首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 70% partial hepatectomy (70%PHx) induces cell proliferation until the original mass of the liver is restored. Mitochondria are involved directly in the process of liver regeneration (LR); however, their role in the early phase of LR is not clear. In an attempt to identify mitochondrial proteins that are correlated with the early phase of LR, we obtained a mitochondrial fraction via Nycodenz(R) density gradient centrifugation and subcellular proteomic analysis was performed. The mitochondrial proteins were separated by two-dimensional gel electrophoresis and identified by mass spectrometry. Compared to the sham-operation control group, 3 proteins were up-regulated and 22 proteins were down-regulated at 24 h after 70%PHx. We identified 22 differentially expressed proteins that were associated with carbohydrate metabolism, lipid metabolism, the respiratory chain and oxidation-phosphorylation, biotransformation and other metabolic pathways. Prohibitin, a proliferation-regulating protein that was down-regulated at 24 h after PHx, was analyzed by applying RNAi (PHBi) with BRL-3A. This demonstrated a decreased mitochondrial membrane potential, implying a potential role in maintaining mitochondrial integrity. These results indicated that hepatic mitochondrial adaptations to LR after 70%PHx affect various cellular metabolic pathways, which advances our knowledge of the role of mitochondria in the early phase of LR.  相似文献   

2.
3.
4.
Left-right (LR) asymmetry is regulated by early asymmetric signals within the embryo. Even though the role of the bone morphogenetic protein (BMP) pathway in this process has been reported extensively in various model organisms, opposing models for the mechanism by which BMP signaling operates still prevail. Here we show that in zebrafish embryos there are two distinct phases during LR patterning in which BMP signaling is required. Using transgenic lines that ectopically express either noggin3 or bmp2b, we show a requirement for BMP signaling during early segmentation to repress southpaw expression in the right lateral plate mesoderm and regulate both visceral and heart laterality. A second phase was identified during late segmentation, when BMP signaling is required in the left lateral plate mesoderm to regulate left-sided gene expression and heart laterality. Using morpholino knock down experiments, we identified Bmp4 as the ligand responsible for both phases of BMP signaling. In addition, we detected bmp4 expression in Kupffer's vesicle and show that restricted knock down of bmp4 in this structure results in LR patterning defects. The identification of these two distinct and opposing activities of BMP signaling provides new insight into how BMP signaling can regulate LR patterning.  相似文献   

5.
Fibroblast growth factor (FGF) has been considered to modulate liver regeneration (LR) after partial hepatectomy (PH) at the tissue level. Previous studies have demonstrated that FGF15 and FGF19 induce the activation of its receptor, FGF receptor 4 (FGFR4), which can promote hepatocellular carcinoma progression and regulate liver lipid metabolism. In this study, we aimed to explore the role of the ileal FGF15/19- hepatic FGFR4 axis in the LR after PH. Male C57BL/6 mice aged 8–12 weeks were partially hepatectomized and assessed for expression of ileal FGF15/19 to hepatic FGFR4 signaling. We used recombinant human FGF19 protein and a small interfering RNA (siRNA) of FGFR4 to regulate expression of the FGF15/19-FGFR4 axis in vitro and in vivo. The proliferation and cell cycle of hepatocytes, the expression levels of FGF15/19-FGFR4 downstream molecules, liver recovery, and lipid metabolism were assessed. We found that both ileal and serum FGF15 expression were upregulated and hepatic FGFR4 was activated after PH in mice. FGF15/19 promoted cell cycle progression, enhanced proliferation, and reduced hepatic lipid accumulation of hepatocytes both in vitro and in vivo. Furthermore, the proliferative effect and lipid regulatory properties of FGF15/19 were dependent on FGFR4 in hepatocytes. In addition, ileal FGF15/19-hepatic FGFR4 transduction during hepatocyte proliferation was regulated by extracellular regulated protein kinase (ERK) 1/2. In conclusion, the ileal FGF15/19 to hepatic FGFR4 axis is activated and promotes LR after PH in mice, supporting the potential of ileal FGF15/19 to hepatic FGFR4 axis-targeted therapy to enhance LR after PH.  相似文献   

6.
The heart is the first organ to form and function in the vertebrate embryo. Furthermore, differences between the left and right sides of the embryo become first detectable during cardiac development. We observed strong cardiac laterality phenotypes in medaka embryos by manipulating Groucho protein activity. The phenotypes produced by misexpressing Tle4 and the dominant-negative Aes reveal a general effect of these corepressor proteins on left-right (LR) development. With the help of an inducible expression system, we were able to define temporally different phases for these effects. In an early phase during gastrulation, Groucho proteins regulate Brachyury expression in the dorsal forerunner cells, which later gives rise to the Kupffer's vesicle (KV). The interference of endogenous Groucho proteins by misexpression of Aes leads to KVs of reduced size, whereas overexpression of Tle4 results in enlarged KVs. The expression level of the cilia marker Lrd was also affected both positively and negatively from these treatments. In the late phase during somitogenesis, Groucho proteins regulate the asymmetric activities of Nodal and Lefty genes. Altering canonical Wnt signaling produced similar results in late embryos, however, this did not affect KV morphogenesis or Lrd expression in early embryos. Therefore, changes in Kupffer's vesicle morphogenesis and the laterality of visceral organs following alterations in Groucho corepressor levels demonstrate two distinct phases in which Groucho proteins help establish LR asymmetry in medaka fish.  相似文献   

7.
8.
9.
Recent studies have reported elevated expression of miR-181a in patients with non-alcoholic fatty liver disease (NAFLD), suggesting that it may play an important role in liver lipid metabolism and insulin resistance. We aimed to investigate the effect of miR-181a in lipid metabolism and find new treatments for NAFLD. The expression level of miR-181a in NAFLD patient serum and a palmitic acid (PA)-induced NAFLD cell model was examined by Q-PCR. Oil red O staining and triglyceride assays were used to assess lipid accumulation in hepatocytes. Western blotting was used to detect the protein expression levels of peroxisome proliferator-activated receptor-α (PPARα) and the fatty acid β-oxidation-related genes. Direct interactions were validated by dual-luciferase reporter gene assays. MiR-181a expression was significantly upregulated in the serum of NAFLD patients and PA-induced hepatocytes. Inhibition of miR-181a expression resulted in the increased expression of PPARα and its downstream genes, and PA-induced lipid accumulation in hepatocytes was also inhibited. Upregulation of miR-181a resulted in the downregulation of its direct target PPARα and downstream gene expression of PPARα as well as aggravated lipid accumulation in hepatocytes. At the same time, the increased expression of PPARα can offset lipid accumulation in hepatocytes induced by miR-181a mimics. This study demonstrates that reducing the expression of miR-181a may improve lipid metabolism in NAFLD. The downregulation of miR-181a expression can be a therapeutic strategy for NAFLD by modulating its target PPARα.  相似文献   

10.
11.
目的: 探讨脂肪酸结合蛋白5(FABP5)-过氧化物酶体增殖物激活受体γ(PPARγ)信号通路对血管性痴呆(VD)大鼠学习记忆及脂质代谢的影响及其作用机制。方法: ①采用双侧颈总动脉结扎法制备VD模型大鼠,设立正常对照组(WT组)、假手术组(sham组)及VD模型组;②设立WT组和WT+FABP5抑制剂组。4周后行Morris水迷宫实验检测大鼠空间学习记忆能力;采用RT-qPCR及Western blot方法测定脑内FABP5、PPARγ、p- PPARγ及脂蛋白脂肪酶(LPL)在转录水平和蛋白水平的表达;用试剂盒检测脑组织中总胆固醇(TC)、甘油三酯(TG)及游离脂肪酸(FFA)含量。结果: 与WT组和sham组相比,VD模型和FABP5抑制剂组大鼠学习记忆能力明显下降(P<0.05, P<0.01),脑内的FABP5、PPARγ、p- PPARγ及LPL在转录水平和蛋白水平上表达显著降低(P<0.05, P< 0.01);脑内的TC、TG和FFA含量明显提高(P<0.05, P<0.01)。结论: FABP5可通过PPARγ和LPL影响VD大鼠的学习记忆和脂质代谢。  相似文献   

12.
Nutrient metabolism is crucial for the survival of insects through the diapause. However, little is known about the metabolic mechanism of prolonged diapause. The sawfly, Cephalcia chuxiongica (Hymenoptera: Pamphiliidae), is a notorious defoliator of pine trees in southwest China. One of the distinguishing biological characteristics of this pest is the prolonged diapause of about 1.5 years. In this study, the body lipid, carbohydrate (total body sugar, glycogen, trehalose, and glucose), protein, and glycerol contents were measured in diapausing larvae of C. chuxiongica. The results showed that the changes of biochemical composition in C. chuxiongica are associated with the diapause initiation, maintenance, and termination phases. During the initiation phase, trehalose, glucose, and glycerol increased significantly, but glycogen decreased sharply. In general, the lipid, carbohydrate, and glycerol levels decreased gradually across the maintenance phase. At termination phase, the contents of glycogen and lipid persistently decreased, while an increase of trehalose, glucose, and glycerol contents were detected. The protein level was significantly higher at maintenance phase than at initiation and termination phases. It was also found that elevation of trehalose, glucose, and glycerol contents occurred in winter. These implies that the metabolites with altered levels in diapausing larvae of C. chuxiongica are responsible for maintaining a prolonged development and overwintering.  相似文献   

13.
14.
15.
This study was performed to elucidate the effects of linoleic acid (LA), oleic acid (OA) and their combination (LA?+?OA) on cell proliferation, apoptosis, necrosis, and the lipid metabolism related gene expression in bovine satellite cells (BSCs), isolated from bovine muscles. Cell viability was significantly increased with the OA and LA treatment. Furthermore, LA?+?OA enhanced cell proliferation in a dose-dependent manner (10 to 100?µM), whereas it lowered at 250?µM. In addition, a cell-cycle analysis showed that 100?µM of LA and OA markedly decreased the G0/G1 phase proportion (62.58% and 61.33%, respectively), compared to controls (68.02%), whereas the S-phase cells’ proportion was increased. The ratio of G2/M phase cells was not significantly different among the groups. Moreover, analyses with AO/EtBr staining showed that no apoptosis occurred. Necrosis were determined by flow cytometry using Annexin V-FITC/PI staining which revealed no early apoptosis in the cells pretreated with LA or OA, but occurred in the LA?+?OA group. We also analyzed the mRNA expression of lipid metabolizing genes such as peroxisome proliferator receptor alfa (PPARα), peroxisome proliferator receptor gamma (PPARγ), acyl-CoA oxidase (ACOX), lipoprotein lipase (LPL), carnitine palmitoyl transferase (CPT-1), and fatty-acid binding protein4 (FABP4), which were upregulated in LA or OA treated cells compared to the control group. In essence, LA and OA alone promote the cell proliferation without any apoptosis and necrosis, which might upregulate the lipid metabolism related gene expressions, and increase fatty-acid oxidation in the BSCs’ lipid metabolism.  相似文献   

16.
Lung cancer is one of the most frequent causes of cancer-related death worldwide. However, molecular markers for lung cancer have not been well established. To identify novel genes related to lung cancer development, we surveyed publicly available DNA microarray data on lung cancer tissues. We identified lipase member H (LIPH, also known as mPA-PLA1) as one of the significantly upregulated genes in lung adenocarcinoma. LIPH was expressed in several adenocarcinoma cell lines when they were analyzed by quantitative real-time polymerase chain reaction (qPCR), western blotting, and sandwich enzyme-linked immunosorbent assay (ELISA). Immunohistochemical analysis detected LIPH expression in most of the adenocarcinomas and bronchioloalveolar carcinomas tissue sections obtained from lung cancer patients. LIPH expression was also observed less frequently in the squamous lung cancer tissue samples. Furthermore, LIPH protein was upregulated in the serum of early- and late-phase lung cancer patients when they were analyzed by ELISA. Interestingly, high serum level of LIPH was correlated with better survival in early phase lung cancer patients after surgery. Thus, LIPH may be a novel molecular biomarker for lung cancer, especially for adenocarcinoma and bronchioloalveolar carcinoma.  相似文献   

17.
18.
Peroxisome proliferator-activated receptor-alpha (PPARα) is a nuclear receptor that regulates the expression of genes related to cellular lipid uptake and oxidation. Thus, PPARα agonists may be important in the treatment of hypertriglyceridemia and hepatic steatosis. In this study, we demonstrated that catalposide is a novel natural PPARα agonist, identified from reporter gene assay-based activity screening with approximately 900 natural plant and seaweed extracts. Results of time-resolved fluorescence resonance energy transfer analyses suggested that the compound interacted directly with the ligand-binding domain of PPARα. Cultured hepatocytes stimulated with catalposide exhibited significantly reduced cellular triglyceride concentrations, by 21%, while cellular uptake of fatty acids was increased, by 70% (P<0.05). Quantitative PCR analysis revealed that the increase in cellular fatty acid uptake was due to upregulation of fatty acid transporter protein-4 (+19% vs. the control) in cells stimulated with catalposide. Additionally, expression of genes related to fatty acid oxidation and high-density lipoprotein metabolism were upregulated, while that of genes related to fatty acid synthesis were suppressed. In conclusion, catalposide is hypolipidemic by activation of PPARα via a ligand-mediated mechanism that modulates the expression of in lipid metabolism genes in hepatocytes.  相似文献   

19.
Early and late metestrus in the rat differ by progesterone levels. As it is known that progesterone shows a potential negative effect on cognitive performances and can counteract the estradiol-induced neural effects, we intended to study signaling proteins in the hippocampus, a structure representing a main brain area of cognitive function. Female OFA Sprague-Dawley rats were used in the studies and estrous phases were determined using vaginal smears. Hippocampal tissue was taken, proteins extracted, run on two-dimensional gel electrophoresis and proteins were identified by mass spectrometry methods (MALDI-TOF-TOF and nano-LC-ESI-MS/MS). Individual signaling protein levels quantified by specific software were shown to vary between the two phases, including NG,NG-dimethylarginine dimethylaminohydrolase 1 for nitric oxide signaling, guanine nucleotide-binding proteins, septin 6, septin 11, G-septin alpha, and 14-3-3 protein gamma. Results from this study indicate that early and late metestrus show differences in signaling pathways, that may help to design further investigations at the protein level and may assist to interpret literature on protein expression and brain protein levels in female rats. Moreover, signaling differences in hippocampus are challenging cognitive studies during these two metestrus phases probably revealing cognitive differences between early and late metestrus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号