首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A cyclic nucleotide-independent protein kinase has been isolated from Drosophila melanogaster by chromatography on phosphocellulose and hydroxylapatite followed by gel filtration and glycerol gradient sedimentation. As determined by sodium dodecyl sulfate gel electrophoresis, the purified enzyme is greater than 95% homogeneous and is composed of two distinct subunits, alpha and beta, having Mr = 36,700 and 28,200, respectively. The native form of the enzyme is an alpha 2 beta 2 tetramer having a Stokes radius of 48 A, a sedimentation coefficient of 6.4 S, and Mr approximately 130,000. The purified kinase undergoes an autocatalytic reaction resulting in the specific phosphorylation of the beta subunit, exhibits a low apparent Km for both ATP and GTP as nucleoside triphosphate donor (17 and 66 microM, respectively), phosphorylates both casein and phosvitin but neither histones nor protamine, modifies both serine and threonine residues in casein, and is strongly inhibited by heparin (I50 = 21 ng/ml). These properties are remarkably similar to those of casein kinase II, an enzyme previously described in several mammalian and avian species. The strong similarities among the insect, avian, and mammalian enzymes suggest that casein kinase II has been highly conserved during evolution.  相似文献   

2.
The alpha and beta subunits of the acetyl-CoA:acetoacetate-CoA transferase were purified by isoelectric focusing of the enzyme in the presence of 6 M urea. The purified beta subunit, in which the active center of the enzyme is located, exhibits low catalytic activity (2% of the specific activity of the native enzyme) which is stimulated 5-6-fold in the presence of an equimolar concentration of alpha subunit. The presence of the substrate,acetoacetyl-CoA, is required to recover the catalytic activity of the beta subunit and mixtures containing purified alpha and beta subunits. When the enzyme is dissociation in the presence of 6 M urea and the subunits are not fractioned, removal of the urea by dialysis results in the recovery of 88-98% of enzymic activity and the native alpha2beta2 subunit structure. However, analysis of this renatured enzyme by immunochemical techniques shows that the enzyme does not refold to a completely native conformation. This renatured enzyme exhibits an immunological reactivity more closely resembling the isolated alpha subunit. The results indicate that the alpha subunit serves as a structural subunit, or possible a maturation subunit, imposing a conformation on the beta subunit that is catalytically more competent.  相似文献   

3.
The 18 S dynein from the outer arm of Chlamydomonas flagella is composed of an alpha subunit containing an alpha heavy chain (Mr = approximately 340,000) and an Mr = 16,000 light chain, and a beta subunit containing a beta heavy chain (Mr = approximately 340,000), two intermediate chains (Mr = 78,000 and 69,000), and seven light chains (Mr = 8,000-20,000). Both subunits contain ATPase activity. We have used 8-azidoadenosine 5'-triphosphate (8-N3 ATP), a photoaffinity analog of ATP, to investigate the ATP-binding sites of intact 18 S dynein. 8-N3ATP is a competitive inhibitor of 18 S dynein's ATPase activity and is itself hydrolyzed by 18 S dynein; moreover, 18 S dynein's hydrolysis of ATP and 8-N3ATP is inhibited by vanadate to the same extent. 8-N3ATP therefore appears to interact with at least one of 18 S dynein's ATP hydrolytic sites in the same way as does ATP. When [alpha- or gamma-32P]8-N3ATP is incubated with 18 S dynein in the presence of UV irradiation, label is incorporated primarily into the alpha, beta, and Mr = 78,000 chains; a much smaller amount is incorporated into the Mr = 69,000 chain. The light chains are not labeled. The incorporation is UV-dependent, ATP-sensitive, and blocked by preincubation of the enzyme with vanadate plus low concentrations of ATP or ADP. These results suggest that the alpha heavy chain contains the site of ATP binding and hydrolysis in the alpha subunit. In the beta subunit, the beta heavy chain and one or both intermediate chains may contain ATP-binding sites.  相似文献   

4.
Two forms of pyrophosphate:D-fructose-6-phosphate 1-phosphotransferase have been isolated from wheat seedlings. One of these enzymes, termed PFP-1, has been purified to homogeneity. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the enzyme is composed of two different polypeptide chains of Mr = 67,000 (alpha) and 60,000 (beta). PFP-1 has been assigned a molecular structure consisting of alpha 2 beta 2 based on an estimated Mr of 234,000 for the native enzyme. PFP-2, the other form of phosphotransferase, has also been purified extensively. Preliminary data suggest that the active form of PFP-2 is probably a dimer of a polypeptide chain of Mr = 60,000. Immunological studies indicate that the two enzyme preparations share common antigenic determinants. The two forms of enzyme have very similar kinetic properties. The phosphotransferases are activated by fructose 2,6-bisphosphate (Fru-2,6-P2) which lowers the Km of the enzymes for fructose 6-phosphate but not that for PPi. Interestingly, PFP-1 is significantly more active than PFP-2 in the absence of Fru-2,6-P2. Also, PFP-1 exhibits a greater affinity (Ka = 7 nM) than PFP-2 (Ka = 26 nM) for the activator. Based on kinetic, immunological, and physicochemical parameters, it is suggested that the two enzymic forms are related in that they share the same catalytic moiety, i.e. the 60,000-dalton or beta subunit. The beta subunit when in complex formation with the alpha subunit, as in PFP-1, becomes more active in the absence of Fru-2,6-P2 as well as exhibits a greater sensitivity toward the effector.  相似文献   

5.
The functional interactions of the retinal G protein, transducin, with the cyclic GMP phosphodiesterase (PDE) have been examined using the different purified subunit components of transducin and the native and trypsin-treated forms of the effector enzyme. The limited trypsin treatment of the PDE removes the low molecular weight gamma subunit (Mr approximately 14,000) of the enzyme, yielding a catalytic moiety comprised of the two larger molecular subunits (alpha, Mr approximately 85,000-90,000; beta, Mr approximately 85,000-90,000), which is insensitive to the addition of either the pure alpha T.GTP gamma S species or the pure beta gamma T subunit complex. However, the addition of the pure alpha T.GDP species to the trypsin-treated PDE (tPDE) results in a significant (90-100%) inhibition of the enzyme activity. This inhibition can be reversed by excess beta gamma T, suggesting that the holotransducin molecule does not (functionally) interact with the tPDE. However, the inhibition by alpha T.GDP is not reversed by the alpha T.GTP gamma S complex, over a range of [alpha T.GTP gamma S] which elicits a marked stimulation of the native enzyme activity, suggesting that the activated alpha T species does not effectively bind to the tPDE. The alpha T.GDP complex also is capable of inhibiting the alpha T.GTP gamma S-stimulated cyclic GMP hydrolysis by the native PDE. This inhibition can be reversed by excess alpha T.GTP gamma S, as well as by beta gamma T, indicating that the binding site for the activated alpha T species is in close proximity and/or overlaps the binding site for the alpha T.GDP complex on the enzyme. Overall, these results are consistent with a scheme where (a) both the small and larger molecular weight subunits of PDE participate in alpha T-PDE interactions, (b) the activation of PDE by the alpha T.GTP gamma S (or alpha T.GTP) species does not result in the complete dissociation of the gamma subunit from the enzyme, and (c) the deactivation of this signal transduction system results from a direct interaction between the alpha T.GDP species and the catalytic moiety of the effector enzyme.  相似文献   

6.
Purified rat-liver dihydropteridine reductase is homogeneous by gel filtration (Mr approximately 51,000), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr approximately 25,500), and native polyacrylamide gel electrophoresis, suggesting that the enzyme is composed of two identical subunits. However, analysis by isoelectric focusing has revealed three enzyme forms with approximate isoelectric points of 6.5, 5.9, and 5.7 (designated forms, I, II, and III, respectively). The three forms, isolated in 65% yield by preparative chromatofocusing, are stable in 0.05 M phosphate buffer, pH 6.8, containing 1 mM beta-mercaptoethanol and exhibit similar kinetic constants when the catalytic activities of the isolated forms are compared with quinonoid dihydrobiopterin as substrate. All forms generate complexes with the enzymatic cofactor NADH which are also detectable by IEF. When examined further by IEF under denaturing conditions in 6 M urea the enzyme demonstrates a differing subunit composition for its three forms. Two distinct subunits, designated alpha and beta, can be identified, and additional evidence suggests that the native enzyme forms I, II, and III represent the three differing dimeric combinations alpha alpha (form I), alpha beta (form II), and beta beta (form III).  相似文献   

7.
Casein kinase G purified from bovine tissue is an oligomeric cyclic nucleotide-independent protein kinase made of two different monomers, namely an alpha (Mr = 38 kilodaltons) and a self-phosphorylatable beta (Mr = 27 kilodaltons) subunit. Treatment of the native enzyme under denaturing conditions (0.5 M NaCl, 4 M LiCl, and 20 to 35% formamide) resulted in a progressive selective removal of the beta subunit following gel filtration and a correlated loss of activity of the corresponding renatured enzyme. Mild digestion with papain resulted in a proteolytic alteration limited to the beta monomer with a concomitant partial loss of the enzyme activity. Isolation of the alpha and beta casein kinase G subunits was achieved by preparative reversed polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Renaturation of the proteins following sodium dodecyl sulfate removal by acetone and/or Triton X-100 treatment allowed reconstitution of a functional casein kinase G. Whereas the isolated alpha subunit was found to exhibit a weak catalytic activity, addition of the beta subunit was required for recovery of a maximal casein kinase activity. The process was dose-dependent and reached a plateau for an alpha:beta subunit molar ratio of approximately 1 to 1. These data suggest that while the casein kinase G alpha subunit bears the catalytic site, stoichiometric combination with the beta subunit is required for optimal enzymatic activity. A possible role of the beta subunit as a regulatory component of casein kinase G activity in the intact cell remains to be examined.  相似文献   

8.
S-Adenosylmethionine decarboxylase is one of a small group of enzymes that use a pyruvoyl residue as a cofactor. Histidine decarboxylase from Lactobacillus 30a, the best studied pyruvoyl-containing enzyme, has an (alpha beta)6 subunit structure with the pyruvoyl moiety linked through an amide bond to the NH2-terminal of the larger alpha subunit (Recsei, P. A., Huynh, Q. K., and Snell, E. E. (1983) Proc. Natl. Acad. Sci. U. S. A. 80, 973-977). To examine potential structural analogies between the two enzymes, we have isolated and partially characterized S-adenosylmethionine decarboxylase. The purified enzyme comprises equimolar amounts of two subunits of Mr = 14,000 and 19,000 (by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) and has a native molecular weight of 136,000 (by gel filtration). Approximately 4 mol of [methyl-3H] adenosylmethionine are incorporated per mol of enzyme (Mr = 136,000) when the enzyme is inactivated with this substrate and NaCNBH3. These data suggest an (alpha beta)4 structure with 1 pyruvoyl residue for each alpha beta pair. The two subunits have been separated by reversed-phase high performance liquid chromatography after reduction and carboxymethylation. The smaller subunit (beta) has a free amino terminus. The amino terminus of the larger subunit (alpha) appears to be blocked by a pyruvoyl group; this subunit can be sequenced only after this group is converted to an alanyl residue by reduction with sodium cyanoborohydride in the presence of ammonium acetate. This work suggests that S-adenosylmethionine decarboxylase is structurally much more similar to histidine decarboxylase than previously thought.  相似文献   

9.
1. Respiratory nitrate reductase of Bacillus licheniformis was extracted from the bacterial membranes by treatment with deoxycholate and purified to a homogeneous state by means of gel chromatography and anion-exchange chromatography. 2. The enzyme (Mr = 193,000, s20, w = 8.6) consists of two subunits, having apparent molecular weight of 150,000 (alpha subunit) and 57,000 (beta subunit), which are present in an equimolar ratio. It does not contain carbohydrate. Ageing of the enzyme appears to result in splitting of the polypeptide chains at specific sites followed by dissociation and reassociation of the digestion products in various combinations. 3. In contrast to Klebsiella aerogenes repiratory nitrate reductase, which is isolated in a tetrameric form that can be reversibly dissociated into a monomeric form by detergents, B. licheniformis nitrate reductase, after isolation, is always present in a monomeric form. This property is related to the difference in membrane localization of the enzyme in the two organisms. 4. B licheniformis nitrate reductase contains 6.9 atoms of non-heme iron, 6.7 atoms of acid-labile sulfide and 0.93 atoms of molybdenum per molecule of enzyme. The molybdenum seems to be part of a low-molecular weight peptide Mo-cofactor) to which it may be bound by interaction with thiol-groups. 5. Antiserum against the native enzyme contains antibodies against both subunits as well as the Mo-cofactor. The Mo-cofactor does not have any antigenic determininants in common with either the alpha or the beta subunit. Also neither subunit cross-reacts with antiserum against the other subunit. Whereas the respiratory nitrate reductases from K. aerogenes and Escherichia coli are immunologically related, the native enzyme from B. licheniformis does not show any cross-reaction with antiserum prepared against either the K. aerogenes or the E. coli enzyme.  相似文献   

10.
Insulin-like growth factor (IGF)-I receptor purified from human placental membranes as previously described (LeBon, T. R., Jacobs, S., Cuatrecasas, P., Kathuria, S., and Fujita-Yamaguchi, Y. (1986) J. Biol. Chem. 261, 7685-7689) was characterized. The IGF-I receptor was similar to the insulin receptor with respect to subunit structure (beta-alpha-alpha-beta), apparent sizes of deglycosylated alpha (Mr = approximately 88,000) and beta (Mr = approximately 67,000) subunits, and amino acid composition of the subunits. Monoclonal antibody specific to each receptor recognized its own receptor whereas polyclonal anti-human insulin receptor antibody cross-reacted with the IGF-I receptor, indicating that the receptors share one or more antigenic sites. Further characterization of the purified IGF-I receptor tyrosine-protein kinase activity indicated that by analogy with the insulin receptor the monomeric alpha beta form of the IGF-I receptor appears to have higher kinase activity than the intact receptor in the alpha 2 beta 2 form. The most significant difference between the two receptors was found in the N-terminal amino acid sequences of their alpha subunits, which apparently show 60% identity. The IGF-I receptor alpha subunit lacks residues corresponding to the N-terminal 4 amino acids of the insulin receptor alpha subunit. These results provide the first direct proof that the IGF-I receptor is a molecule distinct from the insulin receptor despite numerous similarities.  相似文献   

11.
Specific antisera to purified DNA polymerase alpha from embryos of Drosophila melanogaster and to two of the four constituent subunits (alpha, beta, gamma, and delta) were prepared. These antibodies have revealed the following features of the enzyme. (i) The Mr = 148,000 alpha subunit is very likely derived by in vitro proteolysis from polypeptides with molecular weights of 185,000 and 166,000 that are present in vivo. (ii) The Mr = 60,000 beta subunit occurs in rapidly replicating embryos as both an 85,000- and a 60,000-dalton form, but predominantly as a 60,000-dalton form in more slowly replicating cultured cells. (iii) There is no detectable immunologic cross-reactivity between the four subunits. (iv) There is an abundance of antigenic material in embryos that co-migrates with the delta subunit of the purified enzyme during polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate.  相似文献   

12.
The 8-hydroxy-5-deazaflavin (coenzyme F420) reducing hydrogenase from the obligate anaerobe Methanobacterium thermoautotrophicum delta H has been purified 41-fold to apparent homogeneity. The major active enzyme form is a high molecular weight aggregate of Mr ca. 800,000, composed of three subunits, alpha (Mr 47K), beta (Mr 31K), and gamma (Mr 26K). The hydrogenase is purified aerobically in reversibly inhibited form, and conditions for anaerobic reductive activation with H2, high salt, thiols, and electron acceptors have been defined. The minimal species transferring electrons from H2 to coenzyme F420 appears to be an alpha beta delta (Mr 115K) complex. The tightly associated redox cofactors per 115K species are 0.6-0.7 nickel atom, 0.8-0.9 flavin adenine dinucleotide (FAD), and 13-14 iron atoms in iron-sulfur centers. The subunits have been separated by denaturing gel electrophoresis, which has permitted determination of amino acid composition, subunit N-terminal sequencing, and preparation of subunit-directed antibodies. There is iron associated with the alpha-subunit, but placement of the nickel and FAD has not been established.  相似文献   

13.
Yeast phosphofructokinase having a molecular weight of 750000--800000 (20 S) has been subjected to limited proteolysis by subtilisin and yeast proteases. Two steps of proteolytic degradation could be distinguished: in the first step, which is accompanied by an increase in molecular activity, the subunits alpha and beta (Mr 120000) are converted to alpha' and beta' (Mr approximately 900000), and in the second step, accompanied by a decrease in enzyme activity, alpha' is converted to alpha' (Mr 80000) and two further fragments having Mr 45000 and 35000 become detectable. In the course of the conversion the sedimentation value of the undissociated enzyme drops from 20 S to about 17 S. The two substrates fructose 6-phosphate and ATP exhibit characteristic protective effects on enzyme activity and on subunit degradation. Whereas the first step is not strongly influenced by the substrates, fructose, 6-phosphate inhibits significantly the degradation of alpha' and beta', whereas ATP prevents only degradation of beta'. When in presence of ATP alpha' is degraded to alpha', the quaternary structure of the 17-S enzyme is no longer stable and a dissociation of the molecule occurs to a 12-S form which is enzymically active and ATP-sensitive and in which the ratio of alpha' to beta' is one-to-one.  相似文献   

14.
The second messenger-independent acidic peptide-specific protein kinase II (casein kinase II) from the cytosol of porcine liver has been purified to apparent homogeneity by using DEAE-cellulose, hydroxyl apatite, and phosphocellulose chromatography. The native enzyme has an apparent Mr of 150,000. After sodium dodecyl sulfate-gel electrophoresis a band of Mr = 39,000 and a slightly diffuse band of Mr = 27,000 were found indicating an alpha 2 beta 2 structure of this protein kinase. A thorough comparison with the corresponding enzyme from the nucleus was performed. The two enzymes differ in the subunit composition, as the nuclear enzyme is composed of subunits with a Mr of 95,000; they further differ in the heparin sensitivity and binding to blue dextran-Sepharose. Distinct differences in their nucleotide binding sites were found upon mapping with ATP analogs, although both enzymes utilize ATP as well as GTP. On the other hand, both enzymes phosphorylate identical sites in the casein variants beta A2 and alpha S1B at comparable rates. These results demonstrate for the first time the existence of distinct nucleus and cytoplasm specific type II "casein kinases".  相似文献   

15.
A Mr 60,000 peptide that modulates the activity of the Mr 35,000 catalytic subunit of a type 2A phosphatase has been isolated from rabbit reticulocytes and partially characterized. The peptide appears to be a subunit of the intact phosphatase that has been isolated under nondenaturing conditions. The Mr 60,000 peptide itself is catalytically inactive. However, it binds to the Mr 35,000 catalytic subunit causing a decrease in its activity for dephosphorylation of phosphorylated 40 S ribosomal subunits, but an increase in dephosphorylation of peptide initiation factor 2 phosphorylated in its alpha subunit. Reassociation of the Mr 60,000 and the Mr 35,000 peptides yields a two-subunit phosphatase with a Stokes radius of 42 A; sedimentation coefficient, S20,w of 5.1 S; molecular weight of 89,000. These parameters are compared to those of the native three-subunit enzyme and those of the isolated Mr 35,000 and 60,000 peptides.  相似文献   

16.
Heavy riboflavin synthase is a 1,000,000-Da protein catalyzing the last two reactions of riboflavin biosynthesis. The enzyme complex consists of 60 beta subunits (Mr = 16,200) and approximately three alpha subunits (Mr = 23,000). beta subunits were isolated and cleaved with cyanogen bromide. Fragments were isolated and further digested with trypsin and staphylococcal protease. Peptides were isolated by high performance liquid chromatography. Sequences were determined by automated liquid-phase Edman degradation. The complete sequence of the beta subunit (154 amino acids) was established by direct sequencing of the NH2 terminus, sequencing of overlapping peptides, and carboxypeptidase degradation of the COOH terminus. The sequence shows no detectable homologies to other proteins. A computer prediction of secondary structure elements indicates 34% alpha helix and 30% beta sheet.  相似文献   

17.
cDNA encoding the casein kinase II (CKII) subunits alpha and beta of human origin were expressed in Escherichia coli using expression vector pT7-7. Significant expression was obtained with E. coli BL21(DE3). The CKII subunits accounted for approximately 30% of the bacterial protein; however, most of the expressed proteins were produced in an insoluble form. The recombinant CKII alpha subunit was purified by DEAE-cellulose chromatography, followed by phosphocellulose and heparin-agarose chromatography. The recombinant CKII beta subunit was extracted from the insoluble pellet and purified in a single step on phosphocellulose. From 10 g bacterial cells, the yield of soluble protein was 12 mg alpha subunit and 5 mg beta subunit. SDS/PAGE analysis of the purified recombinant proteins indicated molecular masses of 42 kDa and 26 kDa for the alpha and beta subunits, respectively, in agreement with the molecular masses determined for the subunits of the native enzyme. The recombinant alpha subunit exhibited protein kinase activity which was greatest in the absence of monovalent ions. With increasing amounts of salt, alpha subunit kinase activity declined rapidly. Addition of the beta subunit led to maximum stimulation at a 1:1 ratio of both subunits. Using a synthetic peptide (RRRDDDSDDD) as a substrate, the maximum protein kinase stimulation observed was fourfold under the conditions used. The Km of the reconstituted enzyme for the synthetic peptide (80 microM) was comparable to the mammalian enzyme (40-60 microM), whereas the alpha subunit alone had a Km of 240 microM. After sucrose density gradient analysis, the reconstituted holoenzyme sedimented at the same position as the mammalian CKII holoenzyme.  相似文献   

18.
S Nilekani  C SivaRaman 《Biochemistry》1983,22(20):4657-4663
Citrate lyase (EC 4.1.3.6) has been purified from Escherichia coli and the homogeneity of the preparation established from the three-component subunits obtained on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The purified enzyme has a specific activity of 120 mumol min-1 mg-1 and requires optimally 10 mM Mg2+ and a pH of 8.0 for the cleavage reaction. The native enzyme is polydispersed in the ultracentrifuge and in polyacrylamide gel electrophoresis. The enzyme complex is composed of three different polypeptide chains of 85 000, 54 000, 32 000 daltons. An estimate of subunit stoichiometry indicates that 1 mol of the largest polypeptide chain is associated with 6 mol each of the smaller ones. The polypeptide subunits have been isolated in pure state and their biological functions characterize. The 54 000-dalton subunit functions as the acyltransferase alpha subunit catalyzing the formation of citryl coenzyme A from citrate in the presence of acetyl coenzyme A and ethylenediaminetetraacetic acid. The 32 000-dalton subunit functions as the acyllyase beta subunit catalyzing the cleavage of (3S)-citryl coenzyme A to oxal-acetate and acetyl coenzyme A. The 85 000-dalton subunit, which carries exclusively the prosthetic group components, functions as the acyl-carrier protein gamma subunit in the cleavage of citrate in the presence of mg2+ and the alpha and beta subunits. The presence of a large ACP subunit and the unusual stoichiometry of the different subunits distinguish the complex from other citrate lyases. A ligase which acetylates the deacetyl[citrate lyase] in the presence of acetate and ATP has ben shown to be present in the organism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
The ornithine decarboxylase gene of S. cerevisiae encodes a predicted protein of approximately 53 kD highly homologous with the ornithine decarboxylase of other species. However, the native enzyme has been reported as an 86 kD protein. Our molecular sieve analysis indicated a Mr = 110,000 for the native enzyme. SDS-PAGE analysis of [H3]-alpha-difluoromethylornithine labelled enzyme demonstrated a subunit Mr of approximately 50 kD and suggested the native enzyme is a dimer. Genetic analyses support this conclusion. The complementary, ornithine decarboxylase deficient mutations spe 1A and spe 1B were mapped to the enzyme structural gene by linkage analysis and gene conversion mapping. This demonstrated that the mutations exhibit intragenic complementation which suggests protein-protein interactions and an oligomeric structure for the yeast enzyme. We conclude that yeast ornithine decarboxylase is a dimeric enzyme of 53 kD subunits.  相似文献   

20.
Procedures are described for separation of the alpha, beta 1, and beta 2 subunits of the voltage-sensitive sodium channel from rat brain by gel filtration in sodium dodecyl sulfate (SDS) before and after reduction of intersubunit disulfide bonds or by preparative SDS-gel electrophoresis. Partial proteolytic maps of the SDS-denatured subunits indicate that they are nonidentical polypeptides. They are all heavily glycosylated and contain complex carbohydrate chains that bind wheat germ agglutinin. The apparent molecular weights of the separated subunits were estimated by gradient SDS-gel electrophoresis, by Ferguson analysis of migration in SDS gels of fixed acrylamide concentration, or by gel filtration in SDS or guanidine hydrochloride. For the alpha subunit, SDS-gel electrophoresis under various conditions gives an average Mr of 260,000. Gel filtration methods give anomalously low values. Removal of carbohydrate by sequential treatment with neuraminidase and endoglycosidase F results in a sharp protein band with apparent Mr = 220,000, suggesting that 15% of the mass of the native alpha subunit is carbohydrate. Electrophoretic and gel filtration methods yield consistent molecular weight estimates for the beta subunits. The average values are: beta 1, Mr = 36,000, and beta 2, Mr = 33,000. Deglycosylation by treatment with endoglycosidase F, trifluoromethanesulfonic acid, or HF yields sharp protein bands with apparent Mr = 23,000 and 21,000 for the beta 1 and beta 2 subunits, respectively, suggesting that 36% of the mass of the native beta 1 and beta 2 subunits is carbohydrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号