首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
Microarray analysis of brassinosteroid-regulated genes in Arabidopsis   总被引:14,自引:0,他引:14  
  相似文献   

3.
The genetic and phenotypic characterization of a new Arabidopsis mutant, de-etiolated -3, ( det 3), involved in light-regulated seedling development is described. A recessive mutation in the DET 3 gene uncouples light signals from a subset of light-dependent processes. The det 3 mutation causes dark-grown Arabidopsis thaliana seedlings to have short hypocotyls, expanded cotyledons, and differentiated leaves, traits characteristic of light-grown seedlings. Despite these morphological changes, however, the det 3 mutant does not develop chloroplasts or show elevated expression of nuclear- and chloroplast-encoded light-regulated mRNAs. The det 3 mutation thus uncovers a downstream branch of the light transduction pathways that separates leaf development from chloroplast differentiation and light-regulated gene expression. In addition, light-grown det 3 plants have reduced stature and apical dominance, suggesting that DET3 functions during growth in normal light conditions as well. The genetic interactions between mutations in det 1, det 2, and det 3 are described. The phenotypes of doubly mutant strains suggest that there are at least two parallel pathways controlling light-mediated development in Arabidopsis .  相似文献   

4.
油菜素内酯(brassinosteroid, BRs)是一类重要的植物激素,在植物的生长发育过程中发挥重要的调节作用。BRs的信号转导研究在双子叶植物拟南芥中已取得重大进展,但在单子叶植物水稻中,BRs的信号转导途径尚不很清楚。本研究从水稻T-DNA插入突变体库中筛选出一个叶片直立突变体el(erect leave mutant)。该突变体与野生型植株相比,叶夹角减小。遗传分析显示,el的突变性状由一对显性基因控制。该基因经图位克隆定位于水稻第5染色体引物InDel3和InDel4之间,物理距离为700 kb。本研究明确了一个水稻BRs不敏感突变体的表型特征及遗传规律,为进一步研究水稻BRs信号转导调控机制奠定基础。  相似文献   

5.
Tomato high pigment (hp) mutants are characterized by their exaggerated photoresponsiveness. Light-grown hp mutants display elevated levels of anthocyanins, are shorter and darker than wild-type plants, and have dark green immature fruits due to the overproduction of chlorophyll pigments. It has been proposed that HP genes encode negative regulators of phytochrome signal transduction. We have cloned the HP-2 gene and found that it encodes the tomato homolog of the nuclear protein DEETIOLATED1 (DET1) from Arabidopsis. Mutations in DET1 are known to result in constitutive deetiolation in darkness. In contrast to det1 mutants, tomato hp-2 mutants do not display any visible phenotypes in the dark but only very weak phenotypes, such as partial chloroplast development. Furthermore, whereas det1 mutations are epistatic to mutations in phytochrome genes, analysis of similar double mutants in tomato showed that manifestation of the phenotype of the hp-2 mutant is strictly dependent upon the presence of active phytochrome. Because only one DET1 gene is likely to be present in each of the two species, our data suggest that the phytochrome signaling pathways in which the corresponding proteins function are regulated differently in Arabidopsis and tomato.  相似文献   

6.
7.
The pathogen- and ethylene-inducible pepper-basic pathogenesis-related (PR)-1 gene, CABPR1 , was strongly expressed in pepper leaves by osmotic and oxidative stresses. The pepper CABPR1 was introduced into the Arabidopsis plants under the control of the cauliflower mosaic virus 35S promoter. Polymerase chain reaction-amplification with the Arabidopsis genomic DNA and Northern blot analyses confirmed that the pepper CABPR1 gene was integrated into the Arabidopsis genome, where it was overexpressed in the transgenic Arabidopsis plants under normal growth conditions. The constitutive overexpression of CABPR1 induced the expression of the Arabidopsis PR-genes including PR-4 , PR-5 and PDF1.2 . Enhanced resistance to phytopathogenic bacteria, Pseudomonas syringae pv. tomato DC3000, was also observed in the transgenic Arabidopsis plants. CABPR1 overexpression in the transgenic Arabidopsis caused enhanced seed germination under NaCl (ionic) and mannitol (non-ionic) osmotic stresses. Enhanced tolerances to high salinity and dehydration stresses during seed germination of the transgenic plants were not found at the early seedling stage. The transgenic Arabidopsis plants exhibited a higher tolerance to oxidative stress by methyl viologen at the seed germination, seedling and adult plant stages. These results suggest that the CABPR1 gene may function in the enhanced disease resistance and oxidative stress tolerance of transgenic Arabidopsis plants.  相似文献   

8.
9.
The Arabidopsis NPR1 protein is an essential regulatory component of systemic acquired resistance (SAR). Mutations in the NPR1 gene completely block the induction of SAR by signals such as salicylic acid (SA). An Arabidopsis mutant, snc1 (suppressor of npr1-1, constitutive 1), was isolated in a screen for suppressors of npr1-1. In the npr1-1 background, the snc1 mutation resulted in constitutive resistance to Pseudomonas syringae maculicola ES4326 and Peronospora parasitica Noco2. High levels of SA were detected in the mutant and shown to be required for manifestation of the snc1 phenotype. The snc1 mutation was mapped to the RPP5 resistance (R) gene cluster and the eds1 mutation that blocks RPP5-mediated resistance suppressed snc1. These data suggest that a RPP5-related resistance pathway is activated constitutively in snc1. This pathway does not employ NPR1 but requires the signal molecule SA and the function of EDS1. Moreover, in snc1, constitutive resistance is conferred in the absence of cell death, which is often associated with R-gene mediated resistance.  相似文献   

10.
We have identified a gene (udh1) in the basidiomycete Ustilago maydis that is induced during the parasitic interaction with its host plant maize (Zea mays). udh1 encodes a protein with high similarity to mammalian and plant 5alpha-steroid reductases. Udh1 differs from those of known 5alpha-steroid reductases by six additional domains, partially predicted to be membrane-spanning. A fusion protein of Udh1 and the green fluorescent protein provided evidence for endoplasmic reticulum localization in U. maydis. The function of the Udh1 protein was demonstrated by complementing Arabidopsis det2-1 mutants, which display a dwarf phenotype due to a mutation in the 5alpha-steroid reductase encoding DET2 gene. det2-1 mutant plants expressing either the udh1 or the DET2 gene controlled by the cauliflower mosaic virus 35S promoter differed from wild-type Columbia plants by accelerated stem growth, flower and seed development and a reduction in size and number of rosette leaves. The accelerated growth phenotype of udh1 transgenic plants was stably inherited and was favored under reduced light conditions. Truncation of the N-terminal 70 amino acids of the Udh1 protein abolished the ability to restore growth in det2-1 plants. Our results demonstrate the existence of a 5alpha-steroid reductase encoding gene in fungi and suggest a common ancestor between fungal, plant, and mammalian proteins.  相似文献   

11.
Brassinosteroids (BRs) are growth‐promoting plant hormones that play a crucial role in biotic stress responses. Here, we found that BR treatment increased nitric oxide (NO) accumulation, and a significant reduction of virus accumulation in Arabidopsis thaliana. However, the plants pre‐treated with NO scavenger [2‐(4‐carboxyphenyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐1‐oxyl‐3‐oxide (PTIO)] or nitrate reductase (NR) inhibitor (tungstate) hardly had any NO generation and appeared to have the highest viral replication and suffer more damages. Furthermore, the antioxidant system and photosystem parameters were up‐regulated in brassinolide (BL)‐treated plants but down regulated in PTIO‐ or tungstate‐treated plants, suggesting NO may be involved in BRs‐induced virus resistance in Arabidopsis. Further evidence showed that NIA1 pathway was responsible for BR‐induced NO accumulation in Arabidopsis. These results indicated that NO participated in the BRs‐induced systemic resistance in Arabidopsis. As BL treatment could not increase NO levels in nia1 plants in comparison to nia2 plants. And nia1 mutant exhibited decreased virus resistance relative to Col‐0 or nia2 plants after BL treatment. Taken together, our study addressed that NIA1‐mediated NO biosynthesis is involved in BRs‐mediated virus resistance in A. thaliana.  相似文献   

12.
When grown in the absence of light, Arabidopsis thaliana deetiolated (det) mutants develop many of the characteristics of light-grown plants, including the development of leaves and chloroplasts, the inhibition of hypocotyl growth elongation, and elevated expression levels of light-regulated genes. We show here that dark-grown wild-type seedlings exhibit similar phenotypic traits if any one of a variety of cytokinins are present in the growth medium. We further show that the striking phenotype of det mutants is unlikely to be caused by different levels of cytokinins in these mutants. The three major Arabidopsis cytokinins, zeatin, zeatin riboside, and isopentenyladenosine, accumulate to similar levels in wild-type seedlings grown in either the light or the dark. There is no consistently different pattern for the levels of these cytokinins in wild-type versus det1 or det2 mutants. However, det1 and det2 have an altered response to cytokinin in a detached leaf senescence assay and in tissue culture experiments. A model is proposed in which light and cytokinins act independently or sequentially through common signal transduction intermediates such as DET1 and DET2 to control the downstream light-regulated responses.  相似文献   

13.
14.
Ellis C  Turner JG 《The Plant cell》2001,13(5):1025-1034
Jasmonates (JAs) inhibit plant growth and induce plant defense responses. To define genes in the Arabidopsis JA signal pathway, we screened for mutants with constitutive expression of a luciferase reporter for the JA-responsive promoter from the vegetative storage protein gene VSP1. One mutant, named constitutive expression of VSP1 (cev1), produced plants that were smaller than wild type, had stunted roots with long root hairs, accumulated anthocyanin, had constitutive expression of the defense-related genes VSP1, VSP2, Thi2.1, PDF1.2, and CHI-B, and had enhanced resistance to powdery mildew diseases. Genetic evidence indicated that the cev1 phenotype required both COI1, an essential component of the JA signal pathway, and ETR1, which encodes the ethylene receptor. We conclude that cev1 stimulates both the JA and the ethylene signal pathways and that CEV1 regulates an early step in an Arabidopsis defense pathway.  相似文献   

15.
The ubiquitin pathway is required for innate immunity in Arabidopsis   总被引:1,自引:0,他引:1  
Plant defences require a multitude of tightly regulated resistance responses. In Arabidopsis, the unique gain-of-function mutant suppressor of npr1-1 constitutive 1 ( snc1 ) carries a point mutation in a Resistance ( R )-gene, resulting in constitutive activation of defence responses without interaction with pathogens. This has allowed us to identify various downstream signalling components essential in multiple defence pathways. One mutant that suppresses snc1 -mediated constitutive resistance is modifier of snc1 5 ( mos5 ), which carries a 15-bp deletion in UBA1 , one of two ubiquitin-activating enzyme genes in Arabidopsis. A mutation in UBA2 does not suppress snc1 , suggesting that these two genes are not equally required in Arabidopsis disease resistance. On the other hand, a mos5 uba2 double mutant is lethal, implying partial redundancy of the two homologues. Apart from affecting snc1 -mediated resistance, mos5 also exhibits enhanced disease susceptibility to a virulent pathogen and is impaired in response to infection with avirulent bacteria carrying the protease elicitor AvrRpt2. The mos5 mutation in the C-terminus of UBA1 might affect binding affinity of the downstream ubiquitin-conjugating enzymes, thus perturbing ubiquitination of target proteins. Furthermore, SGT1b and RAR1, which are necessary for resistance conferred by the SNC1 -related R -genes RPP4 and RPP5 , are dispensable in snc1 -mediated resistance. Our data reveal the definite requirement for the ubiquitination pathway in the activation and downstream signalling of several R-proteins.  相似文献   

16.
Microarray gene expression profiling was used to examine the role of pleiotropic COP/DET/FUS loci as well as other partially photomorphogenic loci during Arabidopsis seedling development and genome expression regulation. Four types of lethal, pleiotropic cop/det/fus mutants exhibit qualitatively similar gene expression profiles, yet each has specific differences. Mutations in COP1 and DET1 show the most similar genome expression profiles, while the mutations in the COP9 signalosome (CSN) and COP10 exhibit increasingly diverged genome expression profiles in both darkness and light. The genome expression profiles of the viable mutants of COP1 and DET1 in darkness mimic those of the physiological light-regulated genome expression profiles, whereas the genome expression profiles of representative lethal mutants belong to another clade and significantly diverge from the normal light control of genome expression. Instead, these lethal pleiotropic mutants show genome expression profiles similar to those from seedlings growth under high light intensity stress. Distinct lethal pleiotropic cop/det/fus mutants also result in distinct expression profiles in the small portion of genes examined and exhibit similar relatedness in both light and darkness. The partial cop/det/fus mutants affected expression of both light regulated and non-light regulated genes. Our results suggest that pleiotropic COP/DET/FUS loci control is largely overlapping but also has separable roles in plant development. The partially photomorphogenic loci regulate a subset of photomorphogenic responses as well as other non-light regulated processes.  相似文献   

17.
Markus Nixdorf  Ute Hoecker 《Planta》2010,231(4):825-833
The COP1/SPA complex and DET1 function to suppress photomorphogenesis in dark-grown Arabidopsis seedlings. Additionally, they inhibit flowering under non-inductive short-day conditions. The COP1/SPA complex and DET1, as part of the CDD complex, represent distinct high-molecular-weight complexes in Arabidopsis. Here, we provide genetic evidence that these complexes co-act in regulating plant development. We report the isolation of a spa1 enhancer mutation that represents a novel, very weak allele of det1. This det1 esp1 mutation caused no detectable mutant phenotype in the presence of wild-type SPA1, but showed strongly synergistic genetic interaction with the spa1 mutation in the control of seedling photomorphogenesis, anthocyanin accumulation, plant size as well as flowering time. On the biochemical level, the det1 esp1 spa1 double mutant showed higher HY5 protein levels than either single mutant or the wild type. The genetic interaction of spa1 and det1 mutations was further confirmed in the spa1 det1-1 double mutant which carries a strong allele of det1. Taken together, these results show that SPA1 and DET1 act together to control photomorphogenesis throughout plant development. Hence, this suggests that COP1/SPA complexes and the CDD complex co-act in controlling the protein stability of COP1/SPA target proteins.  相似文献   

18.
19.
Japanese morning glory (Pharbitis nil) is a model plant characterized by a large stock of spontaneous mutants. The recessive mutant Uzukobito shows strong dwarfism with dark-green rugose leaves. The phenotype was rescued by the application of brassinolide, a bioactive brassinosteroid (BR), indicating that Uzukobito was a BR-deficient mutant. A detailed analysis of the endogenous BR levels in Uzukobito and its parental wild-type plant showed that Uzukobito had a lower level of BRs downstream of (24R)-24-methyl-5alpha-cholestan-3-one and (22S, 24R)-22-hydroxy-24-methyl-5alpha-cholestan-3-one than those in wild-type plants, while their immediate precursors (24R)-24-methylcholest-4-en-3-one and (22S, 24R)-22-hydroxy-24-methylcholest-4-en-3-one accumulated relatively more in Uzukobito. These results indicate that Uzukobito had a defect in the conversion of (24R)-24-methylcholest-4-en-3-one and (22S, 24R)-22-hydroxy-24-methylcholest-4-en-3-one to their 5alpha-reduced forms, which is catalyzed by de-etiolated2 (DET2) in Arabidopsis. The P. nil ortholog of the DET2 gene (PnDET2) was cloned and shown to have the greatest similarity to DET2 among all the putative genes in Arabidopsis. Uzukobito had one amino acid substitution from Glu62 to Val62 in the deduced amino acid sequence of PnDET2. Recombinant PnDET2 expressed in COS-7 cells was found to be a functional steroid 5alpha-reductase (S5alphaR) converting (24R)-24-methylcholest-4-en-3-one to (24R)-24-methyl-5alpha-cholestan-3-one, while PnDET2 with the mutation did not show any catalytic activity. This shows that a plant S5alphaR can convert an intrinsic substrate. All these results clearly demonstrate that the Uzukobito phenotype resulted from a mutation on PnDET2, and a morphological mutant has been characterized at the molecular level among a large stock of P. nil mutants.  相似文献   

20.
Chory J  Nagpal P  Peto CA 《The Plant cell》1991,3(5):445-459
The greening phenotypes produced by recessive mutations in a gene designated de-etiolated-2 (DET2) are described. Recessive mutations in the DET2 gene uncouple light signals from a number of light-dependent processes. det2 mutations result in dark-grown Arabidopsis thaliana seedlings with many characteristics of light-grown plants, including hypocotyl growth inhibition, cotyledon expansion, primary leaf initiation, anthocyanin accumulation, and derepression of light-regulated gene expression. In contrast to these morphological and gene expression changes, however, the chloroplast development program is not initiated in the dark in det2 mutants, suggesting that light-regulated gene expression precedes the differentiation of etioplasts to chloroplasts. det2 mutations thus reveal at least two classes of downstream light-regulated responses that differ in their timing and control mechanisms. Homozygous det2 mutations also affect photoperiodic responses in light-grown plants, including timing of flowering, dark adaptation of gene expression, and onset of leaf senescence. The phenotype of det1 det2 double mutants is additive, implying that DET1 and DET2 function in distinct pathways that affect downstream light-regulated genes. Furthermore, these pathways are not utilized solely during early seedling development but must also be required to regulate different aspects of the light developmental program during later stages of vegetative growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号