasmic surface suggests that it could be a site of synthesis of membrane glycoproteins. We have examined the biogenesis of the vesicular stomatitis virus G protein in the nuclear envelope as a model for the biogenesis of membrane glycoproteins. G protein was present in nuclear membranes of infected Friend erythroleukemia cells immediately following synthesis and was transported out of nuclear membranes to cytoplasmic membranes with a time course similar to transport from rough endoplasmic reticulum (t 1/2 = 5-7 min). Temperature-sensitive mutations in viral membrane proteins which block transport of G protein from endoplasmic reticulum also blocked transport of G protein from the nuclear envelope. Friend erythroleukemia cells and NIH 3T3 cells differed in the fraction of newly synthesized G protein found in nuclear membranes, apparently reflecting the relative amount of nuclear membrane compared to endoplasmic reticulum available for glycoprotein synthesis. Nuclear membranes from erythroleukemia cells appeared to have the enzymatic activities necessary for cleavage of the signal sequence and core glycosylation of newly synthesized G protein. Signal peptidase activity was detected by the ability of detergent-solubilized membranes of isolated nuclei to correctly remove the signal sequence of human preplacental lactogen. RNA isolated from the nuclear envelope was highly enriched for G protein mRNA, suggesting that G protein was synthesized on the outer nuclear membrane rather than redistributing to nuclear membranes from endoplasmic reticulum before or during cell fractionation. These results suggest a mechanism for incorporation of membrane glycoproteins into the nuclear envelope and suggest that in some cell types the nuclear envelope is a major source of newly synthesized membrane glycoproteins.  相似文献   

19.
Purified spinach chloroplasts incorporate [1-14C]isopentenyl diphosphate into prenyl lipids in high yields. The immediate biosynthetic precursors of isopentenyl diphosphate (hydroxymethylglutaryl-CoA, mevalonate, mevalonate-5-phosphate, mevalonate-5-diphosphate), on the other hand, are not accepted as substrates and the corresponding enzymes hydroxymethylglutaryl-CoA reductase, mevalonate kinase, phosphomevalonate kinase, and diphosphomevalonate decarboxylase are not present in the organelles. These enzymes can only be detected in a membrane-bound form at the endoplasmic reticulum (hydroxymethylglutaryl-CoA reductase) and as soluble activities in the cytoplasm. The concept is developed that isopentenyl diphosphate is formed in the cytoplasm as a 'central intermediate' and is distributed then to other cellular compartments (endoplasmic reticulum, plastids, mitochondria) for further biosynthetic utilization.  相似文献   

20.
The ultrastructure of tapetal cells in Timmiela barbuloideswas investigated in relation to events of sporogenesis. Aftertheir establishment both internally and externally to the sporogonialinitials, tapetal cells enlarge and assume a permanently polarizedorganization after completion of meiosis. A large vacuole isformed in the cell region distal to the spore sac, the nucleusbecomes centrally located, and amyloplasts lie in the cytoplasmadjacent to the spore sac. An extensive endomembrane systemdevelops in tapetal cells during the stage of exine depositionin spore tetrads. Sheets of rough endoplasmic reticulum developfirst around the nucleus then also in close proximity to theplasma membrane abutting the spore sac. Concomitantly, interveningdictyosomes produce a variety of vesicles. Unusual structureswith vesicle-like profiles also occur in the inner tapetum cellwalls abutting the spore sac. At the same time most of the starchis lost from the plastids in which grana-fretwork systems develop.A massive secretion of extremely electron-opaque material isassociated with perine deposition onto the free spore surfaces.Degeneration of the tapetal cells during the terminal stagesof spore maturation is marked by distortion of the organelles,increase in vacuolation and the appearance of electron-opaquematerial between the sheets of endoplasmic reticulum.Copyright1994, 1999 Academic Press Bryophytes, endomembrane dynamics, Timmiella, ultrastructure, development, tapetum  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号