首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Plasma membranes were prepared from soybean hypocotyls and roots by aqueous two-phase partitioning and subsequent free-flow electrophoresis. The highly purified plasma membranes bound [35S]GTPS with a relatively high affinity (Kd10nM). The binding was saturable and specific as it was indicated by the displacement of bound [35S]GTPS by unlabeled GTPS and GTP, but not by ATPS, ATP, UTP or CTP. ITP was intermediate in its ability to displace [35S]GTPS. When soybean plasma membrane proteins were separated by SDS-PAGE and displayed by autoradiography, two major [35S]GTPS binding proteins were revealed with apparent molecular weights of 24 and 28 kDa. Results with plasma membranes from soybean hypocotyls and roots were similar but differed from those with plasma membranes prepared from rat liver and adipocytes where only a single major [35S]GTPS binding activity with a molecular weight of 28 kDa was observed.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - G protein hetero-trimeric GTP binding protein with , , subunits - Gn protein GTP binding protein detected on nitrocellulose blots - GTPS guanosine 5-[-thio]triphosphate - IAA 3-indoleacetic acid - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis  相似文献   

2.
We have previously demonstrated phospholipase C (PLC) independent activation of phospholipase A2(PLA2) by epidermal growth factor (EGF) in glomerular mesangial cells in culture. In the current study using glass beads to permeabilize [3H]- or [14C]-arachidonate labelled mesangial cells we demonstrate that guanine nucleotides modulate the EGF-mediated stimulation of arachidonic acid release (75% inhibition with 100 M GDPS and 108% augmentation with 100 M GTPS). GTPS alone stimulated both the release of free arachidonic acid and production of diacylglycerol (DAG), while EGF itself neither stimulated DAG nor augmented the DAG response to GTPS. These findings suggest the intermediacy of a G-protein in PLC-independent stimulation of PLA2 by a growth factor, and provide a model system for determining the relationship between G-protein intermediacy and the intrinsic tyrosine kinase activity of the growth factor receptor.Abbreviations EGF Epidermal Growth Factor - PLC phospholipase C - PLA2 phospholipase A2 - DAG Diacylglycerol - NEFA non-esterified fatty acid - GTPS guanosine-5-0-[3-thio]triphosphate - GDP\S guanosine-5-0-[2-thio]diphosphate  相似文献   

3.
Subtypes of dopamine D1-like receptors are coupled through the G proteins Gs or Gq to stimulate either adenylate cyclase or phospholipase C signaling cascades. In the present study, we have uncovered the marked enhancement by sodium deoxycholate of D1-like agonist-stimulated [35S]GTPS binding to Gq-like G proteins in brain membranes, and determined the optimal experimental conditions for assessing agonist effects on [35S]GTPS binding in the presence of the detergent. Factors and their optimal levels that were found to significantly enhance the sensitivity and robustness of the agonist-stimulated [35S]GTPS binding reaction include protein concentration at 40 g/ml, cationic concentrations of 120 mM Na+, 1.8 mM K+, and 20 mM Mg2+, a molar guanine nucleotide ratio of 100,000 GDP to [35S]GTPS, the presence of 1 mM deoxycholate, and an overall incubation duration of 30–120 min. Under the optimized conditions, the D1-like agonist SKF38393 induced potent and highly efficacious (up to 1000%) stimulation of [35S]GTPS binding in membrane preparations from the striatum and other rat brain regions. In striatal membranes incubated with drug for 2 h, immunoprecipitation of the [35S]GTPS-bound proteins with specific G antibodies showed that at least 70% of SKF38393-stimulated [35S]GTPS binding was to Gq. The present reaction parameters are consistent with conditions previously found to support dopaminergic stimulation of phospholipase C-mediated signaling in brain slice preparations. These results imply that different but equally physiologically relevant conditions can be obtained under which subtypes of dopaminergic receptors may couple preferentially to Gs and the adenylate cyclase pathway or to Gq and the phospholipase C pathway.  相似文献   

4.
An ADP-ribosyltransferase has been identified in compact myelin and in several white matter fractions which contain less compact myelin, fractionated on the basis of increasing protein/lipid ratios. One fraction the P3A contained the greatest activity although the activity in compact myelin was only slightly less. The ADP-ribosyltransferase activity of solubilized myelin was stimulated by increasing amounts of GTPS and was specific for the -isomer of NAD. Although ADP-ribosylation was demonstrated with the heterotrimeric G proteins in the 40–50 kDa range, the substrate for the ADP-ribosyltransferase in the 20 kDa range was identified as MBP. ADP-ribosyltransferase; myelin basic protein; signal transduction.Abbreviations ADP-ribose adenosine diphosphate ribose - APAD 3-acetylpyridine adenine dinucleotide - ATP adenosine triphosphate - C-1, 2, 3 etc MBP components isolated by CM52 chromatography - EDTA ethylenediaminetetraacetic acid - GTP guanosine triphosphate - GTPS guanosine 5-(3-0-thio)triphosphate - INH isonicotinic acid hydrazide - MBP myelin basic protein - NAD nicotinamide adenine dinucleotide - PMSF phenylmethylsulfonyl fluoride - PLP proteolipid protein Special issue dedicated to Dr. Leon S. Wolfe.  相似文献   

5.
Dependence of the blocking effect of dopamine on the calcium current on guanosine triphosphate (GTP) was investigated on dialyzed neurons ofLymnaea stagnalis. Against the background of the effect of the nonhydrolyzable GTP analog guanosine-5-0-3-thiotriphosphate (GTPS) (10–4 M) marked residual blocking of the calcium current was observed during rinsing out of dopamine, and this was potentiated in the case of repeated application of the hormone. It is suggested that the receptor-mediated effect of GTPS on the calcium current is effected through activation of phospholipase C.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino, Moscow. Translated from Neirofiziologiya, Vol. 23, No. 1, pp. 43–48, January–February, 1991.  相似文献   

6.
The binding of [35S]GTPS was characterised with autoradiography in rat brain. The binding was saturable, but the rate of dissociation was very slow. Analysis of binding isotherms revealed one class of binding sites with a Kd of 0.8 M. The specific binding was 98%. Different guanine nucleotides were all able to compete with [35S]GTPS binding. However, no displacement was seen by the ATP-analogue App[NH]p, indicating that [35S]GTPS does not bind to ATP-sites. Autoradiograms showed a highly homogenous distribution of [35S]GTPS binding, in grey as well as in white matter. However, the pattern changed dramatically in the presence of GTP, which, unlike the non-hydrolysable GTP-analogues Gpp[NH]p and GTPS, did not displace [35S]GTPS binding throughout the brain. In white matter areas the binding was potently displaced, while in many grey matter areas, e.g., the striatum, the binding was seen to increase. This GTP-induced increase in [35S]GTPS binding was strongly Mg2+-dependent, with an optimum at 10 mM. This, together with the finding that the regional effects of GTP correspond well to previously reported distribution of low Km GTPase, suggest that the levels of binding of [35S]GTPS in the presence of GTP may reflect functional G-protein activity.  相似文献   

7.
Stimulation of phosphoinositide-specific phospholipase C (PLC) by carbachol, dopamine and serotonin was measured by supplying exogenous [3H]phosphatidylinositol 4,5-bisphosphate to membranes prepared from human cortex dissected and frozen at autopsy. Subjects with Alzheimer's disease, Parkinson's disease or schizophrenia were compared to age-matched controls with no known neurological disorders. Stimulation of PLC by the neurotransmitters was dependent on the presence of GTPS. Carbachol elicited the greatest stimulations of PLC followed by serotonin and then dopamine. The maximal stimulations of PLC evoked by a neurotransmitter were similar for the various categories of subjects except in Parkinson's patients, where dopamine failed to stimulate PLC beyond the activity attained with carbachol. In the presence of carbachol, the sensitivity of PLC to GTPS was significantly increased in Alzheimer's membranes, but not in age-matched controls or Parkinson's. Overall, the experiments demonstrate the feasibility for using the exogenous substrate assay to study the functionality of the phosphoinositide transmembrane signaling system in human brain.Abbreviations PLC phospholipase C - GTPS guanosine 3-O-thiotriphosphate - Gpp(NH)p 5-guanylyl-imidodiphosphate - DA dopamine - CCh earbachol - 5-HT serotonin - PIP2 phosphatidylinositol 4,5-bisphosphate - PIP phosphatidylinositol 4-bisphosphate  相似文献   

8.
Summary Chloroplasts and pigment granules are known to be intracellularly translocated upon discrete extracellular stimuli. The machineries transducing these signals inside cells are yet not understood. In studies investigating the motility of peroxisomes, we were able to identify both extracellular and intracellular signaling steps regulating movements of these organelles. Following simultaneous stimulation of CHO cells with both extracellular ATP and lysophosphatidic acid, an arrest of peroxisomes was observed. This block of motility was shown to be dependent on signaling cascades involving heterotrimeric G proteins of the class Gi/Go, phospholipase C, calcium influx, and activation of protein kinase C as well as of mitogen-activated protein kinase. Cytosolic phospholipase A2 is a point of convergence for these pathways, resulting in the release of arachidonic acid. This signaling pathway is specific for peroxisomes and does not influence motility of mitochondria, lysosomes, or endosomes. However, since the cytoskeleton and its associated proteins including the motor proteins play an important role in mediating motility of all cell organelles, it may well be that variant signaling cascades exist ensuring specific regulation of each distinct compartment.Abbreviations AA arachidonic acid - ATPS adenosine-5-O-(3-thiotriphosphate) - cAMP cyclic adenosine monophosphate - CaM-PK calmodulin-dependent protein kinase - CLIP cytosolic linker protein - DAG diacylglycerol - DiC8 1,2-dioctanoyl-sn-glycerol - GFP green-fluorescent protein - GTPS guanosine-5-O-(3-thiotriphosphate) - IP3 inositol trisphosphate - LPA lysophosphatidic acid - MAPK mitogen-activated protein kinase - MEK MAPK kinase - PKA protein kinase A - PKC protein kinase C - cPKC classical PKC isoforms - PLA2 phospholipase A2 - PLAP PLA2-activating proteinpeptide - PLC phospholipase C - PP2A protein phosphatase 2A  相似文献   

9.
In hippocampal neurons, 5-hydroxytryptamine (5-HT) activates an inwardly rectifying K+ current via G protein. We identified the K+ channel activated by 5-HT (K5-HT channel) and studied the effects of G protein subunits and nucleotides on the K+ channel kinetics in adult rat hippocampal neurons. In inside-out patches with 10 m 5-HT in the pipette, application of GTP (100 m) to the cytoplasmic side of the membrane activated an inwardly rectifying K+ channel with a slope conductance of 36±1 pS (symmetrical 140 mm K+) at –60 mV and a mean open time of 1.1±0.1 msec (n=5). Transducin activated the (K5-HT) channels and this was reversed by -GDP. Whether the K5-HT channel was activated endogenously (GTP, GTPS) or exogenously (), the presence of 1 mm ATP resulted in a 4-fold increase in channel activity due in large part to the prolongation of the open time duration. These effects of ATP were irreversible and not mimicked by AMPPMP, suggesting that phosphorylation might be involved. However, inhibitors of protein kinases A and C (H-7, staurosporine) and tyrosine kinase (tyrphostin 25) failed to block the effect of ATP. These results show that G activates the G protein-gated K+ channel in hippocampal neurons, and that ATP modifies the gating kinetics of the channel, resulting in increased open probability via as yet unknown pathways.  相似文献   

10.
The specific binding of vasoactive intestinal peptide (VIP) to bovine thyroid plasma membranes is inhibited by guanine nucleotides. Guanosine 5-triphosphate (GTP) and the non-hydrolyzable GTP analogs guanosine 5-,-imidotriphosphate (Gpp(NH)p) and guanosine 5-O-(3-thiotriphosphate) (GTP--S) inhibited markedly the binding of VIP to its receptors. This inhibition was higher with GTP than with Gpp(NH)p and GTP--S and was due to an increase of the rate of dissociation of peptide bound to membranes. Other nucleotides did not show any effect.  相似文献   

11.
    
-Crystallin is a common lens protein of most vertebrate eye lenses and the major protein component in lenses of fishes and in many mammalian species during embryonic and neonatal stages. To facilitate the structural characterization of -crystallin possessing extensive charge heterogeneity, a cDNA mixture was constructed from the poly(A)+ mRNA isolated from shark eye lenses, and amplification by polymerase chain reaction (PCR) was carried out to obtain cDNAs encoding multiple shark -crystallins. Sequencing analysis of multiple positive clones containing PCR-amplified inserts revealed the presence of a multiplicity of isoforms in the -crystallin class of this cartilaginous fish. It was of interest to find that two shark cDNA sequences coexist, one encoding -crystallin (M1) of high methionine content (15.5%) and the other encoding one (M2) of low methionine content (5.1%), each corresponding to the major teleostean and mammalian -crystallins, respectively. Comparison of protein sequences encoded by these two shark cDNAs with published sequences of -crystallins from mouse, bovine, human, frog, and carp lenses indicated that there is about 61–80% sequence homology between different species of the piscine class, whereas only 47–66% is found between mammals and shark. A phylogenetic tree constructed on the basis of sequence divergence among various -crystallin cDNAs revealed the close relatedness between shark M2-crystallin and mammalian -crystallins and that between shark M1 and teleostean -crystallins. The results pointed to the fact that ancestral precursors of -crystallins were present in the sharp lens long before the appearance of modern-day mammalian and teleostean -crystallins.  相似文献   

12.
A guanosine 5-triphosphate (GTP)-dependent protein kinase was detected in preparations of outer chloroplast envelope membranes of pea (Pisum sativum L.) chloroplasts. The protein-kinase activity was capable of phosphorylating several envelope-membrane proteins. The major phosphorylated products were 23- and 32.5-kilo-dalton proteins of the outer envelope membrane. Several other envelope proteins were labeled to a lesser extent. Following acid hydrolysis of the labeled proteins, most of the label was detected as phosphoserine with only minor amounts detected as phosphothreonine. Several criteria were used to distinguish the GTP-dependent protein kinase from an ATP-dependent kinase also present in the outer envelope membrane. The ATP-dependent kinase phosphorylated a very different set of envelope-membrane proteins. Heparin inhibited the GTP-dependent kinase but had little effect upon the ATP-dependent enzyme. The GTP-dependent enzyme accepted phosvitin as an external protein substrate whereas the ATP-dependent enzyme did not. The outer membrane of the chloroplast envelope also contained a phosphotransferase capable of transferring labeled phosphate from [-32P]GTP to ADP to yield (-32P]ATP. Consequently, addition of ADP to a GTP-dependent protein-kinase assay resulted in a switch in the pattern of labeled products from that seen with GTP to that typically seen with ATP.Abbreviations GDP (GMP, GTP) guanosine 5-diphosphate (mono-, tri-); kDa-kilodalton - S0.5 concentration of substrate supporting half-maximal velocity - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Tricine N-(2-hydroxy-1,1-bis(hydroxymethyl)ethyl)glycine  相似文献   

13.
ATP synthases are unusually complex molecules, which fractionate most readily into two major units, one a water soluble unit called F1 and the other a detergent soluble unit called F0. In almost all known species the F1 unit consists of 5 subunit types in the stoichiometric ratio 33 while the F0 unit contains 3 subunit types (a, b, and c) in E. coli, and at least 10 subunit types (a, b, c, and others) in higher animals. It is now believed by many investigators that during the synthesis of ATP, protons derived from an electrochemical gradient generated by an electron transport chain are directed through the F0 unit in such a way as to drive the rotation of the single subunit, which extends from an oligomeric ring of at least 10 c subunits in F0 through the center of F1. It is further believed by many that the rotating subunit, by interacting sequentially with the 3 pairs of F1 (360° cycle) in the presence of ADP, Pi, and Mg++, brings about via power strokes conformational/binding changes in these subunits that promote the synthesis of ATP and its release on each pair. In support of these views, studies in several laboratories either suggest or demonstrate that F0 consists in part of a proton gradient driven motor while F1 consists of an ATP hydrolysis driven motor, and that the subunit does rotate during F1 function. Therefore, current implications are that during ATP synthesis the former motor drives the latter in reverse via the subunit. This would suggest that the process of understanding the mechanism of ATP synthases can be subdivided into three major levels, which include elucidating those chemical and/or biophysical events involved in (1) inducing rotation of the subunit, (2) coupling rotation of this subunit to conformational/binding changes in each of the 3 pairs, and (3) forming ATP and water (from ADP, Pi, and Mg++) and then releasing these products from each of the 3 catalytic sites. Significantly, it is at the final level of mechanism where the bond breaking/making events of ATP synthesis occur in the transition state, with the former two levels of mechanism setting the stage for this critical payoff event. Nevertheless, in order to get a better grip in this new century on how ATP synthases make ATP and then release it, we must take on the difficult challenge of elucidating each of the three levels of mechanism.  相似文献   

14.
A number ofD-glutamyl andL-aspartyl dipeptides, glutathione, -D-glutamylglycine and -D-glutamyltaurine, were tested for their efficacy to displace ligands specific for different subtypes of excitatory amino acid receptors from rat brain synaptic membranes. In general, theL enanthiomorphs of -glutamyl peptides were more potent displacers than -D-glutamylglycine and-taurine but the latter were more specific for the quisqualate type of receptors. -L-glutamyl-L-glutamate was the most effective dipeptide in displacing the binding of glutamate, 2-amino-3-hydroxy-5-methylisoxazole-4-proprionate (AMPA) and 2-amino-5-phosphonoheptanoate (APH), whereas -L-glutamyl-L-aspartate was the most effective in the binding of kainate. Both oxidized and reduced glutathione were inhibitory, being most potent in the binding of AMPA. -L-Glutamylaminomethylsulphonate was most effective in the binding of APH. The most potent -L-glutamyl peptides (glutathione, -L-glutamyl-L-glutamate,-L-aspartate, and-glycine) may act as endogenous modulators of excitatory aminoacidergic neurotransmission.  相似文献   

15.
A 64-kilodalton (kDa) protein, situated in the lumen between the inner and outer envelopes of pea (Pisum sativum L.) chloroplasts (Soll and Bennett 1988, Eur. J. Biochem., 175, 301–307) is shown to undergo reversible phosphorylation in isolated mixed envelope vesicles. It is the most conspicuously labelled protein after incubation of envelopes with 33 nmol·1-1 [-32P]ATP whereas incubation with 50 mol·1-1 [-32P]ATP labels most prominently two outer envelope proteins (86 and 23 kDa). Half-maximum velocity for phosphorylation of the 64-kDa protein occurs with 200 nmol·1-1 ATP, and around 40 mol·1-1 ATP for phosphorylation of the 86- and 23-kDa proteins, indicating the operation of two distinct kinases. GGuanosine-, uridine-, cytidine 5-triphosphate and AMP are poor inhibitors of the labelling of the 64-kDa protein with [-32P]ATP. On the other hand, ADP has a potent influence on the extent of labelling (half-maximal inhibition at 1–5 mol·1-1). The ADP-dependent appearance of 32P in ATP indicates that ADP acts by reversal of kinase activity and not as a competitive inhibitor. However, the most rapid loss of 32P from pre-labelled 64-kDa protein occurs when envelope vesicles are incubated with ATP t1/2=15 s at 20 molsd1-1 ATP). This induced turnover of phosphate appears to be responsible for the rapid phosphoryl turnover seen in situ.Abbreviations LHCP ligh-harvesting chlorophyll-a/b-binding protein - S0.5 concentration giving half-maximal phosphorylation - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - Tricine N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]glycine  相似文献   

16.
Arachidonic acid has been shown to activate K+-selective, mechanosensitive ion channels in cardiac, neuronal and smooth muscle cells. Since the cardiac G protein (G K )-gated, muscarinic K+ (KACh) channel can also be activated by arachidonic acid, we investigated whether the KACh channel was also sensitive to membrane stretch. In the absence of acetylcholine (ACh), KACh channels were not active, and negative pressure failed to activate these channels. With ACh (10 m) in the pipette, applying negative pressure (0 to –80 mm Hg) to the membrane caused a reversible, pressure-dependent increase in channel activity in cell-attached and inside-out patches (100 m GTP in bath). Membrane stretch did not alter the sensitivity of the KACh channel to GTP. When G K was maximally activated with 100 m GTPS in inside-out patches, the KACh channel activity could be further increased by negative pressure. Trypsin (0.5 mg/ ml) applied to the membrane caused activation of the KACh channel in the absence of ACh and GTP; KACh channel activity was further increased by stretch. These results indicate that the atrial muscarinic K+ channels are modulated by stretch independently of receptor/G protein, probably via a direct effect on the channel protein/ lipid bilayer.  相似文献   

17.
The phospholipase C (PLC; EC 3.1.4.3) activity in isolated plasma membranes of light-grown wheat (Triticum aestivum L. cv. Prelude) leaves was investigated. The activity against the polyphosphoinositides was strongly dependent on Ca2+ and was affected by the anionic detergent deoxycholate (DOC). In the presence of 20 M Ca2+ the PLC activity preferred phosphatidylinositol 4,5-bisphosphate (PIP2) over phosphatidylinositol 4-monophosphate (PIP) as a substrate. Instead, with 1 mM Ca2+ the enzyme clearly favoured PIP. In addition, the PIP2-PLC activity was increased by Mg2+ and in the presence of GTP, guanosine 5-(-thio)-triphosphate as well as ATP, CTP, guanosine 5-diphosphate and guanosine 5-(-thio)-diphosphate. Further analysis showed that a molybdate-sensitive phosphatase activity catalysing the dephosphorylation of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) is also associated with the plasma-membrane vesicles. Dephosphorylation of Ins(1,4,5)P3 was reduced in the presence of GTP or by inclusion of the unspecific phosphatase inhibitor molybdate. The results indicate the presence of a PIP2-PLC activity and the presence of a molybdate-sensitive phosphatase activity in wheat plasma-membrane vesicles.Abbreviations DOC deoxycholate - IDPase inosine 5-diphosphatase - InsPs inositol phosphates, the numbering at the end indicates the number of phosphate residues and when their positions on the inositol ring are known they are indicated in parentheses, i.e. - Ins(1,4,5)P3 inositol 1,4,5-trisphosphate - PIP phosphatidylinositol 4-monophosphate - PIP2 phosphatidylinositol 4,5-bisphosphate - PLC phospholipase C This work was financially supported by grant from the Deutsche Forschungsgemeinschaft (DFG). M. C. Arz gratefully acknowledges the support of a Graduiertenstipendium des Landes Nordrhein-Westfalen (Germany). We wish to thank S. Laden and G.E. Grambow for assistance.  相似文献   

18.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

19.
Phosphatidylcholine, in addition to the widely studied inositol phospholipids, is cleaved to produce second messengers in neuronal signal transduction processes. Because of the difficulty in labelling and measuring the metabolism of endogenous phosphatidylcholine in brain tissue, we investigated the utility of measuring the hydrolysis of exogenous labelled substrate incubated with rat cerebral cortical cytosol and membrane fractions as has been successful in studies of phosphoinositide hydrolysis. In the cytosol [3H]phosphatidylcholine was hydrolyzed at a linear rate for 60 min of incubation and GTPS stimulated hydrolysis by 63%. The products of phospholipase C and phospholipase D, phosphorylcholine and choline, contributed only 44% of the [3H]phosphatidylcholine hydrolytic products in the cytosol, with phospholipase D activity slightly predominating. GTPS stimulated cytosolic phospholipase C and reduced phospholipase D activity. [3H]Phosphatidylcholine was hydrolyzed much more slowly by membranes than by cytosol. In membranes the production of [3H]phosphorylcholine and [3H]choline were approximately equal, contributing 27% of the total [3H]phosphatidylcholine hydrolysis, and GTPS only caused a slight stimulation of phospholipase C activity. Chronic lithium treatment (4 weeks) appeared to slightly reduce [3H]phosphatidylcholine metabolism in the cytosol and in membranes, but no statistically significant reductions were achieved. Cytosol and membrane fractions from postmortem human brain metabolized [3H]phosphatidylcholine slowly, and GTPS had no effects. In summary, exogenous [3H]phosphatidylcholine was hydrolyzed by brain cytosol and membranes, and this was stimulated by GTPS, but the complex contributions of multiple metabolic pathways complicates the application of this method for studying individual pathways, such as phospholipase D which contributes only a fraction of the total processes hydrolyzing exogenous [3H]phosphatidylcholine.  相似文献   

20.
Several methods for the iodination of recombinant v-H-ras protein were compared. The Iodobead method gave greates incorporation of radioactivity with minimal modification of theras protein. Upon treatment of theras protein with [125I] Nal and an Iodobead, radioactivity was initially incorporated into a 22 kDa species with a pl of 5.2, then predominantly into a 23 kDa species with a pl of 5.4. The specific activity of [125I]ras was 6×106 cpm/pmol totalras protein. Iondination did not alter the biological activity of theras protein as judged by its ability to bind GTPS and induced maturation ofXenopus laevis oocytes. It is concluded that while iodination alters the apparent molecular weight and pI ofras, presumably by the oxidation of one or more classes of amino acids, this does not affect the biological function of the protein. Theras protein, radioactively-labelled with iodine using the Iodobead method, should be suitable for studies of protein-protein interactions involvingras. Treatment of iodinatedras with the chemical cross-linking agent disuccinimidyl suberate revealed the presence of several minor high molecular weight protein species. This result shows that, in a dilute solution of purifiedras protein, the monomeric form is in equilibrium with small amounts of polymeric forms.Abbreviations DSS Disuccinimidyl Suberate - GTPS Guanosine 5-[-thio] triphosphate - ATPS Adenosine 5[-thio] Triphosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号