首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Muscles are multi-functional structures that interface neural and mechanical systems. Muscle work depends on a large multi-dimensional space of stimulus (neural) and strain (mechanical) parameters. In our companion paper, we rewrote activation to individual muscles in intact, behaving cockroaches (Blaberus discoidalis L.), revealing a specific muscle's potential to control body dynamics in different behaviours. Here, we use those results to provide the biologically relevant parameters for in situ work measurements. We test four hypotheses about how muscle function changes to provide mechanisms for the observed control responses. Under isometric conditions, a graded increase in muscle stress underlies its linear actuation during standing behaviours. Despite typically absorbing energy, this muscle can recruit two separate periods of positive work when controlling running. This functional change arises from mechanical feedback filtering a linear increase in neural activation into nonlinear work output. Changing activation phase again led to positive work recruitment, but at different times, consistent with the muscle's ability to also produce a turn. Changes in muscle work required considering the natural sequence of strides and separating swing and stance contributions of work. Both in vivo control potentials and in situ work loops were necessary to discover the neuromechanical coupling enabling control.  相似文献   

2.
Neuromuscular systems are stabilized and controlled by both feedforward and feedback signals. Feedforward pathways driven by central pattern generators (CPGs), in conjunction with preflexive mechanical reaction forces and nonlinear muscle properties, can produce stable stereotypical gaits. Feedback is nonetheless present in both slow and rapid running, and preflexive mechanisms can join with neural reflexes originating in proprioceptive sensors to yield robust behavior in uncertain environments. Here, we develop a single degree-of-freedom neuromechanical model representing a joint actuated by an agonist/antagonist muscle pair driven by motoneurons and a CPG in a periodic rhythm characteristic of locomotion. We consider two characteristic feedback modes: phasic and tonic. The former encodes states such as position in the timing of individual spikes, while the latter can transmit graded measures of force and other continuous variables as spike rates. We use results from phase reduction and averaging theory to predict phase relationships between CPG and motoneurons in the presence of feedback and compare them with simulations of the neuromechanical model, showing that both phasic and tonic feedback can shift motoneuronal timing and thereby affect joint motions. We find that phase changes in neural activation can cooperate with preflexive displacement and velocity effects on muscle force to compensate for externally applied forces, and that these effects qualitatively match experimental observations in the cockroach.  相似文献   

3.
Postural stability in standing balance results from the mechanics of body dynamics as well as active neural feedback control processes. Even when an animal or human has multiple legs on the ground, active neural regulation of balance is required. When the postural configuration, or stance, changes, such as when the feet are placed further apart, the mechanical stability of the organism changes, but the degree to which this alters the demands on neural feedback control for postural stability is unknown. We developed a robotic system that mimics the neuromechanical postural control system of a cat in response to lateral perturbations. This simple robotic system allows us to study the interactions between various parameters that contribute to postural stability and cannot be independently varied in biological systems. The robot is a 'planar', two-legged device that maintains compliant balance control in a variety of stance widths when subject to perturbations of the support surface, and in this sense reveals principles of lateral balance control that are also applicable to bipeds. Here we demonstrate that independent variations in either stance width or delayed neural feedback gains can have profound and often surprisingly detrimental effects on the postural stability of the system. Moreover, we show through experimentation and analysis that changing stance width alters fundamental mechanical relationships important in standing balance control and requires a coordinated adjustment of delayed feedback control to maintain postural stability.  相似文献   

4.
The neuronal generation of vertebrate locomotion has been extensively studied in the lamprey. Models at different levels of abstraction are being used to describe this system, from abstract nonlinear oscillators to interconnected model neurons comprising multiple compartments and a Hodgkin-Huxley representation of the most relevant ion channels. To study the role of sensory feedback by simulation, it eventually also becomes necessary to incorporate the mechanical movements in the models. By using simplifying models of muscle activation, body mechanics, counteracting water forces, and sensory feedback through stretch receptors and vestibular organs, we have been able to close the feedback loop to enable studies of the interaction between the neuronal and the mechanical systems. The neuromechanical simulations reveal that the currently known network is sufficient for generating a whole repertoire of swimming patterns. Swimming at different speeds and with different wavelengths, together with the performance of lateral turns can all be achieved by simply varying the brainstem input. The neuronal mechanisms behind pitch and roll manoeuvres are less clear. We have put forward a 'crossed-oscillators' hypothesis where partly separate dorsal and ventral circuits are postulated. Neuromechanical simulations of this system show that it is also capable of generating realistic pitch turns and rolls, and that vestibular signals can stabilize the posture during swimming.  相似文献   

5.
Kinematic and center of mass (CoM) mechanical variables used to define terrestrial gaits are compared for various tetrapod species. Kinematic variables (limb phase, duty factor) provide important timing information regarding the neural control and limb coordination of various gaits. Whereas, mechanical variables (potential and kinetic energy relative phase, %Recovery, %Congruity) provide insight into the underlying mechanisms that minimize muscle work and the metabolic cost of locomotion, and also influence neural control strategies. Two basic mechanisms identified by Cavagna et al. (1977. Am J Physiol 233:R243-R261) are used broadly by various bipedal and quadrupedal species. During walking, animals exchange CoM potential energy (PE) with kinetic energy (KE) via an inverted pendulum mechanism to reduce muscle work. During the stance period of running (including trotting, hopping and galloping) gaits, animals convert PE and KE into elastic strain energy in spring elements of the limbs and trunk and regain this energy later during limb support. The bouncing motion of the body on the support limb(s) is well represented by a simple mass-spring system. Limb spring compliance allows the storage and return of elastic energy to reduce muscle work. These two distinct patterns of CoM mechanical energy exchange are fairly well correlated with kinematic distinctions of limb movement patterns associated with gait change. However, in some cases such correlations can be misleading. When running (or trotting) at low speeds many animals lack an aerial period and have limb duty factors that exceed 0.5. Rather than interpreting this as a change of gait, the underlying mechanics of the body's CoM motion indicate no fundamental change in limb movement pattern or CoM dynamics has occurred. Nevertheless, the idealized, distinctive patterns of CoM energy fluctuation predicted by an inverted pendulum for walking and a bouncing mass spring for running are often not clear cut, especially for less cursorial species. When the kinematic and mechanical patterns of a broader diversity of quadrupeds and bipeds are compared, more complex patterns emerge, indicating that some animals may combine walking and running mechanics at intermediate speeds or at very large size. These models also ignore energy costs that are likely associated with the opposing action of limbs that have overlapping support times during walking. A recent model of terrestrial gait (Ruina et al., 2005. J Theor Biol, in press) that treats limb contact with the ground in terms of collisional energy loss indicates that considerable CoM energy can be conserved simply by matching the path of CoM motion perpendicular to limb ground force. This model, coupled with the earlier ones of pendular exchange during walking and mass-spring elastic energy savings during running, provides compelling argument for the view that the legged locomotion of quadrupeds and other terrestrial animals has generally evolved to minimize muscle work during steady level movement.  相似文献   

6.
We develop a neuromechanical model for running insects that includes a simplified hexapedal leg geometry with agonist-antagonist muscle pairs actuating each leg joint. Restricting to dynamics in the horizontal plane and neglecting leg masses, we reduce the model to three degrees of freedom describing translational and yawing motions of the body. Muscles are driven by stylized action potentials characteristic of fast motoneurons, and modeled using an activation function and nonlinear length and shortening velocity dependence. Parameter values are based on measurements from depressor muscles and observations of kinematics and dynamics of the cockroach Blaberus discoidalis; in particular, motoneuronal inputs and muscle force levels are chosen to approximately achieve joint torques that are consistent with measured ground reaction forces. We show that the model has stable double-tripod gaits over the animal's speed range, that its dynamics at preferred speeds matches those observed, and that it maintains stable gaits, with low frequency yaw deviations, when subject to random perturbations in foot touchdown and lift-off timing and action potential input timing. We explain this in terms of the low-dimensional dynamics.  相似文献   

7.
During posture control, reflexive feedback allows humans to efficiently compensate for unpredictable mechanical disturbances. Although reflexes are involuntary, humans can adapt their reflexive settings to the characteristics of the disturbances. Reflex modulation is commonly studied by determining reflex gains: a set of parameters that quantify the contributions of Ia, Ib and II afferents to mechanical joint behavior. Many mechanisms, like presynaptic inhibition and fusimotor drive, can account for reflex gain modulations. The goal of this study was to investigate the effects of underlying neural and sensory mechanisms on mechanical joint behavior. A neuromusculoskeletal model was built, in which a pair of muscles actuated a limb, while being controlled by a model of 2,298 spiking neurons in six pairs of spinal populations. Identical to experiments, the endpoint of the limb was disturbed with force perturbations. System identification was used to quantify the control behavior with reflex gains. A sensitivity analysis was then performed on the neuromusculoskeletal model, determining the influence of the neural, sensory and synaptic parameters on the joint dynamics. The results showed that the lumped reflex gains positively correlate to their most direct neural substrates: the velocity gain with Ia afferent velocity feedback, the positional gain with muscle stretch over II afferents and the force feedback gain with Ib afferent feedback. However, position feedback and force feedback gains show strong interactions with other neural and sensory properties. These results give important insights in the effects of neural properties on joint dynamics and in the identifiability of reflex gains in experiments.  相似文献   

8.
Testing hypotheses related to the effect of gravitational orientation on neural control mechanisms is difficult for most locomotor tasks, like walking, because body orientation with respect to gravity affects both sensorimotor control and task mechanics. To examine the mechanical effect of body orientation independently from changes in workload and posture, Brown et al. (J. Biomech. 29 p. 1349, 1996) studied pedaling at altered body orientations. They found that subjects pedaling at different orientations changed needlessly their muscle excitations, putatively to preserve body-upright pedaling kinematics. We tested the feasibility of this hypothesis using simulations based on a three biomechanical-function pair organization for control of lower limb muscles (limb extension/flexion pair, extension/flexion transition pair, and foot plantarflexion/dorsiflexion pair), where each pair consists of alternating agonistic/antagonistic muscles. Adjustment of only three parameters, one to scale the muscle excitations of each pair, was sufficient to preserve pedaling kinematics to altered body orientation. Because these adjustments produced changes in muscle excitation and net joint moments similar to those observed in pedaling subjects, the hypothesis is supported. Moreover, the effectiveness of a decoupled gain adjustment procedure where each parameter was adjusted by error in only one aspect of the pedaling trajectory during each iteration (i.e., cadence adjusted the Ext/Flex parameter; peak-to-peak variation in crank velocity over the cycle adjusted the transition parameter; average ankle angle over the cycle adjusted the foot parameter) further supports the distinct function of each muscle pair.  相似文献   

9.
Simulating realistic musculoskeletal dynamics is critical to understanding neural control of muscle activity evoked in sensorimotor feedback responses that have inherent neural transmission delays. Thus, the initial mechanical response of muscles to perturbations in the absence of any change in muscle activity determines which corrective neural responses are required to stabilize body posture. Muscle short-range stiffness, a history-dependent property of muscle that causes a rapid and transient rise in muscle force upon stretch, likely affects musculoskeletal dynamics in the initial mechanical response to perturbations. Here we identified the contributions of short-range stiffness to joint torques and angles in the initial mechanical response to support surface translations using dynamic simulation. We developed a dynamic model of muscle short-range stiffness to augment a Hill-type muscle model. Our simulations show that short-range stiffness can provide stability against external perturbations during the neuromechanical response delay. Assuming constant muscle activation during the initial mechanical response, including muscle short-range stiffness was necessary to account for the rapid rise in experimental sagittal plane knee and hip joint torques that occurs simultaneously with very small changes in joint angles and reduced root mean square errors between simulated and experimental torques by 56% and 47%, respectively. Moreover, forward simulations lacking short-range stiffness produced unreasonably large joint angle changes during the initial response. Using muscle models accounting for short-range stiffness along with other aspects of history-dependent muscle dynamics may be important to advance our ability to simulate inherently unstable human movements based on principles of neural control and biomechanics.  相似文献   

10.
The mechanical roles of tendon and muscle contractile elements during locomotion are often considered independently, but functionally they are tightly integrated. Tendons can enhance muscle performance for a wide range of locomotor activities because muscle-tendon units shorten and lengthen at velocities that would be mechanically unfavorable for muscle fibers functioning alone. During activities that require little net mechanical power output, such as steady-speed running, tendons reduce muscular work by storing and recovering cyclic changes in the mechanical energy of the body. Tendon stretch and recoil not only reduces muscular work, but also allows muscle fibers to operate nearly isometrically, where, due to the force-velocity relation, skeletal muscle fibers develop high forces. Elastic energy storage and recovery in tendons may also provide a key mechanism to enable individual muscles to alter their mechanical function, from isometric force-producers during steady speed running to actively shortening power-producers during high-power activities like acceleration or uphill running. Evidence from studies of muscle contraction and limb dynamics in turkeys suggests that during running accelerations work is transferred directly from muscle to tendon as tendon stretch early in the step is powered by muscle shortening. The energy stored in the tendon is later released to help power the increase in energy of the body. These tendon length changes redistribute muscle power, enabling contractile elements to shorten at relatively constant velocities and power outputs, independent of the pattern of flexion/extension at a joint. Tendon elastic energy storage and recovery extends the functional range of muscles by uncoupling the pattern of muscle fiber shortening from the pattern of movement of the body.  相似文献   

11.
Following stroke, aberrant three dimensional multijoint gait impairments emerge that present in kinematic asymmetries such as circumduction. A precise pattern of cross-planar coordination may underlie abnormal hemiparetic gait as several studies have underscored distinctive neural couplings between medio-lateral control and sagittal plane progression during walking. Here we investigate potential neuromechanical constraints governing abnormal multijoint coordination post-stroke. 15 chronic monohemispheric stroke patients and 10 healthy subjects were recruited. Coupled torque production patterns were assessed using a volitional isometric torque generation task where subjects matched torque targets for a primary joint in 4 directions while receiving visual feedback of the magnitude and direction of the torque. Secondary torques at other lower limb joints were recorded without subject feedback. We find that common features of cross-planar connectivity in stroke subjects include statistically significant frontal to sagittal plane kinetic coupling that overlay a common sagittal plane coupling in healthy subjects. Such coupling is independent of proximal or distal joint control and limb biomechanics. Principal component analysis of the stroke aggregate kinetic signature reveals unique abnormal frontal plane coupling features that explain a larger percentage of the total torque coupling variance. This study supports the idea that coupled cross-planar kinetic outflow between the lower limb joints uniquely emerges during pathological control of frontal plane degrees of freedom resulting in a generalized extension of the limb. It remains to be seen if a pattern of lower limb motor outflow that is centrally mediated contributes to abnormal hemiparetic gait.  相似文献   

12.
Optimal control simulations have shown that both musculoskeletal dynamics and physiological noise are important determinants of movement. However, due to the limited efficiency of available computational tools, deterministic simulations of movement focus on accurately modelling the musculoskeletal system while neglecting physiological noise, and stochastic simulations account for noise while simplifying the dynamics. We took advantage of recent approaches where stochastic optimal control problems are approximated using deterministic optimal control problems, which can be solved efficiently using direct collocation. We were thus able to extend predictions of stochastic optimal control as a theory of motor coordination to include muscle coordination and movement patterns emerging from non-linear musculoskeletal dynamics. In stochastic optimal control simulations of human standing balance, we demonstrated that the inclusion of muscle dynamics can predict muscle co-contraction as minimal effort strategy that complements sensorimotor feedback control in the presence of sensory noise. In simulations of reaching, we demonstrated that nonlinear multi-segment musculoskeletal dynamics enables complex perturbed and unperturbed reach trajectories under a variety of task conditions to be predicted. In both behaviors, we demonstrated how interactions between task constraint, sensory noise, and the intrinsic properties of muscle influence optimal muscle coordination patterns, including muscle co-contraction, and the resulting movement trajectories. Our approach enables a true minimum effort solution to be identified as task constraints, such as movement accuracy, can be explicitly imposed, rather than being approximated using penalty terms in the cost function. Our approximate stochastic optimal control framework predicts complex features, not captured by previous simulation approaches, providing a generalizable and valuable tool to study how musculoskeletal dynamics and physiological noise may alter neural control of movement in both healthy and pathological movements.  相似文献   

13.
The planar law of inter-segmental co-ordination we described may emerge from the coupling of neural oscillators between each other and with limb mechanical oscillators. Muscle contraction intervenes at variable times to re-excite the intrinsic oscillations of the system when energy is lost. The hypothesis that a law of coordinative control results from a minimal active tuning of the passive inertial and viscoelastic coupling among limb segments is congruent with the idea that movement has evolved according to minimum energy criteria (1, 8). It is known that multi-segment motion of mammals locomotion is controlled by a network of coupled oscillators (CPGs, see 18, 33, 37). Flexible combination of unit oscillators gives rise to different forms of locomotion. Inter-oscillator coupling can be modified by changing the synaptic strength (or polarity) of the relative spinal connections. As a result, unit oscillators can be coupled in phase, out of phase, or with a variable phase, giving rise to different behaviors, such as speed increments or reversal of gait direction (from forward to backward). Supra-spinal centers may drive or modulate functional sets of coordinating interneurons to generate different walking modes (or gaits). Although it is often assumed that CPGs control patterns of muscle activity, an equally plausible hypothesis is that they control patterns of limb segment motion instead (22). According to this kinematic view, each unit oscillator would directly control a limb segment, alternately generating forward and backward oscillations of the segment. Inter-segmental coordination would be achieved by coupling unit oscillators with a variable phase. Inter-segmental kinematic phase plays the role of global control variable previously postulated for the network of central oscillators. In fact, inter-segmental phase shifts systematically with increasing speed both in man (4) and cat (38). Because this phase-shift is correlated with the net mechanical power output over a gait cycle (3, 4), phase control could be used for limiting the overall energy expenditure with increasing speed (22). Adaptation to different walking conditions, such as changes in body posture, body weight unloading and backward walk, also involves inter-segmental phase tuning, as does the maturation of limb kinematics in toddlers.  相似文献   

14.
Feedback delays are a major challenge for any controlled process, and yet we are able to easily control limb movements with speed and grace. A popular hypothesis suggests that the brain largely mitigates the impact of feedback delays (∼50 ms) by regulating the limb intrinsic visco-elastic properties (or impedance) with muscle co-contraction, which generates forces proportional to changes in joint angle and velocity with zero delay. Although attractive, this hypothesis is often based on estimates of limb impedance that include neural feedback, and therefore describe the entire motor system. In addition, this approach does not systematically take into account that muscles exhibit high intrinsic impedance only for small perturbations (short-range impedance). As a consequence, it remains unclear how the nervous system handles large perturbations, as well as disturbances encountered during movement when short-range impedance cannot contribute. We address this issue by comparing feedback responses to load pulses applied to the elbow of human subjects with theoretical simulations. After validating the model parameters, we show that the ability of humans to generate fast and accurate corrective movements is compatible with a control strategy based on state estimation. We also highlight the merits of delay-uncompensated robust control, which can mitigate the impact of internal model errors, but at the cost of slowing feedback corrections. We speculate that the puzzling observation of presynaptic inhibition of peripheral afferents in the spinal cord at movement onset helps to counter the destabilizing transition from high muscle impedance during posture to low muscle impedance during movement.  相似文献   

15.
Postural control requires the coordination of multiple muscles to achieve both endpoint force production and postural stability. Multiple muscle activation patterns can produce the required force for standing, but the mechanical stability associated with any given pattern may vary, and has implications for the degree of delayed neural feedback necessary for postural stability. We hypothesized that muscular redundancy is reduced when muscle activation patterns are chosen with respect to intrinsic musculoskeletal stability as well as endpoint force production. We used a three-dimensional musculoskeletal model of the cat hindlimb with 31 muscles to determine the possible contributions of intrinsic muscle properties to limb stability during isometric force generation. Using dynamic stability analysis we demonstrate that within the large set of activation patterns that satisfy the force requirement for posture, only a reduced subset produce a mechanically stable limb configuration. Greater stability in the frontal-plane suggests that neural control mechanisms are more highly active for sagittal-plane and for ankle joint control. Even when the limb was unstable, the time-constants of instability were sufficiently great to allow long-latency neural feedback mechanisms to intervene, which may be preferential for movements requiring maneuverability versus stability. Local joint stiffness of muscles was determined by the stabilizing or destabilizing effects of moment-arm versus joint angle relationships. By preferentially activating muscles with high local stiffness, muscle activation patterns with feedforward stabilizing properties could be selected. Such a strategy may increase intrinsic postural stability without co-contraction, and may be useful criteria in the force-sharing problem.  相似文献   

16.
Muscular forces generated during locomotion depend on an animal's speed, gait, and size and underlie the energy demand to power locomotion. Changes in limb posture affect muscle forces by altering the mechanical advantage of the ground reaction force (R) and therefore the effective mechanical advantage (EMA = r/R, where r is the muscle mechanical advantage) for muscle force production. We used inverse dynamics based on force plate and kinematic recordings of humans as they walked and ran at steady speeds to examine how changes in muscle EMA affect muscle force-generating requirements at these gaits. We found a 68% decrease in knee extensor EMA when humans changed gait from a walk to a run compared with an 18% increase in hip extensor EMA and a 23% increase in ankle extensor EMA. Whereas the knee joint was extended (154-176 degrees) during much of the support phase of walking, its flexed position (134-164 degrees) during running resulted in a 5.2-fold increase in quadriceps impulse (time-integrated force during stance) needed to support body weight on the ground. This increase was associated with a 4.9-fold increase in the ground reaction force moment about the knee. In contrast, extensor impulse decreased 37% (P < 0.05) at the hip and did not change at the ankle when subjects switched from a walk to a run. We conclude that the decrease in limb mechanical advantage (mean limb extensor EMA) and increase in knee extensor impulse during running likely contribute to the higher metabolic cost of transport in running than in walking. The low mechanical advantage in running humans may also explain previous observations of a greater metabolic cost of transport for running humans compared with trotting and galloping quadrupeds of similar size.  相似文献   

17.
The role of the mechanical properties of the neuromuscular system in motor control has been investigated for a long time in both human and animal subjects, mainly through the application of mechanical perturbations to the limb during natural movements and the observation of its corrective responses. These methods have provided a wealth of insight into how the central nervous system controls the limb. They suffer, however, from the fact that it is almost impossible to separate the active and passive components of the measured arm stiffness and that the measurement may themselves alter the stiffness characteristic of the arm. As a complement to these analyses, the implementation of a given neuroscientific hypothesis on a real mechanical system could overcome these measurement artifact and provide a tool that is, under full control of the experimenter, able to replicate the relevant functional features of the human arm. In this article, we introduce the NEURARM platform, a robotic arm intended to test hypotheses on the human motor control system. As such, NEURARM satisfies two key requirements. First, its kinematic parameters and inertia are similar to that of the human arm. Second, NEURARM mimics the main physical features of the human actuation system, specifically, the use of tendons to transfer force, the presence of antagonistic muscle pairs, the passive elasticity of muscles in the absence of any neural feedback and the non-linear elastic behaviour. This article presents the design and characterization of the NEURARM actuation system. The resulting mechanical behaviour, which has been tested in joint and Cartesian space under static and dynamic conditions, proves that the NEURARM platform can be exploited as a robotic model of the human arm, and could thus represent a powerful tool for neuroscience investigations.  相似文献   

18.
The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring-mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed.  相似文献   

19.
In this paper we develop an elasto-dynamic model of the human arm that includes effects of neuro-muscular control uponelastic deformation in the limb.The elasto-dynamic model of the arm is based on hybrid parameter multiple body systemvariational projection principles presented in the companion paper.Though the technique is suitable for detailed bone and jointmodeling,we present simulations for simplified geometry of the bones,discretized as Rayleigh beams with elongation,whileallowing for large deflections.Motion of the upper extremity is simulated by incorporating muscle forces derived from aHill-type model of musculotendon dynamics.The effects of muscle force are modeled in two ways.In one approach,aneffective joint torque is calculated by multiplying the muscle force by a joint moment ann.A second approach models themuscle as acting along a straight line between the origin and insertion sites of the tendon.Simple arm motion is simulated byutilizing neural feedback and feedforward control.Simulations illustrate the combined effects of neural control strategies,models of muscle force inclusion,and elastic assumptions on joint trajectories and stress and strain development in the bone andtendon.  相似文献   

20.
A phenomenological theory of muscle dynamics has been elaborated on the basis of data obtained in experiments on hind limb extensor muscles of narcotized cat. Functional dependence of muscle length on external load was explored in conditions of a constant frequency of the efferent stimulation. It was shown that the system under study could be presented for a rather wide class of input signals as a system with nonlinear statics and linear dynamics. The nonlinear statics was shown to be determined mainly by the hysteretical effects of muscle contraction, whereas dynamic element was described by the first order linear differential equation corresponding to the traditional three-component mechanical model of the muscle. A hypothesis was proposed to explain the hysteresis in active muscle on the basis of functioning of the troponin-tropomyosin regulatory complex. Elaborated mathematical model of muscle dynamics can be used to predict and evaluate changes in the muscle length evoked by arbitrary changes in the external load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号