首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The function of articular cartilage as a weight-bearing tissue depends on the specific arrangement of collagen types II and IX into a three-dimensional organized collagen network that can balance the swelling pressure of the proteoglycan/ water gel. To determine whether cartilage engineered in vitro contains a functional collagen network, chondrocyte-polymer constructs were cultured for up to 6 weeks and analyzed with respect to the composition and ultrastructure of collagen by using biochemical and immunochemical methods and scanning electron microscopy. Total collagen content and the concentration of pyridinium crosslinks were significantly (57% and 70%, respectively) lower in tissue-engineered cartilage that in bovine calf articular cartilage. However, the fractions of collagen types II, IX, and X and the collagen network organization, density, and fibril diameter in engineered cartilage were not significantly different from those in natural articular cartilage. The implications of these findings for the field of tissue engineering are that differentiated chondrocytes are capable of forming a complex structure of collagen matrix in vitro, producing a tissue similar to natural articular cartilage on an ultrastructural scale. J. Cell. Biochem. 71:313–327, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

2.
A major site of pyridinoline cross-linking in bovine type IX collagen was traced to a tryptic peptide derived from one of the molecule's HMW chains. This peptide gave two amino acid sequences (in 2/1 ratio) consistent with it being a three-chained structure. The major sequence matched exactly that of the C-telopeptide of type II collagen from the same tissue. A second HMW chain that contained pyridinoline cross-links also gave two amino-terminal sequences, one from its own amino terminus, the other matching exactly the N-telopeptide cross-linking sequence of type II collagen. We conclude that type IX collagen molecules are covalently cross-linked in cartilage to molecules of type II collagen, probably at fibril surfaces.  相似文献   

3.
Cartilage fibrils contain collagen II as the major constituent, but the presence of additional components, minor collagens, and noncollagenous glycoproteins is thought to be crucial for modulating several fibril properties. We have examined the distribution of two fibril constituents—decorin and collagen IX—in samples of fibril fragments obtained after bovine cartilage homogenization. Decorin was preferentially associated with a population of thicker fibril fragments from adult articular cartilage, but was not present on the thinnest fibrils. The binding was specific for the gap regions of the fibrils, and depended on the decorin core protein. Collagen IX, by contrast, predominated in the population with the thinnest fibrils, and was scarce on wider fibrils. Double-labeling experiments demonstrated the coexistence of decorin and collagen IX in some fibrils of intermediate diameter, although most fibril fragments from adult cartilage were strongly positive for one component and lacked the other. Fibril fragments from fetal epiphyseal cartilage showed a different pattern, with decorin and collagen IX frequently colocalized on fragments of intermediate and large diameters. Hence, the presence of collagen IX was not exclusive for fibrils of small diameter. These results establish that articular cartilage fibrils are biochemically heterogeneous. Different populations of fibrils share collagen II, but have distinct compositions with respect to macromolecules defining their surface properties.  相似文献   

4.
Minor disulfide-bonded collagen (previously termed X1-X7 and now called type IX collagen) was isolated from foetal calf cartilage after pepsin treatment. At least three native fractions, containing, respectively, the X1X2X3, X4, and X5X6X7 chains, were separated; and from further biochemical and physicochemical experiments (differential scanning calorimetry, electrical birefringence, rotary shadowing), we propose a tentative model for their organization within a parent molecule. X1 and X2 are molecules composed of three chains of apparent Mr 62,000 and 50,000 linked by interchain disulfide bonds and containing pepsin-sensitive regions. The cleavage of at least three of these sites, present within X2, gives rise to the X3 and X5X6X7 fractions composed of molecules 80-100 nm and 40-55 nm in length, respectively. The X5X6X7 fraction is not digested by pepsin at 30 degrees C owing to its high thermal stability (certainly explained by its high hydroxyproline + proline content). This organization is in good accordance with that proposed for chicken cartilage type IX collagen; differences could only exist in the number and (or) the location of the pepsin-sensitive sites.  相似文献   

5.
The structural integrity of cartilage depends on the presence of extracellular matrices (ECM) formed by heterotypic fibrils composed of collagen II, collagen IX, and collagen XI. The formation of these fibrils depends on the site-specific binding between relatively small regions of interacting collagen molecules. Single amino acid substitutions in collagen II change the physicochemical and structural characteristics of those sites, thereby leading to an alteration of intermolecular collagen II/collagen IX interaction. Employing a biosensor to study interactions between R75C, R789C or G853E collagen II mutants and collagen IX, we demonstrated significant changes in the binding affinities. Moreover, analyses of computer models representing mutation sites defined exact changes in physicochemical characteristics of collagen II mutants. Our study shows that changes in collagen II/collagen IX affinity could represent one of the steps in a cascade of changes occurring in the ECM of cartilage as a result of single amino acid substitutions in collagen II.  相似文献   

6.
Cartilage oligomeric matrix protein (COMP) is a large extracellular pentameric glycoprotein found in the territorial matrix surrounding chondrocytes. More than 60 unique COMP mutations have been identified as causing two skeletal dysplasias, pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (MED/EDM1). Recent studies demonstrate that calcium-binding and calcium induced protein folding differ between wild type and mutant COMP proteins and abnormal processing of the mutant COMP protein causes the characteristic large lamellar appearing rough endoplasimic reticulum (rER) cisternae phenotype observed in PSACH and EDMI growth plate chondrocytes. To understand the cellular events leading to this intracellular phenotype, PSACH chondrocytes with a G427E, D469del and D511Y mutations were grown in 3-D culture to produce cartilage nodules. Each nodule was assessed for the appearance and accumulation of cartilage-specific proteins within the rER and for matrix protein synthesis. All three COMP mutations were associated with accumulation of COMP in the rER cisternae by 4 weeks in culture, and by 8 weeks the majority of chondrocytes had the characteristic cellular phenotype. Mutations in COMP also affect the secretion of type IX collagen and matrilin-3 (MATN3) but not the secretion of aggrecan and type II collagen. COMP, type IX collagen and MATN3 were dramatically reduced in the PSACH matrices, and the distribution of these proteins in the matrix was diffuse. Ultrastructural analysis shows that the type II collagen present in the PSACH matrix does not form organized fibril bundles and, overall, the matrix is disorganized. The combined absence of COMP, type IX collagen and MATN3 causes dramatic changes in the matrix and suggests that these proteins play important roles in matrix assembly.  相似文献   

7.
The cell line, RCS-LTC (derived from the Swarm rat chondrosarcoma), deposits a copious extracellular matrix in which the collagen component is primarily a polymer of partially processed type II N-procollagen molecules. Transmission electron microscopy of the matrix shows no obvious fibrils, only a mass of thin unbanded filaments. We have used this cell system to show that the type II N-procollagen polymer nevertheless is stabilized by pyridinoline cross-links at molecular sites (mediated by N- and C-telopeptide domains) found in collagen II fibrils processed normally. Retention of the N-propeptide therefore does not appear to interfere with the interactions needed to form cross-links and mature them into trivalent pyridinoline residues. In addition, using antibodies that recognize specific cross-linking domains, it was shown that types IX and XI collagens, also abundantly deposited into the matrix by this cell line, become covalently cross-linked to the type II N-procollagen. The results indicate that the assembly and intertype cross-linking of the cartilage type II collagen heteropolymer is an integral, early process in fibril assembly and can occur efficiently prior to the removal of the collagen II N-propeptides.  相似文献   

8.
The collagen framework of hyaline cartilages, including articular cartilage, consists largely of type II collagen that matures from a cross-linked heteropolymeric fibril template of types II, IX, and XI collagens. In the articular cartilages of adult joints, type III collagen makes an appearance in varying amounts superimposed on the original collagen fibril network. In a study to understand better the structural role of type III collagen in cartilage, we find that type III collagen molecules with unprocessed N-propeptides are present in the extracellular matrix of adult human and bovine articular cartilages as covalently cross-linked polymers extensively cross-linked to type II collagen. Cross-link analyses revealed that telopeptides from both N and C termini of type III collagen were linked in the tissue to helical cross-linking sites in type II collagen. Reciprocally, telopeptides from type II collagen were recovered cross-linked to helical sites in type III collagen. Cross-linked peptides were also identified in which a trifunctional pyridinoline linked both an α1(II) and an α1(III) telopeptide to the α1(III) helix. This can only have arisen from a cross-link between three different collagen molecules, types II and III in register staggered by 4D from another type III molecule. Type III collagen is known to be prominent at sites of healing and repair in skin and other tissues. The present findings emphasize the role of type III collagen, which is synthesized in mature articular cartilage, as a covalent modifier that may add cohesion to a weakened, existing collagen type II fibril network as part of a chondrocyte healing response to matrix damage.  相似文献   

9.
Molecular mechanisms controlling the assembly of cartilage-specific types II, IX and XI collagens into a heteropolymeric network of uniformly thin, unbanded fibrils are not well understood, but collagen XI has been implicated. The present study on cartilage from the homozygous chondrodysplasia (cho/cho) mouse adds support to this concept. In the absence of alpha1(XI) collagen chains, thick, banded collagen fibrils are formed in the extracellular matrix of cho/cho cartilage. A functional knock-out of the type XI collagen molecule has been assumed. We have re-examined this at the protein level to see if, rather than a complete knock-out, alternative type XI chain assemblies were formed. Mass spectrometry of purified triple-helical collagen from the rib cartilage of cho/cho mice identified alpha1(V) and alpha2(XI) chains. These chains were recovered in roughly equal amounts based on Coomassie Blue staining of SDS-PAGE gels, in addition to alpha1(II)/alpha3(XI) collagen chains. Using telopeptide-specific antibodies and Western blot analysis, it was further shown that type V/XI trimers were present in the matrix cross-linked to each other and to type II collagen molecules to form heteropolymers. Cartilage from heterozygous (cho/+) mice contained a mix of alpha1(V) and alpha1(XI) chains and a mix of thin and thick fibrils on transmission electron microscopy. In summary, the results imply that native type XI collagen molecules containing an alpha1(XI) chain are required to form uniformly thin fibrils and support a role for type XI collagen as the template for the characteristic type II collagen fibril network of developing cartilage.  相似文献   

10.
In normal hyaline cartilage the predominant collagen type is collagen type II along with its associated collagens, for example, types IX and XI, produced by normal chondrocytes. In contrast, investigations have demonstrated that in vitro a switch from collagen type II to collagen type I occurs. Some authors have detected collagen type I in osteoarthritic cartilage also in vivo, especially in late stages of osteoarthritis, while others have not. In the light of these diverging results, we have attempted to elucidate which type of collagen, type I and/or type II, is synthesized in the consecutive stages of human osteoarthritis. We performed in situ hybridization and immunohistochemistry with cartilage tissue samples from patients suffering from various stages of osteoarthritis. Furthermore, we quantitated our results on the gene expression of collagen type I and type II with the help of real-time PCR. We found that with the progression of the disease not only collagen type II, but also increasing amounts of collagen type I mRNA were produced. This supports the conclusion that collagen type I gradually becomes one of the factors involved in the pathogenesis of osteoarthritis.  相似文献   

11.
Type IX collagen is covalently bound to the surface of type II collagen fibrils within the cartilage extracellular matrix. The N-terminal, globular noncollagenous domain (NC4) of the α1(IX) chain protrudes away from the surface of the fibrils into the surrounding matrix and is available for molecular interactions. To define these interactions, we used the NC4 domain in a yeast two-hybrid screen of a human chondrocyte cDNA library. 73% of the interacting clones encoded fibronectin. The interaction was confirmed using in vitro immunoprecipitation and was further characterized by surface plasmon resonance. Using whole and pepsin-derived preparations of type IX collagen, the interaction was shown to be specific for the NC4 domain with no interaction with the triple helical collagenous domains. The interaction was shown to be of high affinity with nanomolar Kd values. Analysis of the fibronectin-interacting clones indicates that the constant domain is the likely site of interaction. Type IX collagen and fibronectin were shown to co-localize in cartilage. This novel interaction between the NC4 domain of type IX collagen and fibronectin may represent an in vivo interaction in cartilage that could contribute to the matrix integrity of the tissue.  相似文献   

12.
Notch pathway plays a pivotal role in cell fate determination. There is much interest surrounding its therapeutic potential, in osteoarthritis, but the expression profile of Notch-related molecules, as well as their relation with cartilage pathological parameters, remains unclear. The purpose of our study is to analyze the expression pattern of Notch family members, type II and type I collagen, in normal (healthy) and osteoarthritic human knee cartilage. Osteoarthritic cartilages were obtained from 3 patients undergoing a total knee replacement. Macroscopically normal cartilage was dissected from 3 human knees at the time of autopsy or surgery. Immunohistochemical staining was performed using Notch1,2,3 and 4, Delta, Jagged, type II collagen and type I collagen antibodies. In healthy cartilage, type II collagen was abundantly expressed while type I was absent. This latter increased proportionally to the osteoarthritic grade. Type II collagen expression remained intense in osteoarthritic cartilage. In healthy cartilage as well as in cartilage with minor lesions, Notch family member's proteins were not or just weakly expressed at the surface and in the cells. However, Notch molecules were over-expressed in osteoarthritic cartilage compared to healthy one. This expression pattern was different according to the cartilage zone and the severity of OA. Our data suggest that Notch signaling is activated in osteoarthritic cartilage, compared to healthy cartilage, with a much more abundant expression in the most damaged areas.  相似文献   

13.
Deposition of type X collagen in the cartilage extracellular matrix   总被引:1,自引:0,他引:1  
In cultured chick embryo chondrocytes, type X collagen is preferentially deposited in the extracellular matrix, the ratio between type II and type X collagen being about 5 times higher in the culture medium than in the cell layer. When the newly synthesized collagens deposited in slices from the epiphyseal cartilage of 17-day-old embryo tibiae were isolated, type X collagen was always the major species. In agreement with this result the mRNA for type X collagen was the predominant mRNA species purified from the same tissue. When the total collagen (unlabeled) deposited in the epiphyseal cartilage was analyzed, it was observed that type X collagen represented only 1/15 of the type II collagen recovered in the same preparation. The possible explanations for these differences are discussed.  相似文献   

14.
The tissue distribution of type II and type IX collagen in 17-d-old chicken embryo was studied by immunofluorescence using polyclonal antibodies against type II collagen and a peptic fragment of type IX collagen (HMW), respectively. Both proteins were found only in cartilage where they were co-distributed. They occurred uniformly throughout the extracellular matrix, i.e., without distinction between pericellular, territorial, and interterritorial matrices. Tissues that undergo endochondral bone formation contained type IX collagen, whereas periosteal and membranous bones were negative. The thin collagenous fibrils in cartilage consisted of type II collagen as determined by immunoelectron microscopy. Type IX collagen was associated with the fibrils but essentially was restricted to intersections of the fibrils. These observations suggested that type IX collagen contributes to the stabilization of the network of thin fibers of the extracellular matrix of cartilage by interactions of its triple helical domains with several fibrils at or close to their intersections.  相似文献   

15.
Type IX collagen functions in covalent cross-linkage to type II collagen in cartilage (Eyre, D. R., Apone, S., Wu, J. J., Ericsson, L. H., and Walsh, K. A. (1987) FEBS Lett. 220, 337-341). To understand this molecular relationship better, an analysis of all cross-linking sites labeled by [3H]borohydride was undertaken using the protein prepared from fetal bovine cartilage. Sequence analysis of tryptic peptides containing the 3H-labeled cross-links showed that each of the chains of type IX collagen, alpha 1(IX), alpha 2(IX), and alpha 3(IX), contained a site of cross-linking at the amino terminus of the COL2 triple-helix to which the alpha 1(II)N-telopeptide could bond. The alpha 3(IX)COL2 domain alone also had an attachment site for the alpha 1(II)C-telopeptide. The distance between the alpha 1(II)N-telopeptide and alpha 1(II)C-telopeptide interaction sites, 137 residues, is equal to the length of the hole zone (0.6D) in a type II collagen fibril. This implies an antiparallel type II to type IX cross-linking relationship. Peptide analysis also revealed an unknown amino acid sequence linked to the COL2 cross-linking domains in both the alpha 1(IX) and alpha 3(IX) chains. Using antibodies to this novel peptide, its origin in the collagen alpha 3(IX)NC1 domain was established. In summary, the results confirm extensive covalent cross-linking between type IX and type II collagen molecules and reveal the existence of type IX-type IX bonding. These data provide a molecular basis for the proposed function of type IX collagen as a critical contributor to the mechanical stability and resistance to swelling of the collagen type II fibril framework of cartilage.  相似文献   

16.
Electrophoretic and Western blot studies were conducted on collagen fractions extracted from Sepia officinalis (cuttlefish) cartilage using a modified salt precipitation method developed for the isolation of vertebrate collagens. The antibodies used had been raised in rabbit against the following types of collagen: Sepia I-like; fish I; human I; chicken I, II, and IX; rat V; and calf IX and XI. The main finding was that various types of collagen are present in Sepia cartilage, as they are in vertebrate hyaline cartilage. However, the main component of Sepia cartilage is a heterochain collagen similar to vertebrate type I, and this is associated with minor forms similar to type V/XI and type IX. The cephalopod type I-like heterochain collagen can be considered a first step toward the evolutionary development of a collagen analogous to the typical collagen of vertebrate cartilage (type II homochain). The type V/XI collagen present in molluscs, and indeed all phyla from the Porifera upwards, may represent an ancestral collagen molecule conserved relatively unchanged throughout evolution. Type IX-like collagen seems to be essential for the formation of cartilaginous tissue.  相似文献   

17.
18.
From a study to understand the mechanism of covalent interaction between collagen types II and IX, we present experimental evidence for a previously unrecognized molecular site of cross-linking. The location relative to previously defined cross-linking sites predicts a specific manner of interaction and folding of collagen IX on the surface of nascent collagen II fibrils. The initial evidence came from Western blot analysis of type IX collagen extracted by pepsin from fetal human cartilage, which showed a molecular species that had properties indicating an adduct between the alpha1(II) chain and the C-terminal domain (COL1) of type IX collagen. A similar component was isolated from bovine cartilage in sufficient quantity to confirm this identity by N-terminal sequence analysis. Using an antibody that recognized the putative cross-linking sequence at the C terminus of the alpha1(IX) chain, cross-linked peptides were isolated by immunoaffinity chromatography from proteolytic digests of human cartilage collagen. They were characterized by immunochemistry, N-terminal sequence analysis, and mass spectrometry. The results establish a link between a lysine near the C terminus (in the NC1 domain) of alpha1(IX) and the known cross-linking lysine at residue 930 of the alpha1(II) triple helix. This cross-link is speculated to form early in the process of interaction between collagen IX molecules and collagen II polymers. A model of molecular folding and further cross-linking is predicted that can spatially accommodate the formation of all six known cross-linking interactions to the collagen IX molecule on a fibril surface. Of particular biological significance, this model can accommodate potential interfibrillar as well as intrafibrillar links between the collagen IX molecules themselves, so providing a mechanism whereby collagen IX could stabilize a collagen fibril network.  相似文献   

19.
Type IX collagen is a quantitatively minor component of hyaline cartilage that is essential for the normal structural integrity of the tissue. Purification and analysis are difficult because the mature protein is insoluble as a cross-linked integral component of the fibrillar matrix. In order to view a peptide map of the total pool of type IX collagen in a cartilage sample, a selective method based on Western blot analysis was developed for displaying collagen IX peptides in a cyanogen bromide digest of tissue. Digests were partially resolved by reverse-phase HPLC, individual fractions were run on SDS-PAGE and then transblotted to membrane, and the collagen IX fragments were revealed using an anti-collagen IX rabbit antiserum. All major CB-peptides from alpha1(IX), alpha2(IX), and alpha3(IX) chains in the resulting two-dimensional display were identified by amino-terminal sequence analysis. Cross-linked peptides originating from sites of covalent interaction between collagen types IX and II and between IX and IX were also defined. By comparison with an analysis of soluble type IX collagen from chondrocyte culture medium, the results showed that the pool of type IX collagen molecules in fetal and adult human cartilage is extensively cross-linked intermolecularly at sites previously revealed by other methods using purified protein. This sensitive, direct method has the potential to screen for abnormalities in the content and properties of type IX collagen in tissue samples, for example, in the study of heritable chondrodysplasia syndromes and the pathogenesis of cartilage destruction in osteoarthritis.  相似文献   

20.
The effect of type IX on in vitro fibrillogenesis of type II collagen indicated that, while not preventing fibrillogenesis, the presence of type IX collagen reduced the size of the type II fibre aggregates. This observation is consistent with the in vivo localisation studies of type IX collagen. Using the immunogold labelling technique, type IX collagen was shown to be located evenly on small fibrils which occur at higher concentration closer to the cell. Therefore type IX collagen may function as a regulator of fibre diameter in articular cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号