首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Locomotor muscles often perform diverse roles, functioning as motors that produce mechanical energy, struts that produce force and brakes that dissipate mechanical energy. In many vertebrate muscles, these functions are not mutually exclusive and a single muscle often performs a range of mechanically diverse tasks. This functional diversity has obscured the relationship between a muscle''s locomotor function and its mechanical properties. I use hopping in toads as a model system for comparing muscles that primarily produce mechanical energy with muscles that primarily dissipate mechanical energy. During hopping, hindlimb muscles undergo active shortening to produce mechanical energy and propel the animal into the air, whereas the forelimb muscles undergo active lengthening to dissipate mechanical energy during landing. Muscles performing distinct mechanical functions operate on different regions of the force–length curve. These findings suggest that a muscle''s operating length may be shaped by potential trade-offs between force production and sarcomere stability. In addition, the passive force–length properties of hindlimb and forelimb muscles vary, suggesting that passive stiffness functions to restrict the muscle''s operating length in vivo. These results inform our understanding of vertebrate muscle variation by providing a clear link between a muscle''s locomotor function and its mechanical properties.  相似文献   

2.
Determination of muscle forces in individual muscles is often essential to assess optimal performance of human motion. Inverse dynamic methods based on the kinematics of the given motion and on the use of optimisation approach are the most widely used for muscle force estimation. The aim of this study was to estimate how the choice of muscle model influences predicted muscle forces. Huxley's (1957, Prog Biophys Biop Chem. 7: 255–318) and Hill's (1938, Proc R Soc B. 126: 136–195) muscle models were used for determination of muscle forces of two antagonistic muscles of the lower extremity during cycling. Huxley's model is a complex model that couples biochemical and physical processes with the microstructure of the muscle whereas the Hill's model is a phenomenological model. Muscle forces predicted by both models are within the same range. Huxley's model predicts more realistic patterns of muscle activation but it is computationally more demanding. Therefore, if the overall muscle forces are to be assessed, it is reasonable to use a simpler implementation based on Hill's model.  相似文献   

3.
The arrangement of muscles and tendons has been studied in detail by anatomists, surgeons and biomechanists for over a century, and the energetics and mechanics of muscle contraction for almost as long. Investigation of how muscles function during locomotion and the relative length change in muscle fibres and the associated elastic tendon has, however, been more challenging. In recent years, novel in vivo measurement methods such as ultrasound and sonomicrometry have contributed to our understanding of the dynamics of the muscle tendon unit during locomotion. Here, we examine both published and new data to explore how muscles are arranged to deliver the wide repertoire of locomotor function and the trade-offs between performance and economy that result.  相似文献   

4.
Cyclically contracting muscles provide power for a variety of processes including locomotion, pumping blood, respiration, and sound production. In the current study, we apply a computational model derived from force–velocity relationships to explore how sustained power output is systematically affected by shortening velocity, operational frequency, and strain amplitude. Our results demonstrate that patterns of frequency dependent power output are based on a precise balance between a muscle's intrinsic shortening velocity and strain amplitude. We discuss the implications of this constraint for skeletal muscle design, and then explore implications for physiological processes based on cyclical muscle contraction. One such process is animal locomotion, where musculoskeletal systems make use of resonant properties to reduce the amount of metabolic energy used for running, swimming, or flying. We propose that skeletal muscle phenotype is tuned to this operational frequency, since each muscle has a limited range of frequencies at which power can be produced efficiently. This principle also has important implications for our understanding muscle plasticity, because skeletal muscles are capable of altering their active contractile properties in response to a number of different stimuli. We discuss the possibility that muscles are dynamically tuned to match the resonant properties of the entire musculoskeletal system.  相似文献   

5.
In view of the supposition that a dolphin can swim faster than would be predicted based on its physical features and presumed muscle power potential, studies were initiated to reevaluate the assumptions made in reaching these conclusions. Several previous studies have shown that the architectural and histochemical properties of a skeletal muscle dictate its force, velocity and displacement properties. This study examined the muscle fiber lengths and tendon arrangements of the dorsal and ventral axial muscles in dolphins ( Tursiops truncatus ). Fiber type and fiber size distributions were determined to reflect the general biochemical characteristics of the musculature. The dorsal muscles had a higher mean fiber length (167 Vs. 90 mm) and the range within and across different dorsal muscles was less (141–199 vs. 37–185 mm) than in the ventral muscles. Both the dorsal and ventral muscles consisted of an overall mean of 50 percent slow twitch and 50 percent fast twitch fiber types. The fast twitch fibers were 67 percent larger (2,200 vs. 1,317 μ m 2) than the slow twitch fibers in the ventral and 38 percent larger (1,213 Vs. 879 μm2) in the dorsal muscles. In addition, the mean cross sectional area of the fibers in the ventral muscles was approximately 65 percent greater (1,750 vs. 1,072 μm2) than those in the dorsal muscles. The shorter, larger-diameter fibers of the ventral musculature give it a greater potential for force production for a given amount of muscle mass. In contrast, the dorsal muscles appear to be designed to optimize velocity and displacement, ( i.e. , longer fibers). These findings contribute to the information necessary for the determination of the power potential of the musculature of the dolphin.  相似文献   

6.
Summary— In contrast to general belief, the response of rabbit muscles to denervation is maturation to slow-like type muscles [7]. We report now an investigation by biochemical, morphological, and mechanical studies of the time course effects of muscle denervation on the slow-type soleus and fast-type gastrocnemius to help clucidate the mechanism of maturation of rabbit denervated muscles to slow-like muscles. In both muscles, denervation induced selective progressive atrophy of most fast fibers and hypertrophy of many slow fibers which displayed wide Z-lines; this was accompanied by the appearance of hybrid LC1F- and LC1E-associated slow myosins. The percentage of slow myosins increased with age similarly in the contralateral and denervated soleus. On the other hand, the percentage of slow myosins remained low in the contralateral gastrocnemius, whereas it increased to 95% in the denervated gastrocnemius; in the denervated gastrocnemius, the percentage of slow myosins reached 50% at about 35 days postnatal. At this age, the maximal shortening velocity of the denervated gastrocnemius and its twitch contraction time were already those of a slow-type muscle. This suggests that in addition to myosin, other proteins contributed to the mechanical properties of the denervated gastrocnemius. Transformation of rabbit denervated muscles to slow-like type muscles, which are associated with a lower energy requirement and higher muscle endurance than fast-type muscles, may constitute an adequate model for human neuromuscular pathology.  相似文献   

7.
Extant apes are similar to one another, and different from monkeys, in features granting them greater range of forearm rotation and greater size of the muscles that produce this motion. Although these traits may have been independently acquired by the various apes, the possibility arises that such features reflect adaptation to the stem behavior of the hominoid lineage. Anticipating that knowledge of forearm rotatory muscle recruitment during brachiation, vertical climbing, arm-hanging during feeding, and voluntary reaching might point to this stem behavior, we undertook telemetered electromyographic experiments on the supinator, pronator quadratus, ulnar head of pronator teres, and a variety of other upper limb muscles in two gibbons and four chimpanzees. The primary rotator muscles of the hominoid forearm were recruited at high levels in a variety of behaviors. As had been suspected by previous researchers, the supinator is usually active during the support phase of armswinging, but we observed numerous instances of this behavior during which the muscle was inactive. No other muscle took over its role. Kinetic analyses are required to determine how apes can execute body rotation of armswinging without active muscular effort. The one behavior that is common to most extant apes, is rare in monkeys, and which places a consistently great demand on the primary forearm rotatory muscles, is hang-feeding. The muscles of the supporting limb are essential to properly position the body; those of the free limb are essential for grasping food. Since the greater range of forearm rotation characterizing apes is also best explained by adaptation to this behavior, we join previous authors who assert that it lies at the very origin of the Hominoidea.  相似文献   

8.
Morphology and functional capacity of homotopically transplanted extensor digitorum longus muscles (EDL) of adult SCID mice that received 1 × 106 myoblasts [stably transfected to express nuclear localizing β-galactosidase under the control of the myosin light-chain 3F promoter/enhancer] 2 days posttransplantation were evaluated 9 weeks after transplantation, to determine whether the injection of exogenous myoblasts had an effect on muscle regeneration. Regenerated muscles that received exogenous myoblasts were compared to similarly transplanted muscles that received (a) no further treatment, or (b) sham injection of the vehicle (without myoblasts) and to unoperated EDL. Nine weeks after myoblast transfer, myofibers containing donor-derived nuclei could be identified after staining with X-gal solution. Judging from its size and poor functional performance compared to muscles subjected to transplantation only, sham injection provided a secondary trauma to the regenerating muscle from which it failed to fully recover. In comparison to the sham-injected muscle, the myoblast-injected muscles weighed 61% more and had 50% more myofibers and 82% more cross-sectional area occupied by myofibers at the muscles' widest girths. Their absolute twitch and tetanic tensions were threefold and twofold greater, respectively, and their specific twitch and tetanic tensions were 71% and 50% greater, respectively, than those of sham-injected muscles. In many parameters, the regenerating muscle subjected to myoblast transfer equaled or exceeded those of muscles that were transplanted only received only one trauma). Absolute twitch and tetanic tensions were 73% and 65% greater, respectively, and specific twitch tensions of the muscles receiving myoblasts were 50% greater than forces generated by muscles subjected to whole-muscle transplantation only. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 185–198, 1997  相似文献   

9.
Skeletal muscle contains many muscle fibres that are functionally grouped into motor units. For any motor task there are many possible combinations of motor units that could be recruited and it has been proposed that a simple rule, the ‘size principle’, governs the selection of motor units recruited for different contractions. Motor units can be characterised by their different contractile, energetic and fatigue properties and it is important that the selection of motor units recruited for given movements allows units with the appropriate properties to be activated. Here we review what is currently understood about motor unit recruitment patterns, and assess how different recruitment patterns are more or less appropriate for different movement tasks. During natural movements the motor unit recruitment patterns vary (not always holding to the size principle) and it is proposed that motor unit recruitment is likely related to the mechanical function of the muscles. Many factors such as mechanics, sensory feedback, and central control influence recruitment patterns and consequently an integrative approach (rather than reductionist) is required to understand how recruitment is controlled during different movement tasks. Currently, the best way to achieve this is through in vivo studies that relate recruitment to mechanics and behaviour. Various methods for determining motor unit recruitment patterns are discussed, in particular the recent wavelet-analysis approaches that have allowed motor unit recruitment to be assessed during natural movements. Directions for future studies into motor recruitment within and between functional task groups and muscle compartments are suggested.  相似文献   

10.
Skeletal muscles of marine mammals must support the metabolic demands of exercise during periods of reduced blood flow associated with the dive response. Enhanced muscle buffering could support anaerobic metabolic processes during apnea, yet this has not been fully investigated in cetaceans. To assess the importance of this adaptation in the diving and swimming performance of cetaceans, muscle buffering capacity due to non-bicarbonate buffers was measured in the longissimus dorsi of ten species of odontocete and one mysticete. Immature specimens from a subset of these species were studied to assess developmental trends. Fetal and neonatal cetaceans have low buffering capacities (range: 34.8–53.9 slykes) that are within the range measured for terrestrial mammals. A lengthy developmental period, independent of muscle myoglobin postnatal development, is required before adult levels are attained. Adult cetacean buffering capacities (range: 63.7–94.5 slykes) are among the highest values recorded for mammals. Cetacean species that demonstrate extremely long dive durations or high burst speed swimming tend to have greater buffering capacities. However, the wide range of body size across cetaceans may complicate these trends. Enhanced muscle buffering capacity may enable small-bodied species to extend breath-hold beyond short aerobic dive limits for foraging or predator evasion when necessary.  相似文献   

11.
To test how differences in locomotor behaviors may be reflected in muscle fiber-type diversity within anurans, a comparison of hindlimb muscles between the powerful terrestrial hopper, Rana catesbeiana, and the tree frog, Litoria caerulea, was done. One postural muscle (tibialis posticus, TP) and one primary hopping muscle (plantaris longus, PL), were characterized to identify muscle fiber types using standard histochemical methods. In addition, spectophotometric analysis of activity levels of the oxidative enzyme citrate synthase (CS) and the glycolytic enzyme lactate dehydrogenase (LDH) were done in each muscle. In spite of presumed differences in behavior between the species, we found no significant differences in the proportions of the identified fiber types when the muscles were compared across species. In addition, there were no significant differences in the proportions of the different fiber types between the postural versus phasic muscles within species. Within Rana, the postural muscle (TP) had greater oxidative capacity (as measured by CS activity) than did the phasic muscle (PL). Both muscles had equivalent LDH activities. Within Litoria, PL and TP did not differ in either LDH or CS activities. Both PL and TP of Litoria had less LDH activity and greater CS activity than their homologs in Rana. Thus, in spite of the uniform populations of fiber types between muscles and species, the metabolic diversity based on enzyme activity is consistent with behavioral differences between the species. These results suggest that the range of functional diversity within fiber types may be very broad in anurans, and histochemical fiber typing alone is not a clear indicator of their metabolic or functional properties.  相似文献   

12.
Hagfish, the plesiomorphic sister group of all vertebrates, are deep-sea scavengers. The large musculus (m.) longitudinalis linguae (dental muscle) is a specialized element of the feeding apparatus that facilitates the efficient ingestion of food. In this article, we compare the protein expression in hagfish dental and somatic (the m. parietalis) skeletal muscles via two-dimensional gel electrophoresis and mass spectrometry in order to characterize the former muscle. Of the 500 proteins screened, 24 were identified with significant differential expression between these muscles. The proteins that were overexpressed in the dental muscle compared to the somatic muscle were troponin C (TnC), glycogen phosphorylase, β-enolase, fructose-bisphosphate aldolase A (aldolase A), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). In contrast, myosin light chain 1 (MLC 1) and creatine kinase (CK) were over-expressed in the somatic muscle relative to the dental muscle. These results suggest that these two muscles have different energy sources and contractile properties and provide an initial representative map for comparative studies of muscle-protein expression in low craniates.  相似文献   

13.
The mouthparts are very important tools for almost any task performed by ants. In particular, the labiomaxillary complex is essential for food intake. In the present study we investigated the anatomical design of the labiomaxillary complex in various ant species, focusing on movement mechanisms. Six labial and six maxillary muscles with different functions control the several joints and ensure the proper performance of the labiomaxillary complex. According to our measurements of sarcomere lengths, muscle fiber lengths and diameters, and the relative muscle volumes, the labial and maxillary muscles feature rather slow than fast muscle characteristics and do not seem to be specialized for specific tasks. Since glossa protractor muscles are absent, the protraction of the glossa, the distal end of the labium, is a nonmuscular movement. By histological measurements of hemolymph volumes we could exclude a pressure-driven mechanism. Additional experiments showed that, upon relaxation of the glossa retractor muscles, the glossa protracts elastically. This elastic mechanism possibly sets an upper limit to licking frequency, thus influencing food intake rates and ultimately foraging behavior. In contrast to many other elastic mechanisms among arthropods, glossa protraction in ants is based on a mechanism where elasticity works as an actual antagonist to muscles. We compared the design of the labiomaxillary complex of ants with that of the honeybee and suggest an elastic mechanism for glossa protraction in honeybees as well.  相似文献   

14.
Skeletal muscles are rarely recruited maximally during movement. However, much of our understanding of muscle properties is based on studies using maximal activation. The effect of activation level on skeletal muscle properties remains poorly understood. Muscle optimum length increases with decreased activation; however, the mechanism responsible is unclear. Here, we attempted to determine whether length-dependent calcium effects, or the effect of absolute force underpin this shift. Fixed-end contractions were performed in frog plantaris muscles at a range of lengths using maximal tetanic (high force, high calcium), submaximal tetanic (low force, high calcium) and twitch (low force, low calcium) stimulation conditions. Peak force and optimum length were determined in each condition. Optimum length increased with decreasing peak force, irrespective of stimulation condition. Assuming calcium concentration varied as predicted, this suggests that absolute force, rather than calcium concentration, underpins the effect of activation level on optimum length. We suggest that the effect of absolute force is due to the varying effect of the internal mechanics of the muscle at different activation levels. These findings have implications for our understanding of in vivo muscle function and suggest that mechanical interactions within muscle may be important determinants of force at lower levels of activation.  相似文献   

15.
Quantification of lower limb muscle function during gait or other common activities may be achieved using an induced acceleration analysis, which determines the contributions of individual muscles to the accelerations of the body's centre of mass. However, this analysis is reliant on a mathematical optimisation for the distribution of net joint moments among muscles. One approach that overcomes this limitation is the calculation of a muscle's potential to accelerate the centre of mass based on either a unit-force or maximum-activation assumption. Unit-force muscle potential accelerations are determined by calculating the accelerations induced by a 1 N muscle force, whereas maximum-activation muscle potential accelerations are determined by calculating the accelerations induced by a maximally activated muscle. The aim of this study was to describe the acceleration potentials of major lower limb muscles during normal walking obtained from these two techniques, and to evaluate the results relative to absolute (optimisation-based) muscle-induced accelerations. Dynamic simulations of walking were generated for 10 able-bodied children using musculoskeletal models, and potential- and absolute induced accelerations were calculated using a perturbation method. While the potential accelerations often correctly identified the major contributors to centre-of-mass acceleration, they were noticeably different in magnitude and timing from the absolute induced accelerations. Potential induced accelerations predicted by the maximum-activation technique, which accounts for the force-generating properties of muscle, were no more consistent with absolute induced accelerations than unit-force potential accelerations. The techniques described may assist treatment decisions through quantitative analyses of common gait abnormalities and/or clinical interventions.  相似文献   

16.
Shear wave elastography (SWE) is emerging as an innovative tool to evaluate muscle properties and function. It has been shown to correlate with both passive and active muscle forces, and is sensitive to physiological processes and pathological conditions. Similarly, intramuscular pressure (IMP) is an important parameter that changes with passive and active muscle contraction, body position, exercise, blood pressure, and several pathologies. Therefore, the objective of this study was to quantify the dependency of shear modulus within the lower-leg muscles on IMP in healthy individuals. Nineteen healthy individuals (age: Mean age ± SD, 23.84 ± 6.64 years) were recruited. Shear modulus was measured using ultrasound SWE on the tibialis anterior (TA) and peroneus longus (PL) muscles using pressure cuff inflation around the thigh at 40 mmHg, 80 mmHg, and 120 mmHg. Changes in IMP were verified using a catheter connected to a blood pressure monitor. It was found that IMP was correlated to TA and PL shear modulus (spearman's rank correlation = 0.99 and 0.99, respectively). Applying a gradual increase of cuff pressure from 0 to 120 mmHg increased the shear modulus of the TA and PL muscles from 15.83 (2.46) kPa to 21.88 (4.33) kPa and from 9.64 (1.97) kPa to 12.88 (5.99) kPa, respectively. These results demonstrate that changes of muscle mechanical properties are dependent on IMP. This observation is important to improve interpretation of ultrasound elastograms and to potentially use it as a biomarker for more accurate diagnosis of pathologies related to increased IMP.  相似文献   

17.
Muscle coordination studies repeatedly show low-dimensionality of muscle activations for a wide variety of motor tasks. The basis vectors of this low-dimensional subspace, termed muscle synergies, are hypothesized to reflect neurally-established functional muscle groupings that simplify body control. However, the muscle synergy hypothesis has been notoriously difficult to prove or falsify. We use cadaveric experiments and computational models to perform a crucial thought experiment and develop an alternative explanation of how muscle synergies could be observed without the nervous system having controlled muscles in groups. We first show that the biomechanics of the limb constrains musculotendon length changes to a low-dimensional subspace across all possible movement directions. We then show that a modest assumption--that each muscle is independently instructed to resist length change--leads to the result that electromyographic (EMG) synergies will arise without the need to conclude that they are a product of neural coupling among muscles. Finally, we show that there are dimensionality-reducing constraints in the isometric production of force in a variety of directions, but that these constraints are more easily controlled for, suggesting new experimental directions. These counter-examples to current thinking clearly show how experimenters could adequately control for the constraints described here when designing experiments to test for muscle synergies--but, to the best of our knowledge, this has not yet been done.  相似文献   

18.
A model has been analyzed which is based on recent experimental evidence concerning the properties of muscles and the sensory feedback pathways from muscles. Damped oscillations can arise in the absence of sensory feedback due to the interaction of a muscle with inertial loads. These mechanical oscillations can have a wide range of frequencies depending on the inertial and elastic loads that are attached to the muscle. Small amounts of sensory feedback will tend to reduce deviations from a steady muscle length, but larger amounts of feedback can produce oscillations. The frequency of these reflex oscillations is determined by the properties of the muscle and feedback pathway, and is rather independent of load. If the strength of the sensory feedback is sufficient, either the mechanical oscillations or the reflex oscillations or both can grow, rather than decay, with time. The growth of these oscillations is limited by saturation non-linearities in the muscle receptors and the muscle itself, so that the oscillations approach a steady amplitude and frequency. Using typical properties of muscles and spinal reflex pathways, the frequency of reflex oscillations will be within the range 8–12 Hz found for physiological tremor. With the longer latency found for supraspinal reflexes, oscillations will occur in the range 4–6 Hz which is characteristic of Parkinson's and cerebellar diseases. The role of longer latency reflexes in the generation of these tremors is discussed.  相似文献   

19.
Vertebrate muscle Z-bands show zig-zag densities due to different sets of alpha-actinin cross-links between anti-parallel actin molecules. Their axial extent varies with muscle and fibre type: approximately 50 nm in fast and approximately 100 nm in cardiac and slow muscles, corresponding to the number of alpha-actinin cross-links present. Fish white (fast) muscle Z-bands have two sets of alpha-actinin links, mammalian slow muscle Z-bands have six. The modular structure of the approximately 3 MDa protein titin that spans from M-band to Z-band correlates with the axial structure of the sarcomere; it may form the template for myofibril assembly. The Z-band-located amino-terminal 80 kDa of titin includes 45 residue repeating modules (Z-repeats) that are expressed differentially; heart, slow and fast muscles have seven, four to six and two to four Z-repeats, respectively. Gautel et al. proposed a Z-band model in which each Z-repeat links to one level of alpha-actinin cross-links, requiring that the axial extent of a Z-repeat is the same as the axial separation of alpha-actinin layers, of which there are two in every actin crossover repeat. The span of a Z-repeat in vitro is estimated by Atkinson et al. to be 12 nm or less; much less than half the normal vertebrate muscle actin crossover length of 36 nm. Different actin-binding proteins can change this length; it is reduced markedly by cofilin binding, or can increase to 38.5 nm in the abnormally large nemaline myopathy Z-band. Here, we tested whether in normal vertebrate Z-bands there is a marked reduction in crossover repeat so that it matches twice the apparent Z-repeat length of 12 nm. We found that the measured periodicities in wide Z-bands in slow and cardiac muscles are all very similar, about 39 nm, just like the nemaline myopathy Z-bands. Hence, the 39 nm periodicity is an important conserved feature of Z-bands and either cannot be explained by titin Z-repeats as previously suggested or may correlate with two Z-repeats.  相似文献   

20.
Results from a wide variety of recent studies on the architecture and innervation of skeletal muscles, the neuromechanical characteristics of motor units, and the properties and spinal reflex actions of muscle proprioceptors present a number of challenges to conventional views of the functional organization of the segmental motor system. To illustrate the nature of these challenges, studies directed toward several specific issues are reviewed. These include the functional subdivision of single muscles into two or more neuromuscular compartments; the patterns of synaptic input from peripheral afferent fibers to motoneurons innervating muscle units of different "type;" and the convergence in the segmental reflex pathways from muscle spindles and tendon organs to motoneurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号