首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Amidolytic assays have been developed to determine factor XIIa, factor XIa and plasma kallikrein in mixtures containing variable amounts of each enzyme. The commercially available chromogenic p-nitroanilide substrates Pro-Phe-Arg-NH-Np (S2302 or chromozym PK), Glp-Pro-Arg-NH-Np (S2366), Ile-Glu-(piperidyl)-Gly-Arg-NH-Np (S2337), and Ile-Glu-Gly-Arg-NH-Np (S2222) were tested for their suitability as substrates in these assays. The kinetic parameters for the conversion of S2302, S2222, S2337 and S2366 by beta factor XIIa, factor XIa and plasma kallikrein indicate that each active enzyme exhibits considerable activity towards a number of these substrates. This precludes direct quantification of the individual enzymes when large amounts of other activated contact factors are present. Several serine protease inhibitors have been tested for their ability to inhibit those contact factors selectively that may interfere with the factor tested for. Soybean trypsin inhibitor very efficiently inhibited kallikrein, inhibited factor XIa at moderate concentrations, but did not affect the amidolytic activity of factor XIIa. Therefore, this inhibitor can be used to abolish a kallikrein and factor XIa contribution in a factor XIIa assay. We also report the rate constants of inhibition of contact activation factors by three different chloromethyl ketones. D-Phe-Pro-Arg-CH2Cl was moderately active against contact factors (k = 2.2 X 10(3) M-1 s-1 at pH 8.3) but showed no differences in specifity. D-Phe-Phe-Arg-CH2Cl was a very efficient inhibitor of plasma kallikrein (k = 1.2 X 10(5) M-1 s-1 at pH 8.3) whereas it slowly inhibited factor XIIa (k = 1.4 X 10(3) M-1 s-1) and factor XIa (k = 0.11 X 10(3) M-1 s-1). Also Dns-Glu-Gly-Arg-CH2Cl was more reactive towards kallikrein (k = 1.6 X 10(4) M-1 s-1) than towards factor XIIa (k = 4.6 X 10(2) M-1 s-1) and factor XIa (k = 0.6 X 10(2) M-1 s-1). Since Phe-Phe-Arg-CH2Cl is highly specific for plasma kallikrein it can be used in a factor XIa assay selectively to inhibit kallikrein. Based on the catalytic efficiencies of chromogenic substrate conversion and the inhibition characteristics of serine protease inhibitors and chloromethyl ketones we were able to develop quantitative assays for factor XIIa, factor XIa and kallikrein in mixtures of contact activation factors.  相似文献   

2.
The predominant autolytic form of human kallikrein, beta-kallikrein, was used to localize the high molecular weight kininogen (HK) binding site on kallikrein as well as the substrate recognition site for activated factor XII on prekallikrein. beta-Kallikrein is formed by autolysis of the kallikrein heavy chain to give two fragments of approximately 18 and 28 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A ligand binding technique established that the HK binding site on kallikrein residues on the 28-kDa fragment of the heavy chain. Limited NH2-terminal sequencing of this portion of beta-kallikrein showed that this fragment of the heavy chain consists of the COOH-terminal 231 amino acids of the heavy chain. A panel of five murine monoclonal antibodies to human prekallikrein (PK) were found to have epitopes on this same fragment of the heavy chain. None of the monoclonal antibodies were able to block binding of HK to PK. Three of the monoclonal antibodies (13G11, 13H11, and 6A6) were able to inhibit the activation of PK to kallikrein in both a plasma system and a purified system. The 28-kDa fragment of the PK heavy chain was purified and was able to compete with HK for binding to PK. The HK binding site and the site of recognition of factor XII are separate and distinct on PK, and both are contained in the COOH-terminal 231 amino acids of the PK heavy chain.  相似文献   

3.
A plasma kallikrein inhibitor in guinea pig plasma (KIP) was purified to homogeneity. KIP is a single chain protein and the apparent molecular weight is estimated to be 59,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In amino acid composition, KIP is similar to human and mouse alpha 1-proteinase inhibitors and mouse contrapsin. KIP forms an equimolar complex with plasma kallikrein in a dose- and time-dependent fashion. The association rate constants for the inhibition of guinea pig plasma kallikrein by KIP, alpha 2-macroglobulin, C1-inactivator and antithrombin III were 2.5 +/- 0.3.10(4), 2.4 +/- 0.4.10(4), 6.6 +/- 0.5.10(4) and 9.1 +/- 0.6.10(2), respectively. Comparison of the association rate constants and the normal plasma concentrations of the four inhibitors demonstrates that KIP is ten-times as effective as alpha 2-MG and other two inhibitors are marginally effective in the inhibition of kallikrein. KIP inhibits trypsin and elastase rapidly, and thrombin and plasmin slowly, but is inactive for chymotrypsin and gland kallikrein. These results suggest that KIP is the major kallikrein inhibitor in guinea pig plasma and the proteinase inhibitory spectrum is unique to KIP in spite of the molecular similarity to alpha 1-proteinase inhibitor.  相似文献   

4.
Hyperglycemia is associated with greater hematoma expansion and poor clinical outcomes after intracerebral hemorrhage. We show that cerebral hematoma expansion triggered by intracerebral infusion of autologous blood is greater in diabetic rats and mice compared to nondiabetic controls and that this augmented expansion is ameliorated by plasma kallikrein (PK) inhibition or deficiency. Intracerebral injection of purified PK augmented hematoma expansion in both diabetic and acutely hyperglycemic rats, whereas injection of bradykinin, plasmin or tissue plasminogen activator did not elicit such a response. This response, which occurs rapidly, was prevented by co-injection of the glycoprotein VI agonist convulxin and was mimicked by glycoprotein VI inhibition or deficiency, implicating an effect of PK on inhibiting platelet aggregation. We show that PK inhibits collagen-induced platelet aggregation by binding collagen, a response enhanced by elevated glucose concentrations. The effect of hyperglycemia on hematoma expansion and PK-mediated inhibition of platelet aggregation could be mimicked by infusing mannitol. These findings suggest that hyperglycemia augments cerebral hematoma expansion by PK-mediated osmotic-sensitive inhibition of hemostasis.  相似文献   

5.
The esterase activity of rat urinary kallikrein is increased up to fourfold by the anionic detergent, deoxycholate and the nonionic detergents, Triton X-100, Lubrol PX, and Brij 58. The cationic detergents, benzyltriphenylphosphonium chloride and cetyltri-methylammonium bromide, inhibit kallikrein activity. Certain trypsin inhibitors stimulate kallikrein activity but this stimulation is not observed when kallikrein is preincubated with deoxycholate. In addition, deoxycholate weakens the inhibition of kallikrein activity by Trasylol. Deoxycholate-induced conformational changes of kallikrein are noted by a change in circular dichroism spectra in the far and near ultraviolet region. A maximal change of ellipticity at 275 nm suggests binding of deoxycholate to kallikrein at or around the tyrosine residue(s) or changes in the microenvironment of these residue(s).  相似文献   

6.
Plasma kallikrein and factor XIa circulate bound to high molecular weight kininogen, and such binding has been reported to protect these enzymes from inactivation by their respective inhibitors. However, this observation is controversial, and the effect of high molecular weight kininogen upon the interaction between kallikrein and C1 inhibitor (C1-INH) has been questioned. We have re-evaluated this reaction and studied the rate of inhibition of kallikrein by C1-INH in the presence and absence of high molecular weight kininogen. The second-order rate constant of inhibition of kallikrein by C1-INH was unaffected by saturating concentrations of high molecular weight kininogen. Our results suggest that although high molecular weight kininogen clearly augments the rate of formation of kallikrein and other enzymes of the contact activation pathway, it has no effect on the rate of enzyme inhibition by C1-INH.  相似文献   

7.
Two acid stable proteinase inhibitors are present in bull seminal plasma and washed ejaculated bull spermatozoa. Inhibitor I with a molecular weight of about 8700 (estimated by gel filtration) is a very strong inhibitor of bull sperm acrosin but also inhibits bovine trypsin and chymotrypsin and porcine plasmin; inhibition of porcine pancreatic and urinary kallikrein was not observed. In this respect inhibitor I resembles the well known cow colostrum trypsin inhibitor. Inhibitor II with a molecular weight near 6800 (estimated by gel filtration) inhibits bovine trypsin and chymotrypsin, porcine plasmin and pancreatic and urinary kallikrein as well as bull acrosin. The inhibition specificity of inhibitor II is thus very similar to that of the basic inhibitor from bovine organs (Kunitz-type). In view of the inhibition strength and other characteristics, however, the acid stable bull seminal inhibitors are not identical with the inhibitor from cow colostrum or bovine lung (organs).  相似文献   

8.
So far the Cl inactivator, alpha 2-macroglobulin, antithrombin III (in the presence of heparin), and alpha 1-antitrypsin have been identified as inhibitors of plasma kallikrein; alpha 1-antitrypsin reacts slowly also with tissue kallikreins. Of the various naturally occurring kallikrein inhibitors the basic trypsin-kallikrein inhibitor of bovine organs, aprotinin (the active substance of Trasylol), has attained by far the most interest. This inhibitor, which is produced by mast cells, has unusual properties due to its compact tertiary structure. Additional topics of aprotinin and structurally related inhibitors discussed are the mechanism of enzyme-inhibitor complex formation, the production of chemical mutants of aprotinin, the structural basis of kallikrein inhibition, and selected aspects regarding aprotinin medication.  相似文献   

9.
Isocoumarins are potent mechanism-based heterocyclic irreversible inhibitors for a variety of serine proteases. Most serine proteases are inhibited by the general serine protease inhibitor 3,4-dichloroisocoumarin, whereas isocoumarins containing hydrophobic 7-acylamino groups are potent inhibitors for human leukocyte elastase and those containing 7-alkylureidogroups are inhibitors for procine pancreatic elastase. Isocoumarins containing basic side chains that resemble arginine are potent inhibitors for trypsin-like enzymes. A number of 3-alkoxy-4-chloro-7-guanidinoisocoumarins are potent inhibitors of bovine thrombin, human factor Xa, human factor XIa, human factor XIIa, human plasma kallikrein, porcine pancreatic kallikrein, and bovine trypsin. Another cathionic derivative, 4-chloro-3-(2-isothiureidoethoxy) isocoumarin, is less reactive toward many of these enzymes but is an extremely potent inhibitor of human plasma kallikrein. Several guanidinoisocoumarins have been tested as anticoagulants in human plasma and are effective at prolonging the prothrombin time. The mechanism of inhibition by this class of heterocyclic inactivators involves formation of an acyl enzyme by reaction of the active site serine with the isocoumarin carbonyl group. Isocoumarins with 7-amino or 7-guanidino groups will then decompose further to quinone imine methide intermediates, which react further with an active site residue (probably His-57) to form stable inhibited enzyme derivatives. Isocoumarins should be useful in further investigations of the physiological function of serine proteases and may have future therapeutic utility for the treatment of emphysema and coagulation disorders.  相似文献   

10.
A tissue kallikrein was purified from rat skeletal muscle. Characterization of the enzyme showed that it has alpha-N-tosyl-L-arginine methylesterase activity and releases kinin from purified bovine low-Mr kininogen substrate. The pH optimum (9.0) of its esterase activity and the profile of inhibition by serine-proteinase inhibitors are identical with those of purified RUK (rat urinary kallikrein). Skeletal-muscle kallikrein also behaved identically with urinary kallikrein in a radioimmunoassay using a polyclonal anti-RUK antiserum. On Western-blot analysis, rat muscle kallikrein was recognized by affinity-purified monoclonal anti-kallikrein antibody at a position similar to that of RUK (Mr 38,000). Immunoreactive-kallikrein levels were measured in skeletal muscles which have different fibre types. The soleus, a slow-contracting muscle with high mitochondrial oxidative-enzyme activity, had higher kallikrein content than did the extensor digitorum longus or gastrocnemius, both fast-contracting muscles with low oxidative-enzyme activity. Streptozotocin-induced diabetes reduced muscle weights, but did not alter the level of kallikrein (pg/mg of protein) in skeletal muscle, suggesting that insulin is not a regulator of kallikrein in this tissue. Although the role of kallikrein in skeletal muscle is unknown, its localization and activity in relation to muscle functions and disease can now be studied.  相似文献   

11.
The nonenzymatic cofactor high molecular weight kininogen (HK) is a precursor of bradykinin (BK). The production of BK from HK by plasma kallikrein has been implicated in the pathogenesis of inflammation and vascular injury. However, the functional role of HK in the absence of prekallikrein (PK), the proenzyme of plasma kallikrein, on vascular endothelial cells is not fully defined. In addition, no clinical abnormality is seen in PK-deficient patients. Therefore, an investigation into the effect of HK, in the absence of PK, on human pulmonary artery endothelial cell (HPAEC) function was performed. HK caused a marked and dose-dependent increase in the intracellular calcium [Ca(2+)](i) level in HPAEC. Gd(3+) and verapamil potentiated the HK-induced increase in [Ca(2+)](i). HK-induced Ca(2+) increase stimulated endothelial nitric oxide (NO) and prostacyclin (PGI(2)) production. The inhibitors of B(2) receptor-dependent signaling pathway impaired HK-mediated signal transduction in HPAEC. HK had no effect on endothelial permeability at physiological concentration. This study demonstrated that HK regulates endothelial cell function. HK could play an important role in maintaining normal endothelial function and blood flow and serve as a cardioprotective peptide.  相似文献   

12.
Prekallikrein (PK) activation on human umbilical endothelial cells (HUVEC) presumably leads to bradykinin liberation. On HUVEC, PK activation requires the presence of cell-bound high-molecular-weight kininogen (HK) and Zn(2+). We examined the Zn(2+) requirement for HK binding to and the consequences of PK activation on endothelial cells. Optimal HK binding (14 pmol/10(6) HUVEC) is seen with no added Zn(2+) in HEPES-Tyrode buffer containing gelatin versus 16--32 microM added Zn(2+) in the same buffer containing bovine serum albumin. The affinity and number of HK binding sites on HUVEC are a dissociation constant of 9.6 +/- 1.8 nM and a maximal binding of 1.08 +/- 0.26 x 10(7) sites/cell (means +/- SD). PK is activated to kallikrein by an antipain-sensitive mechanism in the presence of HK and Zn(2+) on HUVEC, human microvascular endothelial cells, umbilical artery smooth muscle cells, and bovine pulmonary artery endothelial cells. Simultaneous with kallikrein formation, bradykinin (5.0 or 10.3 pmol/10(6) HUVEC in the absence or presence of lisinopril, respectively) is liberated from cell-bound HK. Liberated bradykinin stimulates the endothelial cell bradykinin B2 receptor to form nitric oxide. Assembly and activation of PK on endothelial cells modulates their physiological activities.  相似文献   

13.
Eight argininal semicarbazone containing peptides prepared by liquid phase synthesis were all found to be reversible inhibitors of model serine proteinases including trypsin and plasma kallikrein (PK). Among the peptides tested, those having a Lys residue at position P2 displayed the maximum binding potency towards PK. One of the peptides, Leu-enkephalin-argininal semicarbazone, a comparatively weak inhibitor, was chosen in order to develop an affinity-based purification protocol for PK. The affinity column was prepared by covalent attachment of the NH2-terminal moiety of the peptidyl semicarbazone to a solid-phase matrix bearing a spacer group. For efficient binding of PK, it was found necessary to optimize parameters like the concentration of inhibitor linked to the solid matrix, the ionic strength of the buffer used, the temperature and the pH. The majority of the bound enzyme could be recovered following elution with guanidine hydrochloride or benzamidine hydrochloride in a high salt buffer at pH 6.0. The usefulness of the affinity procedure towards the purification of other serine proteinases is also discussed.  相似文献   

14.
The calcium/phospholipid-dependent protein kinase (PKC) and the H4 protease-activated protein kinase (H4PK) from lymphosarcoma cells were separated by CM Sephadex chromatography. PKC activity was increased 10-fold in the presence of calcium and phosphatidylserine, but no activation by Mg+2-ATP preincubation or inhibition by NaF was observed. In contrast, H4PK activity was increased 8-fold by preincubation with Mg+2ATP and NaF completely inhibited this enzyme. Activators and inhibitors of PKC did not affect H4PK activity. The substrate specificity of the H4PK and PKC also differed substantially. On the basis of these data it is concluded that PKC and H4PK are not related enzymes.  相似文献   

15.
The interactions of mouse murinoglobulin and alpha-macroglobulin with several proteinases were investigated by filtration and by assays of amidolytic activity towards synthetic substrates in the presence of proteinaceous enzyme inhibitors as well as assays of the inhibition of proteolytic activity. Mouse alpha-macroglobulin formed complexes with thrombin, clotting factor Xa, plasmin, pancreatic kallikrein, plasma kallikrein, submaxillary gland trypsin-like proteinase, neutrophil elastase, and pancreatic elastase. These complexes lost the proteolytic activities against high-molecular-weight substrates, but protected the active sites of the enzymes from inactivation by their proteinaceous inhibitors. Mouse murinoglobulin showed essentially the same properties except (i) that it did not form a complex with the clotting factor Xa, and (ii) that it did not protect plasma kallikrein, neutrophil elastase or submaxillary proteinase from inactivation by their proteinaceous inhibitors, although it formed complexes with these proteinases. No interaction was detected between Clostridium histolyticum collagenase and murinoglobulin or alpha-macroglobulin. These results indicate (i) that murinoglobulin has a proteinase-binding spectrum similar to that of alpha-macroglobulin, but is weaker in the ability to protect the bound proteinases from inactivation by the proteinaceous inhibitors than alpha-macroglobulin and (ii) that mouse alpha-macroglobulin has essentially the same inhibitory spectrum as the human homologue.  相似文献   

16.
A panel of monoclonal antibodies against human prekallikrein was raised in mice and characterized with respect to the major antigenic epitopes. Of 18 antibodies, nine were directed against the light chain portion performing the proteolytic function of activated kallikrein, and nine recognized the heavy chain mediating the binding of prekallikrein to high molecular weight (H-)kininogen. Among the anti-heavy chain antibodies, one (PK6) interfered with the procoagulant activity of prekallikrein, and prolonged in a concentration-dependent manner the activated partial thromboplastin time of reconstituted prekallikrein-deficient plasma (Fletcher type). Antibody PK6 was subtyped IgG1,k and had an apparent Kass of 6.8 +/- 0.44.10(8) M-1 for prekallikrein. Functional analyses revealed that PK6 does not interfere with prekallikrein activation by activated Hageman factor (beta-F XIIa), and has no effect on the kininogenase function of activated kallikrein. Monoclonal antibody PK6 but none of the other anti-heavy chain antibodies completely prevented complex formation of prekallikrein with H-kininogen, and readily dissociated preformed complexes of prekallikrein and H-kininogen. Likewise, Fab' and F(ab')2 fragments of PK6 blocked H-kininogen binding to prekallikrein. A synthetic peptide of 31 amino acid residues encompassing the entire prekallikrein binding region of H-kininogen effectively competed with PK6 for prekallikrein binding indicating that the target epitope of PK6 is juxtaposed to, if not incorporated in the H-kininogen-binding site of prekallikrein. Extensive cross-reactivity of PK6 with another H-kininogen-binding protein of human plasma, i.e. factor XI, suggested that the structure of the target epitope of PK6 is well conserved among prekallikrein and factor XI, as would be expected for the kininogen-binding site shared by the two proteins. It is anticipated that monoclonal antibody PK6 will be an important tool for the precise mapping of the hitherto unknown kininogen-binding site of prekallikrein.  相似文献   

17.
An increasing number of protein kinases (PKs) of parasitic protozoa are being evaluated as drug targets. Some PK inhibitors display antiproliferative effects on protozoa. We tested three PK inhibitors on the growth and ultrastructure of epimastigotes of Trypanosoma cruzi and the effect of these drugs on intracellular amastigotes. They were staurosporine (serine/threonine kinase inhibitor), genistein (tyrosine kinase inhibitor), and wortmannin (phosphatidylinositol 3' (PI3) kinase inhibitor). All drugs inhibited epimastigote growth at the concentrations tested. Wortmannin inhibited parasite growth at the lowest concentrations. However, staurosporine was the most effective after 24 h treatment and genistein caused the stronger inhibition during the whole treatment (60-70% inhibition). The IC50 were: staurosporine: 6.43+/-1.28 microM; genistein: 6.54+/-1.86 microM; and wortmannin: 0.056+/-0.014 microM. These PK inhibitors had strong ultrastructural effects on the epimastigotes: abnormal chromatin condensation of the nucleus; loose flagellar membrane with the formation of blebs; incomplete cell division; autophagosomes and myelin-like figures. These drugs did not interfere with the division of intracellular amastigotes or with its differentiation to trypomastigotes. However, as trypanosomes have kinomes that contain a large set of protein kinases and phosphatases, PKs should not be disregarded as an important target for chemotherapy of Chagas disease.  相似文献   

18.
Novel deazaxanthine-based DPP-4 inhibitors have been identified that are potent (IC(50) <10nM) and highly selective versus other dipeptidyl peptidases. Their synthesis and SAR are reported, along with initial efforts to improve the PK profile through decoration of the deazaxanthine core. Optimisation of compound 3a resulted in the identification of compound (S)-4i, which displayed an improved in vitro and ADME profile. Further enhancements to the PK profile were possible by changing from the deazahypoxanthine to the deazaxanthine template, culminating in compound 12g, which displayed good ex vivo DPP-4 inhibition and a superior PK profile in rat, suggestive of once daily dosing in man.  相似文献   

19.
Three protein inhibitors of serine proteinases were isolated from the crude venom of the long-nosed viper Vipera ammodytes ammodytes by ion-exchange and gel chromatography. Two of them strongly inhibit trypsin (Ki = 3.4 X 10(-10) and 5.6 X 10(-10) M), while the third one primarily inhibits chymotrypsin (Ki = 4.3 X 10(-9) M). Their Mr values are close to 7000, and pI is 9.8 in both trypsin inhibitors and 10.0 in the chymotrypsin inhibitor. The N-terminal group in the former inhibitors is blocked; arginine is the N-terminal amino acid in the latter. Besides trypsin and alpha-chymotrypsin, the trypsin inhibitors also inhibit plasmin, human plasma kallikrein and porcine pancreatic kallikrein. The chymotrypsin inhibitor inhibits trypsin and human plasma kallikrein only weakly and does not inhibit plasmin and porcine pancreatic kallikrein. According to their properties, all three inhibitors belong to the Kunitz-pancreatic trypsin inhibitor family of inhibitors.  相似文献   

20.
Coagulation and complement proteinases are activated in sepsis, and one approach to therapy is to develop proteinase inhibitors that will specifically inhibit these proteinases without inhibiting activated protein C, a proteinase that is beneficial to survival. In this study, we made mutants of the serpin alpha(1)-PI, designed to mimic the specificity of C1-inhibitor. The P3-P2-P1 residues of alpha1-PI were changed from IPM to LGR and PFR, sequences preferred by C1s and kallikrein, respectively. Inhibition of C1s, kallikrein, factor XIIa, and activated protein C was assessed by SDS-PAGE, and by determination of the k(app) and SI. alpha(1)-PI-LGR inhibited C1s with a rate of 7790 M(-1)s(-1), but only minimal inhibition of C1 in a hemolytic assay was observed. Kallikrein, factor XIIa, and activated protein C were inhibited with rates of 382,180 M(-1)s(-1), 10,400 M(-1)s(-1), and 3500 M(-1)s(-1), respectively. alpha(1)-PI-PFR was a poor inhibitor of C1s, factor XIIa, and activated protein C, but had enhanced reactivity with kallikrein. Changing the P4' residue of alpha(1)-PI-LGR Pro to Glu reduced the activity with C1s, consistent with the idea that C1s requires hydrophobic residues in this region of the serpin for optimal interaction. The data provide insight into the requirements for kallikrein and C1s inhibition necessary for designing inhibitors with appropriate properties for further investigation as therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号